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Summary

The aim of this paper is to construct a numerical scheme for solving a class of bilat-
eral free boundaries problem. First, using a shape functional and some regularization
terms, an optimal control problem is formulated, in addition, we prove its solution
existence’s. The first optimality conditions and the shape gradient are computed. the
proposed numerical scheme is a genetic algorithm guided conjugate gradient com-
bined with the finite element method, at each mesh regeneration, we perform a mesh
refinement in order to avoid any domain singularities. Some numerical examples
are shown to demonstrate the validity of the theoretical results, and to prove the
robustness of the proposed scheme.
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1 INTRODUCTION

Let Ω be an open set in ℝ2 whose boundary parts Γ1 and Γ2 are unknown (figure 1 ). For a given pair of data (g1, g2) ∈
H1∕2()Ω) ×H−1∕2()Ω), let consider following class of elliptic boundary value problem:

⎧

⎪

⎨

⎪

⎩

−∇(A∇u) = f in Ω
u = g1 on )Ω,

A∇�u = g2 on )Ω
(1)

with f and A are known functions. And � is the normal unit outer vector.
The aim of this paper is to perform themathematical analysis and to construct a numerical scheme for the inverse identification

problem of the free boundaries Γ1 and Γ2. This kind of inverse problem can model for example, the identification of depletion
region in semiconductor, the multi-phase Stefan problem, cavities identification1,2,3.
Let first assume that the free boundaries are parametrized as follow

Γ1(') = {('(y), y) ∶ L01 ≤ '(y) ≤ L11 and y ∈ [a, b]}
Γ2( ) = {( (y), y) ∶ L02 ≤  (y) ≤ L12 and y ∈ [a, b]},

and an admissible domain Ω by

Ω(', ) = {(x, y) ∶ '(y) < x <  (y) and y ∈ [a, b]} ⊆ D

0Abbreviations: CG, conjugate gradient; GAs, Genetic algorithms
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FIGURE 1 Geometry of Ω.

with D is a fixed open set in ℝ2. Then set of the admissible shapes Θad is given by:

Θad =
{

Ω(', )∕(', ) ∈ (([a, b]))2, ' and  are Lipschitz functions
}

.

We note that Γ1 and Γ2 must not intersect, thus we assume thatL11 < L
0
2. The spaceΘad is endowed with the Hausdorff topology.

The system (1) is overdetermined, this is means that for any admissible domain Ω ∈ Θad and a given pair of data (g1, g2) in
H1∕2()Ω) ×H−1∕2()Ω), it may not exist any optimal solution u ∈ H1(Ω) to the system (1).
Our aim is to identify the configuration of the free boundaries Γ1 and Γ2 (e.g. the configuration ofΩ) using the pair of Dirichlet

and Neumann data (g�1 , g
�
2) of the exact data (g1, g2) satisfying

‖g�1 − g1‖H1∕2()Ω) + ‖g�2 − g2‖H−1∕2()Ω) ≤ �.

with � stand for the noise level.
Throughout the rest of the paper we need the following assumptions

A1: f ∈ L2(D) is a continuous.

A2: A ∈ L∞(D), continuous function, that satisfy there exist am, aM > 0 such that

(A(x)�, �) ≥ am|�|
2 and |A(x)�| ≤ aM |�| ∀� a.e. in D

Now, the overdetermined system (1) will be split into two well posed problem, for that let consider the following spaces:

U1d =
{

u ∈ H1(Ω), u = g�1 on Σ1
}

, U10 =
{

u ∈ H1(Ω), u = 0 on Σ1
}

U2d =
{

u ∈ H1(Ω), u = g�1 on Σ2
}

, U20 =
{

u ∈ H1(Ω), u = 0 on Σ2
}

with Σ1 = Γ1 ∪ Γ2 and Σ2 = Γ3 ∪ Γ4,H1(Ω) is the usual Sobolev space.
The first state problem reads

−∇(A∇u) = f in Ω, u = g1 on Σ1 and A∇�u = g
�
2 on Σ2, (2)

we associate it to the variational equation, for any v ∈ U0 we write

1(Ω, u) = ∫
Ω

A∇u∇vdx − ∫
Ω

fvdx − ∫
Σ2

g�2vd� (3)

We denote by u1 ∈ U1d the unique solution of (3), which is guaranteed by Lax-Milgram theorem. The second state equation is
defined by

−∇(A∇u) = f in Ω, u = g�1 on Σ2 and A∇�u = g
�
2 on Σ1, (4)

associated to the variational form, for any v ∈ H1(Ω) we have

2(Ω, u) = ∫
Ω

A∇u∇vdx − ∫
Ω

fvdx − ∫
Σ1

g�2vd� (5)
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similarly, the Lax-Milgram theorem ensure the existence of a unique solution of (5) inU2d denoted u2. The next step, we introduce
the Kohn-Volgelius cost functional:

J (Ω, u1, u2) =
1
2 ∫
Ω

A||
|

∇(u1 − u2)
|

|

|

2
dx (6)

Let define the following spaces

1 =
{

u ∈ U1d ∶ 1(Ω, u) = 0
}

and 2 =
{

u ∈ U2d ∶ 2(Ω, u) = 0
}

,

the shape optimization problem is summarized as follows:

min
(Ω,u1,u2)∈

J (Ω, u1, u2) (7)

where  = Θad ×1 ×2. With the Hausdorff topology we can not prove the existence of an optimal solution of problem (7),
especially for the Dirichlet problem4 to overcome this issue, a regularization term4 is added, we are interested then in the
following optimal control problem

min
(Ω,u1,u2)∈

J (Ω, u1, u2) + %1(Ω) (8)

