References
  1. León-Velarde, F., Maggiorini, M., Reeves, J.T., Aldashev, A., Asmus, I., Bernardi, L. et al. (2005). Consensus statement on chronic and subacute high-altitude diseases. High Alt. Med. Biol. 6 , 147-157.
  2. Luks, A.M. (2015). Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses. J. Appl. Physiol. 118 , 509–519.
  3. Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012). Interactions between the microbiota and the immune system. Science 336 , 1268-1273.
  4. Cho, I., and Blaser, M. J. (2012). The human microbiome: at the interface of health and disease. Nature Rev. Genet.13 , 260–270.
  5. Huttenhower, C., Kostic, A.D., and Xavier, R.J. (2014). Inflammatory bowel disease as a model for translating the microbiome. Immunity40 , 843-854.
  6. Shreiner, A. B., Kao, J. Y., and Young, V. B. (2015). The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31 , 69–75.
  7. Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature Med.22 , 1079-1089.
  8. Shreiner, A. B., Kao, J. Y., and Young, V. B. (2015). The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31 , 69–75.
  9. Cho, I., and Blaser, M. J. (2012). The human microbiome: at the interface of health and disease. Nature Rev. Genet.13 , 260–270.
  10. Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012). Interactions between the microbiota and the immune system. Science 336 , 1268-1273.
  11. Huttenhower, C., Kostic, A.D., and Xavier, R.J. (2014). Inflammatory bowel disease as a model for translating the microbiome. Immunity40 , 843-854.
  12. Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature Med.22 , 1079-1089.
  13. Meer, R.R., Songer, J.G., and Park, D.L. (1997). Human disease associated with Clostridium perfringens enterotoxin. Rev. Environ. Contam. Toxicol. 150 , 75-94.
  14. Veldhuyzen van Zanten, S.J., Pollak, P.T., Best, L.M., Bezanson, G.S. and Marrie, T. (1994). Increasing prevalence of Helicobacter pylori infection with age: continuous risk of infection in adults rather than cohort effect. Journal of Infectious Diseases 169 ,434-437.
  15. Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., and Fowler, V.G. Jr. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28 , 603-661.
  16. Adak, A., Maity, C., Ghosh, K., and Mondal, K.C. (2014). Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia. Z Gastroenterol.52 , 180-186.
  17. Adak, A., Ghosh, K., and Mondal, K.C. (2014). Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia. Ind. J. Exp. Biol.52 , 1098-1105.
  18. Berrios, J. (1982). Consideraciones sobre la pathologia digestive en los habitentes de las grandes alturasdel Peru. (In Spanish). Rev Gastroenterol (Peru), pp. 21-28.
  19. Wu, T.Y. (2001). Take note of altitude gastrointestinal bleeding. Newsletter Int. Soc. Mountain Med. 10 , 9-11.
  20. Saito, A. (1989). The medical reports of the China-Japan-Nepal Friendship Expedition to Mt. Qomolungma/Sagamartha (Everest). Jap. J. Mount. Med. 9, 83-87.
  21. Liu, M.F. (1995). Upper alimentary bleeding at high altitude. In: Lu, Y.D., Li, K.X., Yin, Z.Y., editors. High Altitude Medicine and Physiology. (In Chinese). Tianjing: Tianjing Science & Technology Press, 586.
  22. Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 24 , 837-848.
  23. Sekirov, I., Russell, S.L., Antunes, L.C., and Finlay, B.B. (2010). Gut microbiota in health and disease. Physiol. Rev. 90 , 859-904.
  24. Bhute, S., Pande, P., Shetty, S.A., Shelar, R., Mane, S., Kumbhare, S.V. et al. (2016). Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of Prevotella and Megasphaera in Indian subjects. Front. Microbiol. 9 , 657-660.
  25. Dehingia, M., Devi, K.T., Talukdar, N.C., Talukdar, R., Reddy, N., Mande, S.S. et al. (2015). Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci. Rep. 22 , 18555-18563.
  26. Ghosh, T.S., Gupta, S.S., Bhattacharya, T., Yadav, D., Barik, A., Chowdhury, A. et al. (2014). Gut microbiomes of Indian children of varying nutritional status. PLoS One 9 , e95547.
  27. Dethlefsen, L., and Relman, D.A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. 108 , 4554-4561.
  28. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S. et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. 107 , 14691-14696.
