References
Rawla P. (2019). Epidemiology of prostate cancer. World J Oncol, 10(2):
63-89.
Trewartha D, Carter K. (2013). Advances in prostate cancer treatment.
Nat Rev Drug Discov, 12(11): 823-824.
Zong Y, Goldstein AS. 2013. Adaptation or selection–mechanisms of
castration-resistant prostate cancer. Nat Rev Urol, 10(2): 90-98.
R S. (2002). A history of prostate cancer treatment. Nat Rev Cancer, 2:
389-396.
Davies A, Conteduca V, Zoubeidi A, Beltran H. (2019). Biological
evolution of castration-resistant prostate cancer. Eur Urol Focus, 5(2):
147-154.
Saad F, Chi KN, Finelli A, Hotte SJ, Izawa J, Kapoor A, . . . Fleshner
NE. (2015). The 2015 CUA-CUOG guidelines for the management of
castration-resistant prostate cancer (CRPC). Can Urol Assoc J, 9(3-4):
90-96.
Cai C, Balk SP. (2011). Intratumoral androgen biosynthesis in prostate
cancer pathogenesis and response to therapy. Endocr Relat Cancer, 18(5):
R175-182.
Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, . . . Sawyers CL.
(2009). Development of a second-generation antiandrogen for treatment of
advanced prostate cancer. Science, 324: 787-790.
Nelson WG, Yegnasubramanian S. (2013). Resistance emerges to
second-generation antiandrogens in prostate cancer. Cancer Discov, 3(9):
971-974.
Erdogan B. (2018). Enzalutamide and cancer. EJMO, 2(3): 121-129.
Jiang W, Chen J, Gong C, Wang Y. (2020). Intravenous delivery of
enzalutamide based on high drug loading multifunctional graphene oxide
nanoparticles for castration-resistant prostate cancer therapy. J
Nanobiotechnology, 18(1): 50.
Niu Y, Guo C, Wen S, Tian J, Luo J, Wang K, . . . Chang C. (2018). ADT
with antiandrogens in prostate cancer induces adverse effect of
increasing resistance, neuroendocrine differentiation and tumor
metastasis. Cancer Lett, 439: 47-55.
Wong YN, Ferraldeschi R, Attard G, De Bono J. (2014). Evolution of
androgen receptor targeted therapy for advanced prostate cancer. Nat Rev
Clin Oncol, 11(6): 365-376.
Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. (2014). Androgen receptor
functions in castration-resistant prostate cancer and mechanisms of
resistance to new agents targeting the androgen axis. Oncogene, 33(22):
2815-2825.
Takeda DY, Spisák S, Seo JH, Bell C, O’connor E, Korthauer K, . . .
Freedman ML. (2018). A somatically acquired enhancer of the androgen
receptor is a noncoding driver in advanced prostate cancer. Cell,
174(2): 422-432.
Dondoo TO, Fukumori T, Daizumoto K, Fukawa T, Kohzuki M, Kowada M, . . .
Kanayama HO. (2017). Galectin-3 is implicated in tumor progression and
resistance to anti-androgen drug through regulation of androgen receptor
signaling in prostate cancer. Anticancer Res, 37(1): 125-134.
Zhu S, Zhao D, Yan L, Jiang W, Kim JS, Gu B, . . . Cao Q. (2018). BMI1
regulates androgen receptor in prostate cancer independently of the
polycomb repressive complex 1. Nat Commun, 9(1): 500.
Hwang JH, Seo JH, Beshiri ML, Wankowicz S, Liu D, Cheung A, . . . Hahn
WC. (2019). CREB5 promotes resistance to androgen-receptor antagonists
and androgen deprivation in prostate cancer. Cell Rep, 29(8): 2355-2370.
Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, . . . Dong Y.
(2019). A positive role of c-Myc in regulating androgen receptor and its
splice variants in prostate cancer. Oncogene, 38(25): 4977-4989.
Bainbridge A, Walker S, Smith J, Patterson K, Dutt A, Ng Ym, . . .
Coffey K. (2020). IKBKE activity enhances AR levels in advanced prostate
cancer via modulation of the Hippo pathway. Nucleic Acids Res,
48(10):5366-5382.
Li C, Lanman NA, Kong Y, He D, Mao F, Farah E, . . . Liu X. (2020).
Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes
androgen receptor overexpression and reduces enzalutamide resistance. J
Biol Chem, 295(16): 5470-5483.
Liu Y, Horn JL, Banda K, Goodman AZ. (2019). The androgen receptor
regulates a druggable translational regulon in advanced prostate cancer.
Sci Transl Med, 11: 1-12.
Thaper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, . . . Zoubeidi
A. (2018). Galiellalactone inhibits the STAT3/AR signaling axis and
suppresses Enzalutamide-resistant Prostate Cancer. Sci Rep, 8(1):17307.