%1 > 0 is a regularization coefficient,  is the perimeter of Ω. Now with the results of Sokolowski and Zolesio4, problem (8)
admit at least an optimal solution. Our contribution aim to add another accurate control term, for that we consider  a fixed
domain of Θad , we define(Ω) = meas(ΩΔ), let consider then the new optimal control problem

min
(Ω,u1,u2)∈

 (Ω, u1, u2) ∶= J (Ω, u1, u2) + %1(Ω) + %2(Ω) (9)

with %2 > 0 is a penalty coefficient, . The latter term in  means that we are looking for the control domain Ω that covers .
There are some works studying the optimal control problems derived of shape optimization problems. In the work5, the

authors studied an optimal control of bilateral obstacle problem using variational inequalities. Hinze and Ziegenbalg in6 studied
an optimal control problem of the evolution of a free boundary in the two phase Stefan problem, they also proposed an numerical
scheme based on the finite difference method on a moving grid.
Several iterative schemes were proposed to solve similar identification problem, in2 the authors proposed a conjugate gradient

method and boundary element for the identification of two interfaces in a region of three sub domains. Mozaffari et al.3 studied
the identification problem of two interfaces using the boundary element method combined with the imperialist competitive
algorithm guided the conjugate gradient/Simplex method.
The iterative scheme proposed here, to solve the optimal control problem (9), is a combined genetic algorithm guided the

conjugate gradient method with the finite element. The motivation behind the genetic algorithms comes for picking the best
initial guess for the gradient method, to avoid the manually choice that may affect the convergence of the gradient method. There
are some papers used the genetic algorithms (GAs) in the approximation of free boundary problems. In the work7, the authors
combined GAs with the conjugate gradient and the boundary element method for the identification of cavities. In8 the authors
used the genetic algorithm with the finite element to estimate the configuration of depletion layer in semiconductor.
One frequent difficulty accuracies in the numerical approximation is dealing with domains with singularities, for example,

domains with corners or intern boundaries. To over come this, we propose to use adaptive refinement mesh techniques, to refine
the triangulation near to the singularities, An a posteriori error estimate is need for performing a mesh refinement. In9 the mesh
refinement was proposed to improve the quality of FEM approximation in shape optimization problems, they considered the
norm of the Lagrange augmented functional variation with respect to the boundary variation as their a posteriori error estimate.
In10 adaptive mesh refinement was used in moving interfaces approximation basing on level set method.
In what follows, we prove the unique existence of solution of the optimal control problem (9). In section 3 we establish the

first optimality condition and we compute the shape gradient. The convergence of the discrete optimal design problem is proved
in section 4. In the fifth section, we describe the manipulation of the adaptive mesh refinement. In section 6 we give all the
step for the proposed iterative scheme. In the last section, we perform some numerical examples to illustrate the validity of the
theoretical results and to prove the efficiency of the proposed scheme.

2 EXISTENCE OF AN OPTIMAL SHAPE

As we mentioned in the introduction, the assumptions A1-A2 with the Lax-Milgram theorem ensure the solution existence of
problems (3) and (5), in addition we have the following estimates



4

Lemma 1. For any Ω ∈ Θad , there existM1,M2 > 0 such that

|u1|1,Ω ≤M1 and |u2|1,Ω ≤M2 (10)

The proof of this lemma is classic. Now we prove the following result

Lemma 2. The space of feasible solutions  is compact.

Proof. Let (Ωn, u1,n, u2,n) be a sequence of , we shall prove the existence of a subsequence of (Ωn, u1,n, u2,n) that converges in .
First we haveΩn = Ω('n,  n), using Ascoli-Arzéla theoremwe ensure that ('n,  n) that converges uniformly as a subsequence

to an element (', ). It is easy to deduce that Ω = Ω(', ) lives in Θad .
Since u1,n and u2,n are bounded, we can use the Rellich theorem to show the existence of u1 and u2 such that u1,n converges

weakly to u1 inH1(D) resp. u2,n converges weakly to u2 inH1(D). We ought to prove that u1 ∈ 1 and u2 ∈ 2. We first show
that u1 satisfy (3), for that we will only prove the convergence

lim
n→∞∫

Ωn

A∇u1,n∇vdx = ∫
Ω

A∇u1∇vdx (11)

we have

∫
Ωn

A∇u1,n∇vdx − ∫
Ω

A∇u1∇vdx = ∫
1

(�Ωn − �Ω)A∇u1,n∇vdx + ∫
Ω

A∇(u1,n − u1)∇vdx

Since Ωn converge to Ω in Hausdorff topology then �Ωn converges to �Ω in L∞(D) weak star, also we have that ∇u1,n converges
weakly to ∇u1, thus proves that (11) is hold. At this end we have proved that u1 satisfy (3), to conclude this proof we have to
show that u1 ∈ U1d
The fact that Γ1,n ∪ Γ2,n is not fixed, we can not apply the trace operator directly to deduce that u1 = g3 on Γ1 ∪ Γ2. It can be

overcome by proving that
lim
n→∞ ∫

Γ1,n∪Γ2,n

|u1,n|
2dx = ∫

Γ1∪Γ2

|u1|
2dx (12)

We have then

∫
Γ1,n∪Γ2,n

|u1,n|
2dx − ∫

Γ1∪Γ2

|u1|
2dx = ∫

1

(�Γ1,n∪Γ2,n − �Γ1∪Γ2)|u1,n|
2dx + ∫

Γ1∪Γ2

[

|u1,n|
2 − |u1|

2
]

dx

with the above convergence we infer (12). Finally u1 ∈ 1, similarly we can show that u2 ∈ 2. At this end we have proved the
existence of a subsequence of (Ωn, u1,n, u2,n) that converges in  .

