REFERENCES
Aßmann, M., Stobener, A., Gaßmeyer, S.K., Hilterhaus, L., Kourist, R., Liese, A., & Kara, S. (2017). Reaction engineering of biocatalytic (S)-naproxen synthesis integrating in-line process monitoring by Raman spectroscopy, Reaction Chemistry & Engineering , 2, 531-540.https://doi.org/10.1039/C7RE00043J.
Aurell, C.J., Karlsson, S., Ponten, F., & Andersen, S.M. (2014). Lipase catalyzed regioselective lactamization as a key step in the synthesis of N-Boc (2R)-1,4-oxazepane-2-carboxylic acid, Organic Process Research & Development , 18, 1116-1119.https://doi.org/10.1021/op5001644.
Bernal, C., Illanes, A., & Wilson, L., (2014). Heterofunctional Hydrophilic-Hydrophobic Porous Silica Support for Multipoint Covalent Immobilization of Lipases: Application to Lactulose Palmitate Synthesis,Langmuir , 30, 3557-3566.https://doi.org/10.1021/la4047512.
Ciemięga, A., Maresz, K., & Mrowiec-Białoń, J. (2018). Meervein-Ponndorf-Vereley reduction of carbonyl compounds in monolithic siliceous microreactors doped with Lewis acid centres, Applied Catalysis A: General , 560, 111-118.https://doi.org/10.1016/j.apcata.2018.04.037.
Dwivedee, B.P., Bhaumik, J., Rai, S.K., Laha, J.K., & Banerjee, U.C. (2017). Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescenslipase for applications in efficient kinetic resolution of racemic compounds, Bioresource Technology , 239, 464-471.https://doi.org/10.1016/j.biortech.2017.05.050.
Eta, V., Anugwom, I., Virtanen, P., Maki-Arvela, P., & Mikkola J.P., (2014). Enhanced mass transfer upon switchable ionic liquid mediated wood fractionation, Industrial Crops and Products , 55, 109-115.https://doi.org/10.1016/j.indcrop.2014.02.001.
Eta, V., & Mikkola, J.P., (2016). Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose,Carbohydrate Polymers , 136, 459-465.https://doi.org/10.1016/j.carbpol.2015.09.058.
Foukis, A., Gkini, O.A., Stergiou, P.Y., Sakkas, V.A., Dima, A., Boura, K., Koutinas, A., & Papamicheael, E.M., (2017). Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass, Bioresource Technology , 238, 122–128. doi: 10.1016/j.biortech.2017.04.028.
Garmroodi, M., Mohammadi, M., Ramazani, A., Ashjari, M., Mohammadi, J., Sabour, B., & Yousefi, M. (2016). Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports, International Journal of Biological Macromolecules , 86, 208–215.https://doi.org/10.1016/j.ijbiomac.2016.01.076.
Goundoju, N.R., Bokam, R., Yalavarthi, N., Shaik, K., & Ponnapalli, M.G. (2019). Asymmetric total synthesis of 16-methyleicos-(4E)-en-1-yn-3-ol from the marine sponge Cribrochalina vasculum: Establishment of absolute configuration of chiral centers,ChemistrySelect , 4, 399-402.https://doi.org/10.1002/slct.201803646.
Guajardo, N., Bernal, C., Wilson, L. & Cabrera, Z. (2015). Selectivity of R-α-monobenzoate glycerol synthesis catalyzed by Candida antarctica lipase B immobilized on heterofunctional supports, Process Biochemistry , 50, 1870–1877.https://doi.org/10.1016/j.procbio.2015.06.025.
Gustafsson, H., Thorn, C., & Holmberg, K. (2011). A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions, Colloids and Surface B: Biointerfaces , 87, 464-471.https://doi.org/10.1016/j.colsurfb.2011.06.012.