Han Y, Huang W, Liu J, Liu D, Cui Y, Huang R, . . . Lei M. (2017).
Triptolide inhibits the ar signaling pathway to suppress the
proliferation of enzalutamide resistant prostate cancer cells.
Theranostics, 7(7): 1914-1927.
Pollock JA, Wardell SE, Parent AA, Stagg DB, Ellison SJ, Alley HM, . . .
Norris JD. (2016). Inhibiting androgen receptor nuclear entry in
castration-resistant prostate cancer. Nat Chem Biol, 12(10): 795-801.
Toure M, Crews CM. (2016). Small-Molecule PROTACS: New approaches to
protein degradation. Angew Chem Int Ed Engl, 55(6): 1966-1973.
Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, . . . Crews
CM. (2018). Androgen receptor degradation by the proteolysis-targeting
chimera ARCC-4 outperforms enzalutamide in cellular models of prostate
cancer drug resistance. Commun Biol, 1: 100.
Ponnusamy S, He Y, Hwang DJ, Thiyagarajan T, Houtman R, Bocharova V, . .
. Narayanan R. (2019). Orally bioavailable androgen receptor degrader,
potential next-generation therapeutic for enzalutamide-resistant
prostate cancer. Clin Cancer Res, 25(22): 6764-6780.
Wu H, You L, Li Y, Zhao Z, Shi G, Chen Z, . . . Yang Y. (2020). Loss of
a negative feedback loop between IRF8 and AR promotes prostate cancer
growth and enzalutamide resistance. Cancer Res, 80(13):2927-2939.
J G, Bubley, Balk SP. 2017. Association between androgen receptor splice
variants and prostate cancer resistance to abiraterone and enzalutamide.
J Clin Oncol, 35(19): 2103-2105.
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, . . . Luo
J. (2014). AR-V7 and resistance to enzalutamide and abiraterone in
prostate cancer. N Engl J Med, 371(11): 1028-1038.
Stone L. (2017). Prostate cancer: Escaping enzalutamide: Malat1
contributes to resistance. Nat Rev Urol, 14(8): 450.
Mahajan K, Malla P, Lawrence HR, Chen Z, Kumar-Sinha C, Malik R, . . .
Mahajan NP. (2017). ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation
and AR gene expression in castration-resistant prostate cancer. Cancer
Cell, 31(6): 790-803
Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA. (2019). Arginine
vasopressin receptor 1a is a therapeutic target for castration-resistant
prostate cancer. Sci Transl Med, 11(498):eaaw4636
Lam HM, Nguyen HM, Labrecque MP, Brown LG, Coleman IM, Gulati R, . . .
Corey E. (2020). Durable response of enzalutamide-resistant prostate
cancer to supraphysiological testosterone is associated with a
multifaceted growth suppression and impaired DNA damage response
transcriptomic program in patient-derived xenografts. Eur Urol, 77(2):
144-155.
Lin SJ, Chou FJ, Li L, Lin CY, Yeh S, Chang C. (2017). Natural killer
cells suppress enzalutamide resistance and cell invasion in the
castration resistant prostate cancer via targeting the androgen receptor
splicing variant 7 (ARv7). Cancer Lett, 398: 62-69.
Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, . . . Gao AC
(2018). Proteostasis by STUB1/HSP70 complex controls sensitivity to
androgen receptor targeted therapy in advanced prostate cancer. Nat
Commun, 9(1): 4700.
Liu C, Yang JC, Armstrong CM, Lou W, Liu L, Qiu X, . . . Gao AC (2019).
AKR1C3 promotes AR-V7 protein stabilization and confers resistance to
AR-targeted therapies in advanced prostate cancer. Mol Cancer Ther,
18(10): 1875-1886.
Xu H, Sun Y, Huang CP, You B, Ye D, Chang C. (2020). Preclinical study
using ABT263 to increase enzalutamide sensitivity to suppress prostate
cancer progression via targeting BCL2/ROS/USP26 axis through altering
ARv7 protein degradation. Cancers (Basel), 12(4):831.
Zadra G, Ribeiro CF, Chetta P, Ho Y, Cacciatore S, Gao X, . . . Loda M.
(2019). Inhibition of de novo lipogenesis targets androgen receptor
signaling in castration-resistant prostate cancer. Proc Natl Acad Sci U
S A, 116(2): 631-640.
Naiki-Ito A, Naiki T, Kato H, Iida K, Etani T, Nagayasu Y, . . .
Takahashi S. (2019).
Recruitment
of miR-8080 by luteolin inhibits androgen receptor splice variant 7
expression in castration-resistant prostate cancer. Retrieved from
https://doi.org/10.1093/carcin/bgz193.
Khurana N, Chandra PK, Kim H, Abdel-Mageed AB, Mondal D, Sikka SC.
(2020). Bardoxolone-methyl (CDDO-Me) suppresses androgen receptor and
its splice-variant AR-V7 and enhances efficacy of enzalutamide in
prostate cancer cells. Antioxidants (Basel), 9(1):68.