Lemma 3. The functional  is semi lower continuous on  .

Proof. Let (Ωn, u1,n, u2,n) be a sequence that converge to (Ω, u1, u2) in  , we need to show that

 (Ω, u1, u2) ≤ lim infn→+∞
 (Ωn, u1,n, u2,n)

For that we will show that (u1,n) and (u2,n) converge strongly. Since the embedding ofH1(D) is compact in L2(D), the sequence
(u1,n) converges strongly to u1 in L2(D). We have also that

∫
D

|∇(u1,n − u1)|2dx ≤ 1
am ∫

1

A|∇(u1,n − u1)|2dx

≤∫
Ω

f (u1,n − u1)dx + ∫
Σ2

g�2(u1,n − u1)d�

The right hand side of the latter inequality vanishes, thereafter (∇u1,n) converges strongly to ∇u in
[

L2(D)
]2, hence (u1,n)

converges strongly to u1 inH1(D). Similarly we obtain (u2,n) converges strongly to u2 inH1(D)
Now it is easy to deduce that

lim
n→+∞

J (Ωn, u1,n, u2,n) = J (Ω, u1, u2)
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Since Ωn converges to Ω then we have ('n,  n) converges uniformly to (', ), which implies that (Ω) ≤ lim inf
n→+∞

(Ωn), and
(Ω) ≤ lim inf

n→+∞
(Ωn), therefore

 (Ω, u1, u2) ≤ lim infn→+∞
 (Ωn, u1,n, u2,n)

Theorem 1. The optimal control problem (9) has at least a solution in 

Using lemmas 2 and 3 we can easily prove this theorem.

3 FIRST OPTIMALITY CONDITION

In this section we compute the shape derivative, before that, we recall some practical techniques in shape calculus. Let introduce
the fictitious time t, we define the next perturbation operator

Tt = id + tV

whit V is a vector field belongs to the set

Λ =
{

V ∈ C1,1
(

Ω,ℝ2
)

∶ V |)Ω⧵(Γ1∪Γ2) = 0
}

We note that Tt is Lipschitz bijective operator, moreover its inverse is Lipschitz continuous4. This brings us to define the family
of perturbed domains and boundaries

Ωt = Tt(Ω) and Γt = Tt(Γ)
The state solution on Ωt is denoted ui,t ∈ Ud , for i = 1, 2.

Definition 1. The material derivative of the state ui is denoted u′i ∈ U
i
d , it is defined by the limit

u′i = limt→0
uti − ui
t

with uti = ui,t◦Tt, for i = 1, 2.

Definition 2. Let L be a shape functional, Ω ∈ Θad and V ∈ Λ, we call the Eulerian derivative of L at Ω in the direction V the
quantity

dL(Ω)V = lim
t→0

L
(

Ωt
)

− L(Ω)
t

if exists. Moreover L is said shape differentiable if dL(Ω)V exists ∀V ∈ Λ.

Remark 1. The material derivative u′i satisfy the variational equation

∫
Ω

∇u′i∇wdx = ∫
Ω

∇u⊤i
[

DV +DV ⊤ − div(V )I
]

∇w + div(fV )wdx (13)

for i = 1, 2.

Now we recall the shape derivative11,4 for functions depending on Ω or Γ, let consider the shape functionals

L1(Ωt) = ∫
Ωt

u(t, x)dx and L2(Ωt) = ∫
Γt

u(t, s)ds

Lemma 4. Let u ∈ W 1,1(D) and V ∈ Λ, then the shape functional L1 is shape differentiable, and we have

dL(Ω)[V ] = ∫
Ω

u′(0, x)dx + ∫
)Ω

u(0, s)V ⋅ �ds

Similarly, for u ∈ W 2,1(D) and V ∈ Λ, then the shape functional L2 is shape differentiable, and we have

dL(Ω)[V ] = ∫
Γ

u′(0, s)ds + ∫
Γ

(

∇�u(0, s) + u(0, s)�
)

V ⋅ �ds

where � is the mean curvature of the boundary Γ.
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Now, we define the Eulerian derivative u′1 and u
′
2 of the states u1 and u2 as solution of the next two problems

⎧

⎪

⎨

⎪

⎩

−div(A∇u′1) = 0 in Ω,
u′1 = ∇�(g

�
1 − u1)V ⋅ � on Σ1

A∇�u′1 = 0 on Σ2,
(14)

⎧

⎪

⎨

⎪

⎩

−div(A∇u′2) = 0 in Ω,
u′2 = 0 on Σ2,

A∇�u′2 = G(u2, V ) on Σ1
(15)

with

G(u2, V ) = divΓ
(

⟨V , �⟩∇Γu2
)

