REFERENCES
Ahern, C. A., Eastwood, A. L., Dougherty, D. A., & Horn, R. (2008).
Electrostatic contributions of aromatic residues in the local anesthetic
receptor of voltage-gated sodium channels. Circulation Research ,102 (1), 86–94. https://doi.org/10.1161/CIRCRESAHA.107.160663
Alexander, S. P. H., Mathie, A., Peters, J. A., Veale, E. L.,
Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S.
D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP
Collaborators. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion
channels. British Journal of Pharmacology , 176 Suppl 1 ,
S142–S228. https://doi.org/10.1111/bph.14749
Anderson, L. L., Thompson, C. H., Hawkins, N. A., Nath, R. D.,
Petersohn, A. A., Rajamani, S., Bush, W. S., Frankel, W. N., Vanoye, C.
G., Kearney, J. A., & George, A. L. (2014). Antiepileptic activity of
preferential inhibitors of persistent sodium current. Epilepsia ,55 (8), 1274–1283. https://doi.org/10.1111/epi.12657
Antzelevitch, C., Nesterenko, V., Shryock, J. C., Rajamani, S., Song,
Y., & Belardinelli, L. (2014). The Role of Late I Na in Development of
Cardiac Arrhythmias. In P. C. Ruben (Ed.), Voltage Gated Sodium
Channels (Vol. 221, pp. 137–168). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-41588-3_7
Arcisio-Miranda, M., Muroi, Y., Chowdhury, S., & Chanda, B. (2010).
Molecular mechanism of allosteric modification of voltage-dependent
sodium channels by local anesthetics. The Journal of General
Physiology , 136 (5), 541–554.
https://doi.org/10.1085/jgp.201010438
Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan,
C., Sharman, J. L., Campo, B., Cavanagh, D. R., Alexander, S. P. H.,
Davenport, A. P., Spedding, M., Davies, J. A., & NC-IUPHAR. (2019). The
IUPHAR/BPS Guide to PHARMACOLOGY in 2020: Extending immunopharmacology
content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY.Nucleic Acids Research . https://doi.org/10.1093/nar/gkz951
Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.-Q., El-Bizri, N.,
Hirakawa, R., Karpinski, S., Hong Li, C., Hu, L., Li, X.-J., Crumb, W.,
Wu, L., Koltun, D., Zablocki, J., Yao, L., Dhalla, A. K., Rajamani, S.,
& Shryock, J. C. (2013). A Novel, Potent, and Selective Inhibitor of
Cardiac Late Sodium Current Suppresses Experimental Arrhythmias.Journal of Pharmacology and Experimental Therapeutics ,344 (1), 23–32. https://doi.org/10.1124/jpet.112.198887
Boiteux, C., Vorobyov, I., French, R. J., French, C., Yarov-Yarovoy, V.,
& Allen, T. W. (2014). Local anesthetic and antiepileptic drug access
and binding to a bacterial voltage-gated sodium channel.Proceedings of the National Academy of Sciences of the United
States of America , 111 (36), 13057–13062.
https://doi.org/10.1073/pnas.1408710111
Buyan, A., Sun, D., & Corry, B. (2018). Protonation state of inhibitors
determines interaction sites within voltage-gated sodium channels.Proceedings of the National Academy of Sciences of the United
States of America , 115 (14), E3135–E3144.
https://doi.org/10.1073/pnas.1714131115
Cannon, S. C. (2018). Sodium Channelopathies of Skeletal Muscle.Handbook of Experimental Pharmacology , 246 , 309–330.
https://doi.org/10.1007/164_2017_52
Catterall, W. A., Lenaeus, M. J., & El-Din, T. M. G. (2019). Structure
and Pharmacology of Voltage-Gated Sodium and Calcium Channels.Annual Review of Pharmacology and Toxicology .
https://doi.org/10.1146/annurev-pharmtox-010818-021757
Chadda, K. R., Jeevaratnam, K., Lei, M., & Huang, C. L.-H. (2017).
Sodium channel biophysics, late sodium current and genetic arrhythmic
syndromes. Pflügers Archiv - European Journal of Physiology ,469 (5–6), 629–641. https://doi.org/10.1007/s00424-017-1959-1
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C.