  29. Khachatryan, Z.A., Ktsoyan, Z.A., Manukyan, G.P., Kelly, D., Ghazaryan, K.A., and Aminov, R.I. (2008). Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One3 , e3064.
  30. Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R. et al. (2014). Human genetics shape the gut microbiome. Cell 159 , 789-799.
  31. Kleessen, B., Schroedl, W., Stueck, M., Richter, A., Rieck, O., and Krueger, M. (2005). Microbial and immunological responses relative to high-altitude exposure in mountaineers. Med. Sci. Sports Exerc.37 , 1313-1318.
  32. Adak, A., Maity, C., Ghosh, K., Pati, B.R., and Mondal, K.C. (2013). Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia. Microbiol. (Praha) 58 , 523-528.
  33. Li, L., and Zhao, X. (2015). Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci Rep. 5 , 1-10.
  34. Li, K., Dan, Z., Gesang, L., Wang, H., Zhou, Y., Du, Y. et al. (2016). Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes. PLoS One 11 , e0155863.
  35. Das, B., Ghosh, T.S., Kedia, S., Rampal, R., Saxena, S., Bag, S. et al. (2018). Analysis of the Gut Microbiome of Rural and Urban Healthy Indians Living in Sea Level and High Altitude Areas. Sci. Rep.8 , 1-15.
  36. Tandon, D., Haque, M.M., Saravanan, R., Shaikh, S., Sriram, P., Dubey, A.K. et al. (2018). A snapshot of gut microbiota of an adult urban population from Western region of India. PLoS One 13 , e0195643.
  37. Lepage, P., Leclerc, M.C., Joossens, M., Mondot, S., Blottière, H.M., Raes, J. et al. (2013). A metagenomic insight into our gut’s microbiome. Gut 62 , 146-158.
  38. Lieberman, T.D., Flett, K.B., Yelin, I., Martin, T.R., McAdam, A.J., Priebe, G.P. et al. (2013). Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nature Genet. 46 , 82-87.
  39. Snitkin, E.S., Zelazny, A.M., Montero, C.I., Stock, F., Mijares, L., NISC Comparative Sequence Program. et al. (2011) Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc. Natl. Acad. Sci. 108 , 13758-13763.
  40. Rasko, D.A., Webster, D.R., Sahl, J.W., Bashir, A., Boisen, N., Scheutz, F. et al. (2011). Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N. Engl. J. Med.365 , 709-717.
  41. Lauber, C.L., Zhou, N., Gordon, J.I., Knight, R., and Fierer, N. (2010). Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307 , 80-86.
  42. Carroll, I.M., Ringel-Kulka, T., Siddle, J.P., Klaenhammer, T.R., and Ringel, Y. (2012). Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7 , e46953.
  43. Kultima, J.R., Coelho, L.P., Forslund, K., Huerta-Cepas, J., Li, S.S., Driessen, M. et al. (2016). MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32 , 2520-2523.
  44. Mende, D.R., Sunagawa, S., Zeller, G., and Bork, P. (2013). Accurate and universal delineation of prokaryotic species. Nat. Met. 10 , 881-884. doi: 10.1038/nmeth.2575.
  45. Paulson, J.N., Stine, O.C., Bravo, H.C., and Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nat. Met. 10 , 1200-1202.
  46. Zakrzewski, M., Proietti, C., Ellis, J.J., Hasan, S., Brion, M.J., Berger, B. et al. (2017). Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 1 , 782-783.
  47. Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. Peer J. 3 , e1165.
  48. Nayfach, S., Rodriguez-Mueller, B., Garud, N., and Pollard, K.S. (2016). An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26 , 1612-1625.
  49. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J. et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Giga Science 1, 1-6.
  50. Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. (2005). The microbial pan-genome. Curr. Opin. Genet. Dev. 15 , 589-594.
  51. Jensen, L.J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T. et al. (2008). eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res.36 , D250-D254.
  52. Kim, J., Kim, M.S., Koh, A.Y., Xie, Y., and Zhan, X. (2016). FMAP: Functional Mapping and Analysis Pipeline for metagenomics and meta-transcriptomics studies. BMC Bioinformatics 17 , 1-8.
  53. De Filippis, F., Pellegrini, N., Laghi, L., Gobbetti, M., and Ercolini, D. (2016). Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome4 , 1-6.