+ ⟨V , �⟩

(

)g�2
)�

+ �g�2 + f

)

Now we prove the following result

Lemma 5. The functional  is shape differentiable, its Eulerian derivative in direction V ∈ Λ is given by:

d (Ω)[V ] = ∫
Γ1∪Γ2

[

A∇�(u1 − u2 − �1)∇�(g
�
1 − u1) − ∇Γu∇��2 +

(

)g�2
)�

+ �g�2 + f

)

�2 + � + 1
]

⟨V , �⟩ds (16)

Proof. First, let define the Lagrangian functional  associated to the cost functional J defined in (6), for an element
(Ω, u1, u2, v1, v2) in �ad × U1d × U

2
d × U

1
0 × U

2
0 we define the Lagrangian functional by

(Ω, u1, u2, v1, v2) =  (Ω, u1, u2) + 1(Ω, �1) + 2(Ω, �2) (17)

The adjoint solution �1 and �2 can be computed using the optimality conditions on u1 and u2,
)
)u1

⋅ �1 = 0 and )
)u2

⋅ �2 = 0

which implies the following adjoint problems
⎧

⎪

⎨

⎪

⎩

−∇(A∇�1) = ∇(A∇(u1 − u2)) in Ω,
�1 = 0 on Σ1

A∇��1 = −A∇�(u1 − u2) on Σ2,
(18)

⎧

⎪

⎨

⎪

⎩

−∇(A∇�2) = ∇(A∇(u2 − u1)) in Ω,
�2 = 0 on Σ2

A∇��2 = −A∇�(u2 − u1) on Σ1,
(19)

To prove (16), we differentiate each term in  separately, we start by the functional J , using lemma 4 we have

dJ (Ω)[V ] =∫
Ω

A∇(u′1 − u
′
2)∇(u1 − u2)dx +

1
2 ∫
Γ

|∇(u1 − u2)|2V ⋅ �ds

=∫
Ω

A∇u′1∇(u1 − u2)dx − ∫
Ω

A∇u′2∇(u1 − u2)dx +
1
2 ∫
Σ1

|∇(u1 − u2)|2V ⋅ �ds

we write

∫
Ω

A∇u′1∇(u1 − u2)dx = − ∫
Ω

∇(A∇(u1 − u2))u′1dx + ∫
)Ω

A∇�(u1 − u2)u′1ds

=∫
Ω

∇(A∇�1)u′1dx + ∫
)Ω

A∇�(u1 − u2)u′1ds

from another hand

∫
Ω

∇(A∇�1)u′1dx = − ∫
Ω

A∇�1∇u′1dx + ∫
)Ω

A∇��1u′1dx

=∫
Ω

∇(A∇u′1)�1dx − ∫
)Ω

A∇�u′1�1dx + ∫
)Ω

A∇��1u′1dx
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thus

∫
Ω

A∇u′1∇(u1 − u2)dx = −∫
)Ω

A∇�u′1�1dx + ∫
)Ω

A∇��1u′1dx + ∫
)Ω

A∇�(u1 − u2)u′1ds

Using the informations on the state derivative u′1 and the adjoint solution �1 we infer that

∫
Ω

A∇u′1∇(u1 − u2)dx = ∫
Σ1

A∇�(u1 − u2 − �1)∇�(g
�
1 − u1)V ⋅ �ds (20)

Similarly we obtain that

∫
Ω

A∇u′2∇(u1 − u2)dx = ∫
Σ1

G(u2, V )�2ds

thereafter

∫
Ω

A∇u′2∇(u1 − u2)dx = ∫
Σ1

[(

)g�2
)�

+ �g�2 + f

)

�2 − ∇Σ1u2∇�2

]

⟨V , �⟩ds (21)

Now we treat the regularization term (Ω), first we note that

(Ω) = ∫
)Ωt

dst,

with lemma 4 we deduce
d(Ω)[V ] = ∫

Γ1∪Γ2

�⟨V , �⟩ds. (22)

It remain the latter term in  . We have(Ω) = ΩΔ = (Ω ⧵) ∪ ( ⧵Ω), it is easy to remark that the moving part of ΩΔ is
Γ1 ∪ Γ2 then with lemma 4 we infer that

d(Ω)[V ] = ∫
Σ1

⟨V , �⟩ds (23)

Gathering the equalities 20, 21, 22 and 23 we conclude this proof.

4 CONVERGENCE OF THE DISCRETE OPTIMAL CONTROL PROBLEM

Let consider Ω ∈ Θad and ℎ > 0 a discretization fineness step, ℎ a family of triangulation of Ω that satisfy the assumptions

A3: For any T1, T2 ∈ ℎ, T1 and T2 share at most a common edge or vertex.

A4: All the triangles in ℎ are regular.