Cucchiara V, Yang JC, Liu C, Adomat HH, Tomlinson Guns ES, Gleave ME, .
. . Evans CP. (2019). GnRH antagonists have direct inhibitory effects on
castration-resistant prostate cancer via intracrine androgen and AR-V7
expression. Mol Cancer Ther, 18(10): 1811-1821.
Monga J, Subramani D, Bharathan A, Ghosh J. (2020). Pharmacological and
genetic targeting of 5-lipoxygenase interrupts c-Myc oncogenic signaling
and kills enzalutamide-resistant prostate cancer cells via apoptosis.
Sci Rep, 10(1): 6649.
Chaytor L, Simcock M, Nakjang S, Heath R, Walker L, Robson C, . . .
Gaughan L. (2019). The pioneering role of GATA2 in androgen receptor
variant regulation is controlled by bromodomain and extraterminal
proteins in castrate-resistant prostate cancer. Mol Cancer Res, 17(6):
1264-1278.
He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM, . . . Mitsiades N.
(2014). GATA2 facilitates steroid receptor coactivator recruitment to
the androgen receptor complex. Proc Natl Acad Sci U S A, 111(51):
18261-18266.
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, . . .
Chinnaiyan AM. (2014). Therapeutic targeting of BET bromodomain proteins
in castration-resistant prostate cancer. Nature, 510(7504): 278-282.
Chan SC, Selth LA, Li Y, Nyquist MD, Miao L, Bradner JE, . . . Dehm SM.
(2015). Targeting chromatin binding regulation of constitutively active
AR variants to overcome prostate cancer resistance to endocrine-based
therapies. Nucleic Acids Res, 43(12): 5880-5897.
Cai L, Tsai YH, Wang P, Wang J, Li D, Fan H, . . . Wang GG. (2018). ZFX
Mediates non-canonical oncogenic functions of the androgen receptor
splice variant 7 in castrate-resistant prostate cancer. Mol Cell, 72(2):
341-354
Kounatidou E, Nakjang S, Mccracken SR C, Dehm SM, Robson CN, Jones D,
Gaughan L. (2019). A novel CRISPR-engineered prostate cancer cell line
defines the AR-V transcriptome and identifies PARP inhibitor
sensitivities. Nucleic Acids Res, 47(11): 5634-5647.
Snow O, Lallous N, Singh K, Lack N, Rennie P, Cherkasov A. (2019).
Androgen receptor plasticity and its implications for prostate cancer
therapy. Cancer Treat Rev, 81: 101871.
Liu H, Wang L, Tian J, Li J, Liu H. (2017). Molecular dynamics studies
on the enzalutamide resistance mechanisms induced by androgen receptor
mutations. J Cell Biochem, 118(9): 2792-2801.
Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, . . . Zhu P.
(2013). An F876L mutation in androgen receptor confers genetic and
phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov, 3(9):
1030-1043.
Wang R, Lin W, Lin C, Li L, Sun Y, Chang C. (2016). ASC-J9® suppresses
castration resistant prostate cancer progression via degrading the
enzalutamide-induced androgen receptor mutant AR-F876L. Cancer Lett,
379(1): 154-160.
Wu Z, Wang K, Yang Z, Pascal LE, Nelson Jb, Takubo K, . . . Wang Z.
(2020). A novel androgen receptor antagonist JJ-450 inhibits
enzalutamide-resistant mutant AR(F876L) nuclear import and function.
Prostate, 80(4): 319-328.
Prekovic S, Van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, . .
. Helsen C. (2016). The effect of F877L and T878A mutations on androgen
receptor response to enzalutamide. Mol Cancer Ther, 15(7): 1702-1712.
Borgmann H, Lallous N, Ozistanbullu D, Beraldi E, Paul N, Dalal K, . . .
Gleave ME. (2018). Moving towards precision urologic oncology: targeting
enzalutamide-resistant prostate cancer and mutated forms of the androgen
receptor using the novel inhibitor darolutamide (ODM-201). Eur Urol,
73(1): 4-8.
Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, . . .
Cherkasov A. (2016). Functional analysis of androgen receptor mutations
that confer anti-androgen resistance identified in circulating cell-free
DNA from prostate cancer patients. Genome Biol, 17: 10.
Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, . .
. Sawyers CL. (2013). Glucocorticoid receptor confers resistance to
antiandrogens by bypassing androgen receptor blockade. Cell, 155(6):
1309-1322.
Li J, Alyamani M, Zhang A, Chang KH, Berk M, Li Z, . . . Sharifi N.
(2017). Aberrant corticosteroid metabolism in tumor cells enables GR
takeover in enzalutamide resistant prostate cancer. Elife, 6:e20183.