H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y.,
MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M.,
Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis
and their reporting II: Updated and simplified guidance for authors and
peer reviewers: Editorial. British Journal of Pharmacology ,175 (7), 987–993. https://doi.org/10.1111/bph.14153
Del Negro, C. A., Hayes, J. A., Pace, R. W., Brush, B. R., Teruyama, R.,
& Feldman, J. L. (2010). Synaptically activated burst-generating
conductances may underlie a group-pacemaker mechanism for respiratory
rhythm generation in mammals. In Progress in Brain Research (Vol.
187, pp. 111–136). Elsevier.
https://doi.org/10.1016/B978-0-444-53613-6.00008-3
Djamgoz, M. B. A., & Onkal, R. (2013). Persistent current blockers of
voltage-gated sodium channels: A clinical opportunity for controlling
metastatic disease. Recent Patents on Anti-Cancer Drug Discovery ,8 (1), 66–84. https://doi.org/10.2174/15748928130107
El-Bizri, N., Xie, C., Liu, L., Limberis, J., Krause, M., Hirakawa, R.,
Nguyen, S., Tabuena, D. R., Belardinelli, L., & Kahlig, K. M. (2018).
Eleclazine exhibits enhanced selectivity for long QT syndrome type
3–associated late Na + current. Heart Rhythm , 15 (2),
277–286. https://doi.org/10.1016/j.hrthm.2017.09.028
Fehlings, M. G., Nakashima, H., Nagoshi, N., Chow, D. S. L., Grossman,
R. G., & Kopjar, B. (2016). Rationale, design and critical end points
for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): A
randomized, double-blinded, placebo-controlled parallel multi-center
trial. Spinal Cord , 54 (1), 8–15.
https://doi.org/10.1038/sc.2015.95
Fischer, B. D., Ho, C., Kuzin, I., Bottaro, A., & O’Leary, M. E.
(2017). Chronic exposure to tumor necrosis factor in vivo induces
hyperalgesia, upregulates sodium channel gene expression and alters the
cellular electrophysiology of dorsal root ganglion neurons.Neuroscience Letters , 653 , 195–201.
https://doi.org/10.1016/j.neulet.2017.05.004
Franke, C., Hatt, H., & Dudel, J. (1987). Liquid filament switch for
ultra-fast exchanges of solutions at excised patches of synaptic
membrane of crayfish muscle. Neuroscience Letters , 77 (2),
199–204. https://doi.org/10.1016/0304-3940(87)90586-6
Ghayour, M. B., Abdolmaleki, A., & Behnam-Rassouli, M. (2017). The
effect of Riluzole on functional recovery of locomotion in the rat
sciatic nerve crush model. European Journal of Trauma and
Emergency Surgery , 43 (5), 691–699.
https://doi.org/10.1007/s00068-016-0691-4
Gloviczki, B., Török, D. G., Márton, G., Gál, L., Bodzay, T., Pintér,
S., & Nógrádi, A. (2017). Delayed Spinal Cord–Brachial Plexus
Reconnection after C7 Ventral Root Avulsion: The Effect of Reinnervating
Motoneurons Rescued by Riluzole Treatment. Journal of
Neurotrauma , 34 (15), 2364–2374.
https://doi.org/10.1089/neu.2016.4754
Hammarström, A., & Gage, P. (2002). Hypoxia and persistent sodium
current. European Biophysics Journal , 31 (5), 323–330.
https://doi.org/10.1007/s00249-002-0218-2
Hanck, D. A., Makielski, J. C., & Sheets, M. F. (1994). Kinetic effects
of quaternary lidocaine block of cardiac sodium channels: A gating
current study. The Journal of General Physiology , 103 (1),
19–43.
Hanck, Dorothy A., Nikitina, E., McNulty, M. M., Fozzard, H. A.,
Lipkind, G. M., & Sheets, M. F. (2009). Using lidocaine and benzocaine
to link sodium channel molecular conformations to state-dependent
antiarrhythmic drug affinity. Circulation Research ,105 (5), 492–499. https://doi.org/10.1161/CIRCRESAHA.109.198572
Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic
pathways for the drug-receptor reaction. The Journal of General
Physiology , 69 (4), 497–515.
Jonas, P. (1995). Fast Application of Agonists to Isolated Membrane
Patches. In B. Sakmann & E. Neher (Eds.), Single-Channel
Recording (pp. 231–243). Springer US.
https://doi.org/10.1007/978-1-4419-1229-9_10
Karagueuzian, H. S., Pezhouman, A., Angelini, M., & Olcese, R. (2017).
Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug
Targets. Frontiers in Pharmacology , 8 .
https://doi.org/10.3389/fphar.2017.00036
Lampert, A., Hains, B. C., & Waxman, S. G. (2006). Upregulation of
persistent and ramp sodium current in dorsal horn neurons after spinal
cord injury. Experimental Brain Research , 174 (4),
660–666. https://doi.org/10.1007/s00221-006-0511-x
Liu, H., Atkins, J., & Kass, R. S. (2003). Common molecular
determinants of flecainide and lidocaine block of heart Na+ channels:
Evidence from experiments with neutral and quaternary flecainide
analogues. The Journal of General Physiology , 121 (3),
199–214. https://doi.org/10.1085/jgp.20028723
Lukacs, P., Földi, M. C., Valánszki, L., Casanova, E., Biri-Kovács, B.,
Nyitray, L., Málnási-Csizmadia, A., & Mike, A. (2018). Non-blocking
modulation contributes to sodium channel inhibition by a covalently
attached photoreactive riluzole analog. Scientific Reports ,8 (1), 8110. https://doi.org/10.1038/s41598-018-26444-y
Ma, C., Greenquist, K. W., & LaMotte, R. H. (2006). Inflammatory
Mediators Enhance the Excitability of Chronically Compressed Dorsal Root
Ganglion Neurons. Journal of Neurophysiology , 95 (4),
2098–2107. https://doi.org/10.1152/jn.00748.2005
Makielski, J. C. (2016). Late sodium current: A mechanism for angina,
heart failure, and arrhythmia. Trends in Cardiovascular Medicine ,26 (2), 115–122. https://doi.org/10.1016/j.tcm.2015.05.006
Martin, L. J., & Corry, B. (2014). Locating the route of entry and
binding sites of benzocaine and phenytoin in a bacterial voltage gated
sodium channel. PLoS Computational Biology , 10 (7),
e1003688. https://doi.org/10.1371/journal.pcbi.1003688
Meisler, M. H. (2019). SCN8A encephalopathy: Mechanisms and models.Epilepsia , 60 Suppl 3 , S86–S91.
https://doi.org/10.1111/epi.14703
Mike, A., & Lukacs, P. (2010). The enigmatic drug binding site for
sodium channel inhibitors. Current Molecular Pharmacology ,3 (3), 129–144. https://doi.org/10.2174/1874467211003030129
Misawa, S., Sakurai, K., Shibuya, K., Isose, S., Kanai, K., Ogino, J.,
Ishikawa, K., & Kuwabara, S. (2009). Neuropathic pain is associated
with increased nodal persistent Na+ currents in human diabetic
neuropathy. Journal of the Peripheral Nervous System ,14 (4), 279–284. https://doi.org/10.1111/j.1529-8027.2009.00239.x
Morris, C. E., & Joos, B. (2016). Nav Channels in Damaged Membranes.Current Topics in Membranes , 78 , 561–597.
https://doi.org/10.1016/bs.ctm.2016.06.001
Muroi, Y., & Chanda, B. (2009). Local anesthetics disrupt energetic
coupling between the voltage-sensing segments of a sodium channel.The Journal of General Physiology , 133 (1), 1–15.
https://doi.org/10.1085/jgp.200810103
Nguyen, P. T., DeMarco, K. R., Vorobyov, I., Clancy, C. E., &
Yarov-Yarovoy, V. (2019). Structural basis for antiarrhythmic drug
interactions with the human cardiac sodium channel. Proceedings of
the National Academy of Sciences of the United States of America ,116 (8), 2945–2954. https://doi.org/10.1073/pnas.1817446116
Oyrer, J., Maljevic, S., Scheffer, I. E., Berkovic, S. F., Petrou, S.,
& Reid, C. A. (2018). Ion Channels in Genetic Epilepsy: From Genes and
Mechanisms to Disease-Targeted Therapies. Pharmacological
Reviews , 70 (1), 142–173. https://doi.org/10.1124/pr.117.014456
Pesti, K., Szabo, A. K., Mike, A., & Vizi, E. S. (2014). Kinetic
properties and open probability of α7 nicotinic acetylcholine receptors.Neuropharmacology , 81 , 101–115.
https://doi.org/10.1016/j.neuropharm.2014.01.034
Phillips, R. S., & Rubin, J. E. (2019). Effects of persistent sodium
current blockade in respiratory circuits depend on the pharmacological
mechanism of action and network dynamics. PLOS Computational
Biology , 15 (8), e1006938.