  54. Khatri, P., Sirota, M., and Butte, A.J. (2012). Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8 , e1002375.
  55. Vogtmann, E., Hua, X., Zeller, G., Sunagawa, S., Voigt, A.Y., Hercog, R. et al. (2016). Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One11 , e0155362.
  56. Donaldson, G. P., Lee, S. M., and Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. Nature Rev. Microbiol. 14 , 1-13.
  57. Litvak. Y., Sharon, S., Hyams, M., Zhang, L., Kobi, S., Katsowich, N. et al. (2017). Epithelial cells detect functional type III secretion system of entero pathogenic Escherichia coli through a novel NF-κB signaling pathway. PLoS Pathog. 13 , e1006472.
  58. WHO E.C. (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet363 , 157-63.
  59. Nemati, R., Dietz, C., Anstadt, E.J., Cervantes, J., Liu, Y., Dewhirst, F.E. et al. (2007). Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J. Lipid Res. 58 , 1999-2007.
  60. Konstantinov, S.R., van der Woude, C.J., and Peppelenbosch, M.P. (2013). Do pregnancy-related changes in the microbiome stimulate innate immunity? Trends. Mol. Med. 19 , 454-459.
  61. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R. et al. (2011). Enterotypes of the human gut microbiome. Nature 473 , 174-180.
  62. Vandeputte, D., Falony, G., Vieira-Silva, S., Tito, R.Y., Joossens, M., and Raes, J. (2016). Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65 , 57-62.
  63. Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K. et al. (2016). Population-level analysis of gut microbiome variation. Science 352 , 560-564.
  64. Moeller, A.H., Li, Y., Ngole, E.M., Ahuka-Mundeke, S., Lonsdorf, E.V., Pusey, A.E. et al. (2014). Rapid changes in the gut microbiome during human evolution. Proc. Natl. Acad. Sci. 111 , 16431-16435.
  65. Conlon, M. and Bird, A., 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7 , 17-44.
  66. De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I.B., La Storia, A., Laghi, L. et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65, 1812-1821.
  67. Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A. et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334 ,105-108.
  68. McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A. et al. (2011). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6 , 610-618.
  69. Mannucci, P.M., Gringeri, A., Peyvandi, F., Di Paolantonio, T., and Mariani, G. (2002). Short-term exposure to high altitude causes coagulation activation and inhibits fibrinolysis. Thromb. Haemost.87 , 342-343.
  70. Tyagi, T., Ahmad, S., Gupta, N., Sahu, A., Ahmad, Y., Nair, V. et al. (2014). Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 123 , 1250-1260.
  71. Bultink, I.E., Dorigo-Zetsma, J.W., Koopman, M.G., and Kuijper, E.J. (1999). Fusobacterium nucleatum septicemia and portal vein thrombosis. Clin. Infect. Dis. 28 , 1325-1326.
  72. Hamidi, K., Pauwels, A., Bingen, M., Simo, A.C., Medini, A., Jarjous, N. et al. (2008). Recent portal and mesenteric venous thrombosis associated with Fusobacterium bacteremia. Gastroenterol. Clin. Biol.32 , 734-739.
  73. Redford, M.R., Ellis, R., and Rees, C.J. (2005). Fusobacterium necrophorum infection associated with portal vein thrombosis. J. Med. Microbiol. 54 , 993-995.
  74. Koren, O., Spor, A., Felin, J., Fak, F., Stombaugh, J., Tremaroli, V. et al. (2011). Human, oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. 108 , 4592-4598.
  75. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E. et al. (2009). A core gut microbiome in obese and lean twins. Nature 457 , 480–484.
  76. Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature 486 , 207–214.
  77. Zhu, A., Sunagawa, S., Mende, D.R., and Bork, P. (2015). Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16 , 1-13.
  78. Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 24 , 837-848.
  79. Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C., Bielski, C. et al. (2013). Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife2 , 1-20.
  80. Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Gianella, S., Siewe, B. et al. (2016). Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol. 9 , 24-37.
  81. Larsen, J.M. (2017). The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 151 , 363-374.
  82. Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y.S., De Vadder, F., Arora, T. et al. (2015). Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 22 , 971-982.
  83. Maurice, C.F., Haiser, H.J., and Turnbaugh, P.J. (2013). Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152 , 39-50.
  84. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K. et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Met. 7 , 335-336.