Palit SA, Vis D, Stelloo S, Lieftink C, Prekovic S, Bekers E, . . . Van
Der Heijden MS. (2019). TLE3 loss confers AR inhibitor resistance by
facilitating GR-mediated human prostate cancer cell growth. Elife,
8:e47430.
Adelaiye-Ogala RM, Gryder B, Nguyen YTM, Alilin An, Grayson A, Jansson
KH, . . . Vanderweele DJ. (2020). Targeting the PI3K/AKT pathway
overcomes enzalutamide resistance by inhibiting induction of the
glucocorticoid receptor. Mol Cancer Ther, 19(7):1436-1447.
Shah N, Wang P, Wongvipat J, Karthaus WR, Abida W, Armenia J, . . .
Sawyers CL. (2017). Regulation of the glucocorticoid receptor via a
BET-dependent enhancer drives antiandrogen resistance in prostate
cancer. Elife, 6: 1-19.
Kurmis AA, Yang F, Welch TR, Nickols NG, Dervan PB. (2017). A
Pyrrole-Imidazole Polyamide is active against enzalutamide-resistant
prostate cancer. Cancer Res, 77(9): 2207-2212.
Kach J, Long TM, Selman P, Tonsing-Carter EY, Bacalao MA, Lastra RR, . .
. Szmulewitz RZ. (2017). Selective glucocorticoid receptor modulators
(SGRMs) delay castrate-resistant prostate cancer growth. Mol Cancer
Ther, 16(8): 1680-1692.
Wu M, Xie Y, Cui X, Huang C, Zhang R, He Y, . . . Zhou J. (2019).
Rational drug design for androgen receptor and glucocorticoids receptor
dual antagonist. Eur J Med Chem, 166: 232-242.
Tummala R, Lou W, Gao AC, Nadiminty N. (2017). Quercetin targets hnRNPA1
to overcome enzalutamide resistance in prostate cancer cells. Mol Cancer
Ther, 16(12):2770-2779.
Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. (2018). MALAT1: A long
non-coding RNA highly associated with human cancers. Oncol Lett,
16(1):19-26.
Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, . . . Hager
JH. (2013). A clinically relevant androgen receptor mutation confers
resistance to second-generation antiandrogens enzalutamide and ARN-509.
Cancer Discov, 3(9):1020-1029
Murillo-Garzon V, Kypta R. (2017). WNT signalling in prostate cancer.
Nat Rev Urol, 14(11): 683-696.
Zhang Z, Cheng L, Li J, Farah E, Atallah NM, Pascuzzi PE, . . . Liu X.
(2018). Inhibition of the Wnt/beta-catenin pathway overcomes resistance
to enzalutamide in castration-resistant prostate cancer. Cancer Res,
78(12): 3147-3162.
Khurana N, Sikka SC. (2019). Interplay Between SOX9, Wnt/beta-catenin
and androgen receptor signaling in castration-resistant prostate cancer.
Int J Mol Sci, 20(9):2066.
Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, . . . Xue W. (2018). PRKAR2B
promotes prostate cancer metastasis by activating Wnt/beta-catenin and
inducing epithelial-mesenchymal transition. J Cell Biochem, 119(9):
7319-7327.
Xia L, Han Q, Chi C, Zhu Y, Pan J, Dong B, . . . Sha J. (2020).
Transcriptional regulation of PRKAR2B by miR-200b-3p/200c-3p and XBP1 in
human prostate cancer. Biomed Pharmacother, 124: 109863.
Pak S, Park S, Kim Y, Park JH, Park CH, Lee KJ, . . . Ahn H. (2019). The
small molecule Wnt/β-catenin inhibitor CWP232291 blocks the growth of
castration-resistant prostate cancer by activating the endoplasmic
reticulum stress pathway. J Exp Clin Cancer Res, 38(1): 342.
Miyamoto DT, Zheng Y, Wittner BS, Lee RJ. (2015). RNA-Seq of single
prostate CTCs implicates noncanonical Wnt signaling in antiandrogen
resistance. Science, 349(6254): 1351–1356.
Chen X, Liu J, Cheng L, Li C, Zhang Z, Bai Y, . . . Liu X. (2020).
Inhibition of noncanonical Wnt pathway overcomes enzalutamide resistance
in castration-resistant prostate cancer. Prostate, 80(3): 256-266.
Isaacsson Velho P, Fu W, Wang H, Mirkheshti N, Qazi F, Lima FAS, . . .
Antonarakis ES. (2020). Wnt-pathway activating mutations are associated
with resistance to first-line abiraterone and enzalutamide in
castration-resistant prostate cancer. Eur Urol, 77(1): 14-21.
Lombard AP, Liu C, Armstrong CM, D’Abronzo LS. (2019). Wntless promotes
cellular viability and resistance to enzalutamide in castration
resistant prostate cancer cells. Am J Clin Exp Urol, 7(4): 203-214.