https://doi.org/10.1371/journal.pcbi.1006938
Raju, S. G., Barber, A. F., LeBard, D. N., Klein, M. L., & Carnevale,
V. (2013). Exploring volatile general anesthetic binding to a closed
membrane-bound bacterial voltage-gated sodium channel via computation.PLoS Computational Biology , 9 (6), e1003090.
https://doi.org/10.1371/journal.pcbi.1003090
Rizzetto, R., Rocchetti, M., Sala, L., Ronchi, C., Villa, A., Ferrandi,
M., Molinari, I., Bertuzzi, F., & Zaza, A. (2015). Late sodium current
(INaL) in pancreatic β-cells. Pflügers Archiv - European Journal
of Physiology , 467 (8), 1757–1768.
https://doi.org/10.1007/s00424-014-1613-0
Rogawski, M. A., & Löscher, W. (2004). The neurobiology of
antiepileptic drugs for the treatment of nonepileptic conditions.Nature Medicine , 10 (7), 685–692.
https://doi.org/10.1038/nm1074
Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site
analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided
Molecular Design , 24 (5), 417–422.
https://doi.org/10.1007/s10822-010-9352-6
Stafstrom, C. E. (2007). Persistent sodium current and its role in
epilepsy. Epilepsy Currents , 7 (1), 15–22.
https://doi.org/10.1111/j.1535-7511.2007.00156.x
Taddese, A., & Bean, B. P. (2002). Subthreshold Sodium Current from
Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of
Tuberomammillary Neurons. Neuron , 33 (4), 587–600.
https://doi.org/10.1016/S0896-6273(02)00574-3
Tang, Z., Chen, Z., Tang, B., & Jiang, H. (2015). Primary
erythromelalgia: A review. Orphanet Journal of Rare Diseases ,10 , 127. https://doi.org/10.1186/s13023-015-0347-1
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed
and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. Journal of Computational
Chemistry , 31 (2), 455–461. https://doi.org/10.1002/jcc.21334
van Zundert, B., Izaurieta, P., Fritz, E., & Alvarez, F. J. (2012).
Early pathogenesis in the adult‐onset neurodegenerative disease
amyotrophic lateral sclerosis. Journal of Cellular Biochemistry ,113 (11), 3301–3312. https://doi.org/10.1002/jcb.24234
Wang, Y., Yang, E., Wells, M. M., Bondarenko, V., Woll, K., Carnevale,
V., Granata, D., Klein, M. L., Eckenhoff, R. G., Dailey, W. P.,
Covarrubias, M., Tang, P., & Xu, Y. (2018). Propofol inhibits the
voltage-gated sodium channel NaChBac at multiple sites. The
Journal of General Physiology , 150 (9), 1317–1331.
https://doi.org/10.1085/jgp.201811993
Waxman, S. G. (2008). Mechanisms of Disease: Sodium channels and
neuroprotection in multiple sclerosis—current status. Nature
Clinical Practice Neurology , 4 (3), 159–169.
https://doi.org/10.1038/ncpneuro0735
Xie, R.-G., Zheng, D.-W., Xing, J.-L., Zhang, X.-J., Song, Y., Xie,
Y.-B., Kuang, F., Dong, H., You, S.-W., Xu, H., & Hu, S.-J. (2011).
Blockade of Persistent Sodium Currents Contributes to the
Riluzole-Induced Inhibition of Spontaneous Activity and Oscillations in
Injured DRG Neurons. PLoS ONE , 6 (4), e18681.
https://doi.org/10.1371/journal.pone.0018681
Zhang, H., Zou, B., Du, F., Xu, K., & Li, M. (2015). Reporting sodium
channel activity using calcium flux: Pharmacological promiscuity of
cardiac Nav1.5. Molecular Pharmacology , 87 (2), 207–217.
https://doi.org/10.1124/mol.114.094789
Zhang, Q., Ma, J.-H., Li, H., Wei, X.-H., Zheng, J., Li, G., Wang,
C.-Y., Wu, Y., He, Q.-H., & Wu, L. (2019). Increase in CO2 levels by
upregulating late sodium current is proarrhythmic in the heart.Heart Rhythm , 16 (7), 1098–1106.
https://doi.org/10.1016/j.hrthm.2019.01.029
Zheng, Q., Fang, D., Cai, J., Wan, Y., Han, J.-S., & Xing, G.-G.
(2012). Enhanced Excitability of Small Dorsal Root Ganglion Neurons in
Rats with Bone Cancer Pain. Molecular Pain , 8 ,
1744-8069-8–24. https://doi.org/10.1186/1744-8069-8-24