Hirata, D.B., Albuquerque, T.L., Rueda, N., Virgen-Ortíz, J.J., Tacias-Pascacio, V.G., & Fernandez-Lafuente, R., (2016). Evaluation of different immobilized lipases in transesterification reactions using tributyrin: Advantages of the heterofunctional octyl agarose beads,Journal of Molecular Catalysis B: Enzymatic , 133, 117–123.https://doi.org/10.1016/j.molcatb.2016.08.008.
Hou, C., Ghéczy, N., Messmer, D., Szymańska, K., Adamcik, J., Mezzenga, R., Jarzębski, A.B., & Walde, P. (2019). Stable immobilization of enzymes in a macro- and mesoporous silica monolith, ACS Omega , 4, 7795-7806.https://doi.org/10.1021/acsomega.9b00286.
Huang, W., Zhu, N., Liu, Y., Wang, J., Zhoung, J., Sun, Q., Sun, T., Hu, X., Fang, Z. & Guo, K. (2019). A novel microfluidic enzyme-organocatalysis combination strategy for ring-opening copolymerizations of lactone, lactide and cyclic carbonate,Chemical Engineering Journal , 365, 592-597.https://doi.org/10.1016/j.cej.2018.09.033.
Hudson, S., Cooney, J., & Magner, E. (2008). Proteins in mesoporous silicates, Angewandte Chemie - International Edition 47, 8582-8594.http://dx.doi.org/10.1002/anie.200705238.Immobilized
Jiang, Y.J., Zheng, P.J., Zhou, L.Y., Kong, W., Gao, J., Wang, J., Gu, J., Zhang, X., & Wang, X. (2016). Immobilization of lipase in hierarchically ordered macroporous/mesoporous silica with improved catalytic performance, Journal of Molecular Catalysis B: Enzymatic, 130, 96–103.https://doi.org/10.1016/j.molcatb.2016.05.009.
Jose, C., & Briand, L. E. (2010). Deactivation of Novozym® 435 during the esterification of ibuprofen with ethanol: Evidences of the detrimental effect of the alcohol, Reaction Kinetics, Mechanism and Catalysis , 99, 17–22.https://doi.org/10.1007/s11144-009-0103-4.
Jose, C., Bonetto, R. D., Gambaro, L. A., Torres, M. P., Foresti M. L., Ferreira, M. L., & Briand, L.E. (2011). Investigation of the causes of deactivation-degradation of the commercial biocatalyst Novozym 435 in ethanol and ethanol-aqueous media, Journal of Molecular Catalysis B: Enzymatic , 71, 95–107.https://doi.org/10.1016/j.molcatb.2011.04.004.
Karbowiak, T., Saada, M.A., Rigolet, S., Ballandras, A., Weber, G., Bezverkhyy, I., Soulard, M., Patarin, J., & Bellat, J.P. (2010). New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure, Physical Chemistry Chemical Physics , 12, 11454–11466.https://doi.org/10.1039/c000931h.
Lima, L.N., Oliveira, G.C., Rojas, M.J., Castro, H.F., Da Ros, P.C.M., Mendes, A.A., Giordano, R.L.C., & Tardioli, P.W. (2015). Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems, Journal of Industrial Microbiology & Biotechnology , 42, 523-535.https://doi.org/10.1007/s10295-015-1586-9.
Mallin, M., Muschiol, J., Byström. E., & Bornscheuer, U. T. (2013). Efficient biocatalysis with immobilized enzymes or encapsulated whole cell microorganism by using the SpinChem reactor system,ChemCatChem , 5, 3529–3532.https://doi.org/10.1002/cctc.201300599.
Odrozek, K., Szymańska, K., Lewanczuk, M., Dzido, G., Pudło, W., Bryjak, J., & Jarzębski, A.B. (2017). Aerobic enzymatic oxidation of benzoic acid derivatives in a rotating bed reactor with hierarchically structured packing, Przemysł Chemiczny , 96, 2446-2449.https://doi.org/10.15199/62.2017.12.7.