Heiden MGV, Cantley LC, Thompson CB. (2009). Understanding the warburg
effect:The Metabolic requirements of cell proliferation. Science, 324:
1029-1033.
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. (2018). The dark side
of glucose transporters in prostate cancer: Are they a new feature to
characterize carcinomas? Int J Cancer, 142(12): 2414-2424.
Wang J, Xu W, Wang B, Lin G, Wei Y, Abudurexiti M, . . . Ye D. (2020).
GLUT1 is an AR target contributing to tumor growth and glycolysis in
castration-resistant and enzalutamide-resistant prostate cancers. Cancer
Lett, 485:45-55.
Cui Y, Nadiminty N, Liu C, Lou W, Schwartz CT, Gao AC. (2014).
Upregulation of glucose metabolism by NF-kappaB2/p52 mediates
enzalutamide resistance in castration-resistant prostate cancer cells.
Endocr Relat Cancer, 21(3): 435-442.
Bharti SK, Kakkad S, Danhier P, Wildes F, Penet MF, Krishnamachary B,
Bhujwalla ZM. (2019). Hypoxia patterns in primary and metastatic
prostate cancer environments. Neoplasia, 21(2): 239-246.
Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, . . . Qian DZ.
(2018). Interplay between hypoxia and androgen controls a metabolic
switch conferring resistance to androgen/AR-targeted therapy. Nat
Commun, 9(1): 4972.
Farrow JM, Yang JC, Evans CP. (2014). Autophagy as a modulator and
target in prostate cancer. Nat Rev Urol, 11(9): 508-516.
Smith AG, Macleod KF. (2019). Autophagy, cancer stem cells and drug
resistance. J Pathol, 247(5): 708-718.
Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN, JR., . . . Evans
CP. (2014). Targeting autophagy overcomes Enzalutamide resistance in
castration-resistant prostate cancer cells and improves therapeutic
response in a xenograft model. Oncogene, 33(36): 4521-4530.
Pistritto G, Trisciuoglio D, Ceci C, Garufi A. (2016). Apoptosis as
anticancer mechanism: function and dysfunction of its modulators and
targeted therapeutic strategies. Aging, 8(4): 603-619.
Siddiqui WA, Ahad A, Ahsan H. (2015). The mystery of BCL2 family: Bcl-2
proteins and apoptosis: an update. Arch Toxicol, 89(3): 289-317.
Pilling AB, Hwang C. (2019). Targeting prosurvival BCL2 signaling
through Akt blockade sensitizes castration-resistant prostate cancer
cells to enzalutamide. Prostate, 79(11): 1347-1359.
Li Q, Deng Q, Chao HP, Liu X, Lu Y, Lin K, . . . Tang DG. (2018).
Linking prostate cancer cell AR heterogeneity to distinct castration and
enzalutamide responses. Nat Commun, 9(1): 3600.
Cheng J, Moore S, Gomez-Galeno J, Lee DH, Okolotowicz KJ, Cashman JR.
(2019). A novel small molecule inhibits tumor growth and synergizes
effects of enzalutamide on prostate cancer. J Pharmacol Exp Ther,
371(3): 703-712.
Krajewska M, Krajewski S, Banares S, Huang X. (2003). Elevated
expression of inhibitor of apoptosis proteins in prostate cancer. Clin
Cancer Res, 9(13): 4914–4925.
Luk ISU, Shresth R, Xue H, Wang Y. 2016. BIRC6-targeting as potential
therapy for advanced, enzalutamide-resistant prostate cancer. Clin
Cancer Res, 23(6): 1542-1551.
Pilling AB, Hwang O, Boudreault A, Laurent A, Hwang C. (2017). IAP
antagonists enhance apoptotic response to enzalutamide in
castration-resistant prostate cancer cells via autocrine TNF-α
signaling. Prostate, 77(8): 866-877.
Davie AH, Beltran H, Zoubeid A. (2018). Cellular plasticity and the
neuroendocrine phenotype in prostate cancer. Nat Rev Urol, 15: 271–286.
Miao L, Yang L, Li R, Rodrigues DN, Crespo M, Hsieh JT, . . . Raj GV.
(2017). Disrupting androgen receptor signaling induces snail-mediated
epithelial-mesenchymal plasticity in prostate cancer. Cancer Res,
77(11): 3101-3112.
Quintanal-Villalonga Á, Chan JM, Yu HA, Pe’Er D, Sawyers CL, Sen T,
Rudin CM. (2020). Lineage plasticity in cancer: a shared pathway of
therapeutic resistance. Nat Rev Clin Oncol, 17(6):360-371.
Pal SK, Patel J, He M, Foulk B, Kraft K, Smirnov DA, . . . Jones JO.
(2018). Identification of mechanisms of resistance to treatment with
abiraterone acetate or enzalutamide in patients with
castration-resistant prostate cancer (CRPC). Cancer, 124(6):1216-1224.
Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, . . . Yu J. (2019).