We define the sets
Eℎ =

⋃

T∈ℎ

E(T ) and Nℎ =
⋃

T∈ℎ

N(T )

with E(T ) and N(T ) are respectively the edges and the vertices of a triangle T from ℎ. Consider Now the discrete space

Pℎ =
{

vℎ ∈ (Ω) ∶ vℎ∕T ∈ ℙ1(T ), ∀T ∈ ℎ
}

with ℙ1 is the space of polynomial whose degree does not exceed 1 on ℝ2. Now we consider the discrete spaces

U1d,ℎ = U
1
d ∩ Pℎ, U10,ℎ = U

1
0 ∩ Pℎ, U2d,ℎ = U

2
d ∩ Pℎ and U20,ℎ = U

2
0 ∩ Pℎ

We have the discrete state solutions satisfy the following, for all (v1,ℎ, v2,ℎ) in U10,ℎ × U
2
0,ℎ

1(Ωℎ, u1,ℎ) = ∫
Ωℎ

A∇u1,ℎ∇v1,ℎdx − ∫
Ωℎ

fℎv1,ℎdx − ∫
Σ2,ℎ

g2,ℎv1,ℎd� (24)

2(Ωℎ, u2,ℎ) = ∫
Ωℎ

A∇u2,ℎ∇v2,ℎdx − ∫
Ωℎ

fℎv2,ℎdx − ∫
Σ1,ℎ

g2,ℎv2,ℎd� (25)
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Now the discrete control problem reads

min
(Ωℎ,u1,ℎ,u2,ℎ)∈ℎ

 (Ωℎ, u1,ℎ, u2,ℎ) ∶= J (Ωℎ, u1,ℎ, u2,ℎ) + "(Ωℎ) + %(Ωℎ) (26)

with ℎ = Θad,ℎ ×1,ℎ ×2,ℎ,

Lemma 6. Let consider Ω ∈ �ad , u1 and u2 the continuous solution of (3) and (5) on Ω, u1,ℎ and u2,ℎ the discrete solution of
(24) and (25) on Ωℎ. From12 there exist a constant C > 0 such that:

‖u1 − ui,ℎ‖∞,D ≤ Cℎ| logℎ| for i = 1, 2. (27)

Now, let define the following distance

d
(

Ω,Ωℎ
)

= inf
{

r ∶ x ∈ Ω, such that B(x, r) ⊂
(

ΩΔΩℎ
)}

(28)

Theorem 2. Consider (Ω, u1, u2) solution of (9), we assume that (u1, u2) ∈
[

H2(Ω) ∩W 1,∞(Ω)
]2, there exists a pair

(Ωℎ, u1,ℎ, u2,ℎ) minimizer of (26), such that

∃C > 0, d
(

Ω,Ωℎ
)

≤ Cℎ| logℎ| (29)

Proof. For ℎ sufficiently small, consider ℎ a triangulation on Ω, the results of Bartles13 yield to the existence of (Ωℎ, u1,ℎ, u2,ℎ)
solution of the discrete optimal problem (26), such that u1,ℎ and u2,ℎ satisfy (27). Still to show the estimate (29).
We have for all I ⊂ )Ω, there exists a function bI ∈ C2(I) satisfying

)Ω =
⋃

I∈ℎ,I⊂)Ω

{

x + bI (x)nI ∶ x ∈ I
}

with nI is the unit outer normal vector on I , bI is local parametrization of )Ω. If x ∈ Nℎ ∩ S then bI (x) = 0, with ⨙ℎ is the set
of all nodes of ℎ, that implies |

|

bI (x)|| ≤ Cℎ| logℎ| for x ∈ )Ω, which means that the sets Ω∖Ωℎ and Ωℎ∖Ω are embedded in
sets of width Cℎ| logℎ| around )Ω, thereafter the symmetric difference ΩΔΩℎ satisfies

ΩΔΩℎ ⊆ {x ∈ Ω ∶ d(x, )Ω) ≤ Cℎ| logℎ|}

hence
d(Ω,Ωℎ) ≤ Cℎ| logℎ|

Theorem 3. Let (Ωℎ, u1,ℎ, u2,ℎ)ℎ a sequence of discrete solution’s of (26), then the accumulation tuple (Ω, u1, u2) solves (9).

Proof. Consider (Ωℎ, u1,ℎ, u2,ℎ)ℎ a solution sequence of the discrete optimal problem (26), let (Ω, u1, u2) denote the accumulation
points of the sequence (Ωℎ, u1,ℎ, u2,ℎ)ℎ, we have to prove that the tuple (Ω, u1, u2) solves (9). By theorem 2 implies that u1,ℎ and
u2,ℎ converge to u1 and u2 as ℎ → 0 respectively, in addition we have lim

ℎ→0
d(Ω,Ωℎ) = 0. Note that Ω belongs to Θad , also it is

easy to show that (u1, u2) lives in U1 × U2, then we have the following convergences
|

|

|

|

|

|

|

|

|

|

lim
ℎ→0

1(Ωℎ, u1,ℎ) = 1(Ω, u1)

lim
ℎ→0

2(Ωℎ, u2,ℎ) = 2(Ω, u2)

 (Ω, u1, u2) ≤ lim infℎ→0
 (Ωℎ, u1,ℎ, u2,ℎ)

To end up this proof we need to ensure that (u1, u2) ∈ 1 × 2, we already have that u1 and u2 satisfy the weak formulation
(3) and (5), it remains to show that u1 = g

�
1 on Γ1 and ∫

)Ω

u2ds = 0, which can be obtained using the above convergences, thus

(Ω, u1, u2) is an optimal solution of (9).

5 ADAPTIVE MESH REFINEMENT

As we have mentioned in the introduction, if a domain has some corners then the approximation with FEM may not achieve its
high performance, therefore the need to create and adapt a new triangulation with smaller triangles in the neighborhood of each



9

corner. Before that, a posteriori error estimate must be established, it will help to refine a given triangulation with the refinement
indicator.