Ortiz, C., Ferreira, M.L., Barbosa, O., dos Santos, J.C.S., Rodrigues, R.C., Berenguer-Murcia, Á., Briand, L.E., & Fernendez-Lafuente, R. (2019). Novozyme 435: the “perfect” immobilized biocatalyst?,Catalysis Science & Technology , 9, 2380-2420.https://doi.org/10.1039/C9CY00415G.
Pham, T.N., Samikannu, A., Rautio, A.R., Juhasz, K.L., Konya, Z., Warna, J., Kordas, & K., Mikkola, J.P. (2016). Catalytic hydrogenation of D-xylose over Ru decorated carbon foam catalyst in a SpinChem® rotating bed reactor, Topics in Catalysis , 59, 1165-1177.https://doi.org/10.1007/s11244-016-0637-4 .
Stauch, B., Fisher, S.J., & Cianci, M. (2015). Open and closed states of Candida Antarctica lipase B: protonation and the mechanism of interfacial activation, Journal of Lipid Research , 56(12) 2348-2358. doi: 10.1194/jlr.M063388
Strub, D. J., Szymańska, K., Hrydziuszko, Z., Bryjak, J., & Jarzębski, A.B. (2019) Continuous flow kinetic resolution of a non-equimolar mixture of diastereoisomeric alcohol using a structured monolithic enzymatic microreactor, Reaction Chemistry & Engineering , 4, 587-594. https://doi.org/10.1039/C8RE00177D .
Szymańska, K., Bryjak, J., Mrowiec-Białon, J., & Jarzębski, A.B. (2007). Application and properties of siliceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts,Microporous and Mesoporous Materials, 99, 167–175.https://doi.org/10.1016/j.micromeso.2006.08.035 .
Szymańska, K., Pudło, W., Mrowiec-Białoń, J., Czardybon, A., Kocurek, J., & Jarzębski, A.B. (2013). Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance, Microporous and Mesoporous Materials, 170, 75-82.https://doi.org/10.1016/j.micromeso.2012.11.037 .
aSzymańska, K., Odrozek, K. Zniszczoł, A., Torrelo, G., Resch, V., Hanefeld, U., & Jarzębski, A.B. (2016). MsAcT in siliceous monolithic microreactor enables quantitative ester synthesis in water, Catalysis Science & Technology , 6, 4882–4888.https://doi.org/10.1039/C5CY02067K .
bSzymańska, K., Pietrowska, M., Kocurek, J., Maresz, K., Koreniuk, A., Mrowiec-Białoń, J., Widlak, P., Magner, E., & Jarzębski, A. (2016). Low back-pressure hierarchically structured multichannel microfluidic bioreactors for rapid protein digestion – Proof of concept, Chemical Engineering Journal , 287, 148–154.https://doi.org/10.1016/j.cej.2015.10.120 .
Szymańska, K., Odrozek, K., Zniszczoł, A., Pudło, W., & Jarzębski, A.B. (2017). A novel hierarchically structured siliceous packing to boost the performance of rotating bed enzymatic reactor, Chemical Engineering Journal, 315, 18-24.https://doi.org/10.1016/j.cej.2016.12.131 .
Tang, W., Wang, X., Huang, J., Jin, Q., & Wang, X. (2015). A novel method for the synthesis of symmetrical triacylglycerols by enzymatic transesterification, Bioresource Technology ,. 196, 559–565.https://doi.org/10.1016/j.biortech.2015 .
Thomas, J.C., Burich, M.D., Bandeira, P.T., Marques de Oliveira, A.R., & Piovan, L. (2017). Biocatalysis in continuous-flow mode: A case study in the enzymatic kinetic resolution of secondary alcohols via acylation and deacylation reactions mediated by Novozym 435®, Biocatalysis , 3, 27–36. https://doi.org/10.1515/boca-2017-0003 .
van der Helm, M.P., Bracco, P., Busch, H., Szymańska, K., Jarzębski, A.B., & Hanefeld, U. (2019). Hydroxynitrile lyases covalently immobilized in continuous flow microreactors, Catalysis Science & Technology , 9, 1189–1200. https://doi.org/10.1039/C8CY02192A .