Targeting FOXA1-mediated repression of TGF-β signaling suppresses
castration-resistant prostate cancer progression. J Clin Investig,
129(2): 569-582.
Paller C, Pu H, Begemann DE, Wade CA, Hensley PJ, Kyprianou N. (2019).
TGF-β receptor I inhibitor enhances response to enzalutamide in a
pre-clinical model of advanced prostate cancer. Prostate, 79(1): 31-43.
Liu Q, Tong D, Liu G, Xu J, Do K, Geary K, . . . Jiang J. (2017).
Metformin reverses prostate cancer resistance to enzalutamide by
targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis, 8(8): e3007.
Hensley PJ, Cao Z, Pu H, Dicke H. (2019). Predictive and targeting value
of IGFBP-3 in therapeutically resistant prostate cancer. Am J Clin Exp
Urol, 7(3): 188-202.
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M. (2017). Rb1 and Trp53
cooperate to suppress prostate cancer lineage plasticity, metastasis,
and antiandrogen resistance. Science, 355(6320): 78-83.
Ge R, Wang Z, Montironi R, Jiang Z, Cheng M, Santoni M, . . . Cheng L.
(2020). Epigenetic modulations and lineage plasticity in advanced
prostate cancer. Ann Oncol, 31(4): 470-479.
Xiao L, Tien JC, Vo J, Tan M, Parolia A, Zhang Y, . . . Chinnaiyan AM.
(2018). Epigenetic reprogramming with antisense oligonucleotides
enhances the effectiveness of androgen receptor inhibition in
castration-resistant prostate cancer. Cancer Res, 78(20):5731-5740.
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V,
Domingo-Domenech J. (2020). Cellular rewiring in lethal prostate cancer:
the architect of drug resistance. Nat Rev Urol, 17(5): 292-307.
Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, . . . Li W. (2018).
Androgen deprivation promotes neuroendocrine differentiation and
angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat
Commun, 9(1): 4080.
Luo J, Wang K, Yeh S, Sun Y, Liang L, Xiao Y, . . . Chang C. (2019).
LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer
neuroendocrine differentiation via modulating the EZH2/STAT3 signaling.
Nat Commun, 10(1): 2571.
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoove E. (2017). SOX2 promotes
lineage plasticity and antiandrogen resistance in TP53and RB1-deficient
prostate cance. Science, 355: 84–88.
Metz EP, Wilder PJ, Dong J, Datta K, Rizzino A. (2020). Elevating SOX2
in prostate tumor cells upregulates expression of neuroendocrine genes,
but does not reduce the inhibitory effects of enzalutamide. J Cell
Physiol, 235(4): 3731-3740.
Nouri M, Massah S, Caradec J, Lubik AA, Li N, Truong S, . . . Buttyan R.
(2020). Transient Sox9 Expression Facilitates Resistance to
Androgen-Targeted Therapy in Prostate Cancer. Clin Cancer Res, 26(7):
1678-1689.
Flores-Morales A, Bergmann TB, Lavallee C, Batth TS, Lin D, Lerdrup M, .
. . Iglesias-Gato D. (2019). Proteogenomic characterization of
patient-derived xenografts highlights the role of REST in neuroendocrine
differentiation of castration-resistant prostate cancer. Clin Cancer
Res, 25(2): 595-608.
Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H, . . . Dong X. (2017).
SRRM4 drives neuroendocrine transdifferentiation of prostate
adenocarcinoma under androgen receptor pathway inhibition. Eur Urol,
71(1): 68-78.
Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, . . . Ateeq
B. (2020). Androgen deprivation upregulates SPINK1 expression and
potentiates cellular plasticity in prostate cancer. Nat Commun, 11(1):
384.
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, . . .
Rickman DS. (2016). N-Myc induces an EZH2-mediated transcriptional
program driving neuroendocrine prostate cancer. Cancer Cell, 30(4):
563-577.
Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, . . .
Rickman DS. (2019). N-Myc-mediated epigenetic reprogramming drives
lineage plasticity in advanced prostate cancer. J Clin Invest, 130:
3924-3940.
Nerlakanti N, Yao J, Nguyen DT, Patel AK, Eroshkin AM, Lawrence HR, . .
. Mahajan K. (2018). Targeting the BRD4-HOXB13 coregulated
transcriptional networks with bromodomain-kinase inhibitors to suppress
metastatic castration-resistant prostate cancer. Mol Cancer Ther,
17(12): 2796-2810.
Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H, . . .
Zoubeidi A. (2017). The master neural transcription factor BRN2 is an
androgen receptor-suppressed driver of neuroendocrine differentiation in
prostate cancer. Cancer Discov, 7(1): 54-71.
Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long MD, . . . Kufe D.
(2020). MUC1-C regulates lineage plasticity driving progression to
neuroendocrine prostate cancer. Nat Commun, 11(1): 338.
Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, Saini
S. (2019). BRN4 is a novel driver of neuroendocrine differentiation in
castration-resistant prostate cancer and is selectively released in
extracellular vesicles with BRN2. Clin Cancer Res, 25(21): 6532-6545.
Reina-Campos M, Linares JF, Duran A, Cordes T, L’hermitte A, Badur MG, .
. . Diaz-Meco MT. (2019). Increased serine and one-carbon pathway
metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer.
Cancer Cell, 35(3): 385-400.
Zhang Z, Zhou C, Li X, Barnes SD, Deng S, Hoover E, . . . Mu P. (2020).
Loss of CHD1 promotes heterogeneous mechanisms of resistance to
AR-targeted therapy via chromatin dysregulation. Cancer Cell, 37(4):
584-598.
Faugeroux V, Pailler E, Oulhen M, Deas O, Brulle-Soumare L, Hervieu C, .
. . Farace F. (2020). Genetic characterization of a unique
neuroendocrine transdifferentiation prostate circulating tumor
cell-derived eXplant model. Nat Commun, 11(1): 1884.
Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. (2016). Cytokines
in cancer drug resistance: Cues to new therapeutic strategies. Biochim
Biophys Acta, 1865(2): 255-265.
Culig Z, Puhr M. (2018). Interleukin-6 and prostate cancer: Current
developments and unsolved questions. Mol Cell Endocrinol, 462(Pt A):
25-30.
Canesin G, Krzyzanowska A, Hellsten R, Bjartell A. (2020). Cytokines and
Janus kinase/signal transducer and activator of transcription signaling
in prostate cancer: overview and therapeutic opportunities. Curr Opin
Endocr Metab Res, 10(6): 36-42.
Liu C, Zhu Y, Lou W, Cui Y, Evans CP, Gao AC. (2014). Inhibition of
constitutively active Stat3 reverses enzalutamide resistance in LNCaP
derivative prostate cancer cells. Prostate, 74(2): 201-209.
Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, . . . Sun YH. (2018).
Blocking the Feedback loop between neuroendocrine differentiation and
macrophages improves the therapeutic effects of enzalutamide (MDV3100)
on prostate cancer. Clin Cancer Res, 24(3): 708-723.
Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, . . .
Alimonti A. (2018). IL-23 secreted by myeloid cells drives
castration-resistant prostate cancer. Nature, 559(7714): 363-369.
Jung Y, Cackowski FC, Yumoto K, Decker AM, Wang J, Kim JK, . . .
Taichman RS. (2018). CXCL12 γ promotes metastatic castration-resistant
prostate cancer by inducing cancer stem cell and neuroendocrine
phenotypes. Cancer Res, 78(8): 2026-2039.
Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, . . . Yu J. (2019).
Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance
in prostate cancer. Cancer Res, 79(10): 2580-2592.
Rafiei S, Gui B, Wu J, Liu XS, Kibel AS, Jia L. (2019). Targeting the
MIF/CXCR7/AKT Signaling pathway in castration-resistant prostate cancer.
Mol Cancer Res, 17(1): 263-276.
Luo Y, Azad AK, Karanika S, Basourakos SP, Zuo X, Wang J, . . . Thompson
TC. (2018). Enzalutamide and CXCR7 inhibitor combination treatment
suppresses cell growth and angiogenic signaling in castration-resistant
prostate cancer models. Int J Cancer, 142(10): 2163-2174.
Pal SK, Moreira D, Won H, White SW, Duttagupta P, Lucia M, . . .
Kortylewski M. (2019). Reduced T-cell numbers and elevated levels of
immunomodulatory cytokines in metastatic prostate cancer patients de
novo resistant to abiraterone and/or enzalutamide therapy. Int J Mol
Sci, 20(8):1831.
Si W, Shen J, Zheng H, Fan W. (2019). The role and mechanisms of action
of microRNAs in cancer drug resistance. Clin Epigenetics, 11(1):25.
Fletcher CE, Sulpice E, Combe S, Shibakawa A, Leach DA, Hamilton MP, . .
. Bevan CL. (2019). Androgen receptor-modulatory microRNAs provide
insight into therapy resistance and therapeutic targets in advanced
prostate cancer. Oncogene, 38(28): 5700-5724.
Fernandes RC, Toubia J, Townley S, Hanson AR, Dredge BK, Pillman KA, . .
. Selth LA. (2019). MicroRNA-194 promotes lineage plasticity in advanced
prostate cancer. Retrieved from https://doi.org/10.1101/752709.
Lin SC, Kao CY, Lee HJ, Creighton CJ, Ittmann MM, Tsai SJ, . . . Tsai
MJ. (2016). Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis
contributes to the metastasis of prostate cancer. Nat Commun, 7: 11418.
Chen W, Yao G, Zhou K. (2019). miR-103a-2-5p/miR-30c-1-3p inhibits the
progression of prostate cancer resistance to androgen ablation therapy
via targeting androgen receptor variant 7. J Cell Biochem, 120(8):
14055-14064.
Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, . . . Shukla
GC. (2019). MiR-644a disrupts oncogenic transformation and warburg
effect by direct modulation of multiple genes of tumor-promoting
pathways. Cancer Res, 79(8): 1844-1856.
Aragon IM, Cendon Y, Lorente D, Mejorada RL. (2019). Implications of
single nucleotide polymorphisms (SNPs) in androgen related-genes in
outcome of metastatic castration-resistant prostate cancer (mCRPC)
patients treated with abiraterone (Abi) and enzalutamide (Enza). Annals
of Oncology, 30: 346.
Shiota M, Fujimoto N, Imada K, Yokomizo A, Itsumi M, Takeuchi A, . . .
Naito S. (2016). Potential role for YB-1 in castration-resistant
prostate cancer and resistance to enzalutamide through the androgen
receptor V7. J Natl Cancer Inst, 108(7):10.
Shiota M, Fujimoto N, Itsumi M, Takeuchi A, Inokuchi J, Tatsugami K, . .
. Eto M. (2017). Gene polymorphisms in antioxidant enzymes correlate
with the efficacy of androgen-deprivation therapy for prostate cancer
with implications of oxidative stress. Ann Oncol, 28(3): 569-575.
Fujimoto N, Shiota M, Tomisaki I, Minato A. (2017). Gene
polymorphism-related individual and interracial differences in the
outcomes of androgen deprivation therapy for prostate cancer. Clin
Genitourin Cancer , 15(3):337-342.
Alizadeh M, Sazegar H, Zia N, Farsani FM. (2018). Study of the effects
of rs137852595 single-nucleotide polymorphism on drug resistance of
androgen receptor against Enzalutamide treatments in patients with
prostate. Retrieved from
https://www.researchgate.net/publication/332544381.
Kaviani B, Sazgar H, Zia Jahromi N, Mohamadi Farsani F. (2018).
Investigation of drug resistance against treatment with Enzalutamide
medicine in individuals diagnosed with prostate cancer and studying the
effect of rs137852574 single-nucleotide polymorphism in drug resistance
in the human population of Isfahan province. N Cell Mol Biotechnol J,
2018, 8(29): 69-78.
Farah E, Li C, Cheng L, Kong Y, Lanman NA, Pascuzzi P, . . . Liu X.
(2019). NOTCH signaling is activated in and contributes to resistance in
enzalutamide-resistant prostate cancer cells. J Biol Chem, 294(21):
8543-8554.
Kohrt SE, Awadallah WN, Phillips RA, Case TC, Jin R, Nanda JS, . . .
Grabowska MM. (2020). Identification of genes required for enzalutamide
resistance in castration-resistant prostate cancer cells. Retrieved from
https://doi.org/10.1101/2020.03.27.011825.
Yuan M, Gao Y, Li L, Sun W, Cheng H, Li T, . . . Wu X. (2019).
Phospholipase C (PLC)epsilon promotes androgen receptor antagonist
resistance via the bone morphogenetic protein (BMP)-6/SMAD axis in a
castration-resistant prostate cancer cell line. Med Sci Monit, 25:
4438-4449.
Kong Y, Cheng L, Mao F, Zhang Z, Zhang Y, Farah E, . . . Liu X. (2018).
Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance
in castration-resistant prostate cancer (CRPC). J Biol Chem, 293(37):
14328-14341.
Neuwirt H, Bouchal J, Kharaishvili G, Ploner C, Jöhrer K, Pitterl F, . .
. Eder IE. (2020). Cancer-associated fibroblasts promote prostate tumor
growth and progression through upregulation of cholesterol and steroid
biosynthesis. Cell Commun Signal, 18(1):11.
Buttigliero C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M,
Scagliotti GV. (2015). Understanding and overcoming the mechanisms of
primary and acquired resistance to abiraterone and enzalutamide in
castration resistant prostate cancer. Cancer Treat Rev, 41(10): 884-892.
Xu L, Chen J, Liu W, Liang C, Hu H, Huang J. (2019). Targeting androgen
receptor-independent pathways in therapy-resistant prostate cancer.
Asian J Urol, 6(1): 91-98.
Lawrence MG, Obinata D, Sandhu S, Selth LA, Wong SQ, Porter LH, . . .
Risbridger GP. (2018). Patient-derived models of abiraterone- and
enzalutamide-resistant prostate cancer reveal sensitivity to
ribosome-directed therapy. Eur Urol, 74(5): 562-572.
Gui B, Gui F, Takai T, Feng C, Bai X, Fazli L, . . . Jia L. (2019).
Selective targeting of PARP-2 inhibits androgen receptor signaling and
prostate cancer growth through disruption of FOXA1 function. Proc Natl
Acad Sci U S A, 116(29): 14573-14582.