Definition 3. Consider uℎ ∈ 1
(

ℎ
)

and E ∈ Eℎ an interior edge, in other word there exist two distinct triangles T1 and T2
such that E = T1 ∩ T2. we introduce the jump of ∇uℎ in normal direction across E by the following

[

∇ui,ℎ ⋅ �E
]

= ∇ui,ℎ||T1 ⋅ �T1,E + ∇ui,ℎ
|

|T2
⋅ �T2,E for i = 1, 2,

with �T1,E and �T2,E are the normal outer unit vectors on E to T1 and T2 respectively.

Let define for i = 1, 2
Ei,D =

{

E ∈ Eℎ, E ⊆ Σi
}

and Ei,N =
{

E ∈ Eℎ, E ⊆ Σ3−i
}

.

Remark 2. For i = 1, 2, if E ∈ Ei,D then
[

∇ui,ℎ ⋅ �E
]

= 0.

Let consider now the residual function R defined by14, for i = 1, 2

RE(ui,ℎ) =

{

−
[

∇ui,ℎ ⋅ �S
]

if E ∈ Eℎ,
g2,ℎ − A∇ui,ℎ if E ∈ Ei,N

Definition 4. For i = 1, 2, we define the refinement indicator �i,T by the following, for all T ∈ ℎ
�2i,T = ℎ

2
T ‖fℎ + Δui,ℎ‖

2
0,T +

∑

E∈Eℎ, E⊂)T
ℎE ‖‖RE(ui,ℎ)‖‖

2
0,E . (30)

Now we announce the a posteriori error estimate result13,14.

Proposition 1. There exist two constants c5 and c6 such that, for i = 1, 2 we have the estimate

|

|

ui − ui,ℎ||1,Ω ⩽ c5

[

∑

T∈ℎ

(

�2i,T + ℎ
2
T
‖

‖

f − fℎ‖‖
2
0,T

)

+
∑

E∈Ei,N

ℎE ‖‖g2 − g2,ℎ‖‖
2
0,E

]
1
2

with ℎT and ℎE are the diameter and the length of T and E respectively.
We have also for all T in ℎ

�i,T ⩽ c6

[

|

|

u − u1,ℎ||
2
1,!T

+
∑

T ′⊂!T

ℎ2T ′ ‖‖f − fℎ‖‖
2
0,T ′ +

∑

E∈Ei,N

ℎE ‖‖g2 − g2,ℎ‖‖
2
0,E

]
1
2

with wT =
⋃

E(T )∩E(T ′)
T ′. The constant c5 and c6 are from14.

The proof of this proposition is quite similar to the results in14. In algorithm 1 we describe the general steps to perform a
mesh refinement.

Algorithm 1. Consider a mesh size ℎ, � ∈]0, 1[, "1 > 0 and set k = 0

1. Initialize the triangulation k

2. For i=1,2

3. Compute the state solutions ui,k

4. For every T ∈ k compute �i,T using (30)

5. Stop if �i,T ≤ "stop

6. Choose the set of marked elements k ⊂ k according to
∑

T∈k

�i,T ≥ �
∑

T∈k

�i,T

7. Refine every element T ∈k, then create the new triangulation k+1

8. End

9. Set k = k + 1 and back to step (2).
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The parameter � controls the refinement, in other word the smaller � the finest mesh we can obtain.
There is several choices to refine a marked element, we cite for example the Red-Green-Blue (RGB) refinement and the edge

bisection refinement15,16. In this work we chose the RGB refinement technique.

Definition 5. The RGB refinement is defined as a performance of the following steps

1. Red-refinement consists in dividing a element into four sub-elements by attaching the midpoints of its edges.

2. Green-refinement attend to divide an element into two sub-elements by joining the longest edge’s midpoint with the vertex
of its opposite.

3. Blue-refinement consists in dividing an element into three sub-elements. First we perform the green-refinement, then we
join the midpoint of one of the unrefined edges with the new vertex.

Now we supply algorithm 1 with new sub-steps at the step number 7.

Algorithm 2. Considerk
ℎ ⊂  ℎ

ℎ the set of elements marked.

1. Mark all edges E ∈ Ekℎ in a triangle T fromk
ℎ

2. Mark all the longest edges in  k
ℎ .

3. Refine the marked element according to the RGB refinement.

6 DESCRIPTION OF THE PROPOSED SCHEME

In this section we will introduce the iterative scheme to solve the optimal control problem (9). The first part concern the descrip-
tion of the steps of the conjugate gradient method. The second part is dedicated to discuss the initialization of the gradient
method.

6.1 Conjugate gradient with Wolfe conditions
We consider the conjugate gradient method to update iteratively an initial domain Ω0 ∈ Θad by the following scheme

Ωn+1 = Ωn + �nP n. (31)

with �n is the search step size. The directions of descent P n are obtained as solution of the linear system:

P n = −d n + 
nP n−1 (32)

where d n is the shape gradient at iteration n, the conjugate coefficient17 
n is given by


n =
⟨dJ n+1 − dJ n, dJ n+1⟩

⟨dJ n, dJ n⟩
, (33)

To compute the search step size we may use the sensitivity calculus which will involve the sensitivity problem18,4, otherwise
we can use some line search methods, such as the backtracking or the Armijo line search methods19,20. In this application we
will use the Armijo line search technique, it requires that �n must meet the sufficient decrease and the curvature conditions. The
first condition is satisfied with the following inequality,

 (Ωn + �nP n) ≤  (Ωn) + �1�n⟨d n, P n
⟩ (34)

with �1 ∈ [0, 1], usually we chose the coefficient �1 to be fairly small, we set �1 = 10−4.
The second condition, will ensure that the sufficient decrease condition will not stuck in short steps, it guarantee the decrease

of  follows a reasonable progress. This curvature condition reads, for some �2 ∈ [�1, 1]

⟨dJ (Ωn + �nP n), P n
⟩ ≥ �2�

n
⟨dJ n, P n

⟩ (35)

We refer to19 for the existence proof of step sizes that meet the Wolfe conditions.