Vescovi, V., Kopp, W., Guisan, J.M., Giordano, R.L.C., Mendes, A.A., & Tardioli, P.W. (2016). Improved catalytic properties of Candida antartica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino-aldehyde spacer arms,Process Biochemistry , 51, 2055-2066.https://doi.org/10.1016/j.procbio.2016.09.016 .
Wang, J., Gu, S.S., Cui, H.S., Wu, X.Y., & Wu, F.A. (2014). A novel continuous flow biosynthesis of caffeic acid phenethyl ester from alkyl caffeate and phenethanol in a packed bed microreactor, Bioresource Technology , 158, 39–47.https://doi.org/10.1016/j.biortech.2014.01.145 .
Wang, J., Liu, X., Wang, X.D., Dong, T., Zhao, X.Y., Zhu, D., Mei, Y.Y., & Wu, G.H. (2016). Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase, Bioresource Technology , 220, 132–141. https://doi.org/10.1016/j.biortech.2016.08.023 .
Wang, Y., Zhang, X., Han, N., Wu, Y., & Wei, D. (2018). Oriented covalent immobilizatation of recombinant protein on the glutaraldehyde activated agarose support, International Journal of Biological Macromolecules , 120, 100-108.https://doi.org/10.1016/j.ijbiomac.2018.08.074 .
Xu, J., Liu, C., Wang, M., Shao, L., Deng, L., Nie, K., & Wang, F. (2017). Rotating packed bed reactor for enzymatic synthesis of biodiesel, Bioresource Technology , 224 (2017) 292–297.https://doi.org/10.1016/j.biortech.2016.10.045 .
Zare, M., Golmakani, M.T., & Niakousari, M. (2019). Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques, LWT- Food Science and Technology , 101, 214-219. https://doi.org/10.1016/j.lwt.2018.10.098 .
Zhao, H., & Song, Z. (2010). Migration of reactive trace compounds from Novozym® 435 into organic solvents and ionic liquids, Biochemical Engineering Journal , 49 (2010) 113-118.https://doi.org/10.1016/j.bej.2009.12.004 .
Zhou, L., He, Y., Ma, L., Jiang, Y., Huang, Z., Yin, L., & Gao, J. (2018). Conversion of levulinic acid into alkyl levulinates: Using lipase immobilized on meso-molding three-dimensional macroporous organosilica as catalyst, Bioresour. Technol. 247, 568–575. https://doi.org/10.1016/j.biortech.2017.08.134.
of interfacial activation, Journal of Lipid Research , 56, 2348-2358. https://doi.org/10.1194/jlr.M063388 .
Table 1. Properties of the siliceous-enzyme carriers and the biocatalysts obtained.
Table 2. Pore structure parameters of N435 and relative activity of N435 and MH catalysts after 24 h incubation in organic solvents.
Fig. 1. Hg porosimetry plots and SEM images of the applied silica pellets (MH) and Novozym 435.
Fig. 2. Activity (A) and specific activity (B) of MH-catalysts and Novozym 435 (N435) in hydrolysis of p-nitrophenyl acetate.
Fig. 3. Stability of MH-catalysts and Novozym 435 (N435) in hydrolysis of p-nitrophenyl acetate in four runs.
Fig. 4. Activity (A) and specific activity (B) of MH-catalysts and Novozym 435 (N435) in esterification of levulinic acid with n-butanol.
Fig. 5. Stability of MH-catalysts and Novozym 435 (N435) in esterification of levulinic acid with n-butanol.
Table 1. Properties of the siliceous-enzyme carriers and the biocatalysts obtained.