11

6.2 Initialization with genetic algorithm
The convergence of gradient methods always depends on the choice of the initial guess, first it must belong to the admissible
shape set, then it must be well chosen. It is harder to pick it manually, thus an heuristic method may do the work.
Genetic algorithms21,22 (GAs) are one of the most famous heuristic methods. They seek to find the best optimal solution in

a population of possible solutions. Starting with a random population of candidate solutions called individuals, GAs move to
a new population using the genetic operations. The first stage is the selection operation, it helps to choose the parents for the
future generation based on the fitness of individuals. In this work we consider the tournament selection operation. The crossover
operation aims to generate a new offspring using two parents, in our work we chose the random barycentric crossover. The last
operation is the mutation, it consist to add some diversity in the new generation, for our algorithm we use the non-uniform
mutation operator.
The time complexity of genetic algorithms depends on the number of generations, the population and individual sizes. To have

smooth free boundaries we have to discretize with a large number, then the size of individuals becomes larger, which augment
the time complexity. To overcome this issue and reduce the size individuals, we use the Bézier curve23 to parameterize the free
boundaries. That means we will only give few control points to draw the free boundaries. Some advantages of Bézier curves is
that they produce a continuous, differentiable curve.
Now we write all the steps of the proposed scheme in algorithm 3.

Algorithm 3. Choose "2, "2, Nmax1, Nmax2, P 0 = 0, 
0 = 0, set n = 0.

1. Generate an initial population

2. While n < Nmax1

3. Solve the state problems (3) and (5) for each individual.

4. Apply the selection, then extract the best individual Ωbest.

5. Stop if  (Ωnbest, u
n
1, u

n
2) < "2.

6. Perform the genetic operator crossover then the mutation operation to create the new generation.

7. Set n = n + 1 and back to step 3.

8. end

9. set Ω0 = Ωbest and n = 1.

10. While n < Nmax2

11. Find an adaptive mesh for Ωn using algorithm 1.

12. Compute un1 and u
n
2 solutions of (3) and (5).

13. Stop if  (Ωn, un1, u
n
2) < "3.

14. Find �ni solutions of adjoint problems for i = 1, 2.

15. Compute the shape gradient d n using (16)

16. Manipulating (33) update the conjugate coefficient 
n.

17. Update the direction P n = −d n + 
nP n−1.

18. Find �n satisfying the Armijo conditions (34) and (35).

19. perform the update Ωn+1 = Ωn + �nP n.

20. Set n = n + 1, and back to step 11.

21. end
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7 NUMERICAL RESULTS AND DISCUSSION

In this section, we perform some numerical test in order to show the validity of the theoretical results. First we assume that the
state problems (2) and (4) have the exact solution:

u(x, y) = exp(x + y), x, y ∈ Ω(', )

For the sake of simplicity we consider that A(x) = 1, the rest of the functions f, g1 and g2 are constructed from the above exact
solution. The discretization of each admissible domain is a uniform grid of size N ×M , we take N = 8 andM = 16, at each
mesh regeneration, we apply algorithm 1. In figure 2 we illustrate the adaptively refined mesh for one of the examples below.

FIGURE 2 Example of an adaptively refined mesh.

As we said before, the initial guess for the conjugate gradient method is generated with the genetic algorithm, for that we
consider the setting of the GA algorithm in the next table The maximum generations number is the same Nmax1 number in

TABLE 1 GA parameters

Population size Max generations Crossover ration mutation ratio
25 5 75% 5%

algorithm 3, the rest of the parameters in algorithm 3 are given as follows, Nmax2 = 100, the tolerance "1 = 1e − 1 and
"2 = "3 = 1e − 5. The control parameter � in the mesh refinement algorithm is set to 0.05. The coefficients �1 and �2 in the
Armijo conditions are set to 1e − 4 and 0.9 respectively. For the choice of the regularization parameters24 we consider that

%1 = %2 = 0.01
√

ℎl with ℎl =
√

8
N

. The control shape  is considered as the largest parallelogram included in the exact shape
Ω see figure 3 .
We measure the average relative errors between exact

(

Γ1('e),Γ2( e)
)

and obtained optimal boundaries
(

Γ1('),Γ2( )
)

, it
is defined by

err = max
{

|

|

|

|

'(y) − 'e(y)
'e(y)

|

|

|

|

,
|

|

|

|

 (y) −  e(y)
 e(y)

|

|

|

|

}

(36)

We shall also show the importance of using the genetic algorithm to estimate the initial guess for the gradient method. In other
word, we shall compare minimization using only the conjugate gradient (CG), versus the combined genetic algorithm with the
conjugate gradient (GACG). For that, we keep the same steps of the gradient method from step 9 to the end in algorithm 3, then
we consider the initial boundaries

Γinitial1 =
{(

− 1, y
)

∕ y ∈ [0, 1]
}

and Γinitial2 =
{(

3, y
)

∕ y ∈ [0, 1]
}

.
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FIGURE 3 The control shape is the dashed region.

Example 1: we seek to identify the exact boundaries Γ1 and Γ2:

Γ1 =
{(

1 − y, y
)

∕ y ∈ [0, 1]
}

and Γ2 =
{(

2 + y2, y
)

∕ y ∈ [0, 1]
}

,

The obtained results for this example are illustrated in figure 4 and 5 . It is seen that the genetic algorithm did generate the
best initial guess (figure 4 ). The optimal boundaries matched the exact ones. The cost decay is illustrated the right picture of
figure 5 , the proposed algorithm reached the precision 0.01776.
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FIGURE 4 The optimal boundaries without noisy data for example 1.
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FIGURE 5 The cost decay for example 1.

In figures 6 and 7 we illustrate the comparison of the approximation with GACG and CG algorithms. It is obvious the
importance of startingwith the genetic algorithm to find an initial guess, the GACG algorithm converge faster then CG algorithm.
Moreover, the optimal boundaries of GACG are more accurate.
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FIGURE 6 Comparison of the optimal boundaries with CG and GACG for example 1
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FIGURE 7 Cost decay comparison of the CG and GACG for example 1

Example 2: now we assume that the free boundaries are given by the exact:

Γ1 =
{(1

2
sin(2�y), y

)

∕ y ∈ [0, 1]
}

and Γ2 =
{(

3 −
y
2
, y
)

∕ y ∈ [0, 0.5]
}

∪
{(

2.5 −
y
2
, y
)

∕ y ∈]0.5, 1]
}

.

The particularity of this example is that Γ2 has two singularities at the vicinity of 0.5. Although, the obtained numerical
results for this example are of good quality, we have plotted in figure 8 the optimal boundaries versus the exact ones and the
cost decay with respect to the iteration number.
Again we show the comparison of the GACG and CG algorithms, it is seen the huge difference between the obtained results,

the CG does not converge for this example with the above initial guess, in contrast the GACG did.
We try again with the CG algorithm with new initial boundaries

Γinitial1 =
{(

1, y
)

∕ y ∈ [0, 1]
}

and Γinitial2 =
{(

4, y
)

∕ y ∈ [0, 1]
}

.

The new obtained results for the CG algorithm were of good quality as figures 11 and 12 show, both optimal boundaries
matched the exact ones, we only remark that the CG algorithm takes more iterations to converge. We conclude that to ensure the
convergence of gradient methodwemake sure to chose the right initial guess, which is harder to domanually, thus the importance
of using genetic algorithms to find the best initial guess. At this end, the obtained numerical results proves the efficiency of the
proposed scheme.
With noisy data: Before testing the proposed algorithm for the case with noisy the data, we first shall construct the noisy

measurement g�1 and g
�
2 of the exact data g1 and g2, for that we set g

�
1 = g1 + �R1 and g

�
2 = g2 + �R2, with R1 and R2 are two

random vector uniformly distributed in [0, 1], � is the noise level. Now we can turn our proposed algorithm to identify the exact
boundaries in the two last examples for different level of noise. We write in table 2 the achieved cost and the total number of
iterations (Iter), for different noise level. In figure 13 and 14 we illustrate the obtained optimal boundaries.
It is seen that the quality of the optimal boundaries decrease with respect to the noise level. As the noise level increases we

remark that the cost and the relative error increases, and the number of iteration as well, especially in example two, which is
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FIGURE 8 The optimal boundaries without noisy data for example 2.
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FIGURE 9 The cost decay for example 2.
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FIGURE 10 Comparison of results obtained with CG and GACG for example 2.

normal due to the complexity of the configuration of the exact boundaries. However the obtained boundaries remain a good
approximation of the exact boundaries.

8 CONCLUSION

In this paper we have proposed a class of bilateral free boundaries problem. After establishing the optimal control problem, we
have proved its optimal solution existence’s. The first optimality conditions and the shape gradient are computed. The iterative
method used in this paper, is based on genetic algorithm guided conjugate gradient combined with the finite element method. To
improve the approximation with FEM, we used a mesh refinement at each mesh regeneration. We illustrated different numerical
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FIGURE 11 Comparison of optimal boundaries with CG and GACG for example 2 with the new initial guess.
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FIGURE 12 Cost decay comparison of CG and GACG for example 2 with the new initial guess.

TABLE 2 The optimal cost with noisy data

Noise level Example 1 Example 2
Cost err Iter Cost err Iter

0% 0.01776 0.00284 48 0.03442 0.00485 36
1% 0.02607 0.00689 50 0.08383 0.01981 38
5% 0.06848 0.02847 51 0.10230 0.03102 43
10% 0.10035 0.03441 55 0.16009 0.04998 70

examples to demonstrate the efficiency of the proposed iterative scheme. In all numerical experiences, the identification of the
bilateral free boundaries works very well in both cases, with and without noisy measurement. We have remarked that, the quality
of the approximation deceases while the noise level increases, even thought the numerical results still acceptable. At this end,
the proposed scheme is efficient and robust to solve similar kind of inverse identification problems.
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