References:
1. Xiao, C., et al., Defective epithelial barrier function in
asthma. J Allergy Clin Immunol, 2011. 128 (3): p. 549-56.e1-12.
2. Holgate, S.T., The sentinel role of the airway epithelium in
asthma pathogenesis. Immunol Rev, 2011. 242 (1): p. 205-19.
3. Cooper, B.G., An update on contraindications for lung function
testing. Thorax, 2011. 66 (8): p. 714-23.
4. Lim, H.F. and P. Nair, Airway Inflammation and Inflammatory
Biomarkers. Semin Respir Crit Care Med, 2018. 39 (1): p. 56-63.
5. Moheimani, F., et al., The genetic and epigenetic landscapes of
the epithelium in asthma. Respir Res, 2016. 17 (1): p. 119.
6. Vieira Braga, F.A., et al., A cellular census of human lungs
identifies novel cell states in health and in asthma. Nat Med, 2019.25 (7): p. 1153-1163.
7. Bonser, L.R. and D.J. Erle, The airway epithelium in asthma.Adv Immunol, 2019. 142 : p. 1-34.
8. Georas, S.N. and F. Rezaee, Epithelial barrier function: at the
front line of asthma immunology and allergic airway inflammation. J
Allergy Clin Immunol, 2014. 134 (3): p. 509-20.
9. Hartsock, A. and W.J. Nelson, Adherens and tight junctions:
structure, function and connections to the actin cytoskeleton. Biochim
Biophys Acta, 2008. 1778 (3): p. 660-9.
10. Frey, A., et al., More Than Just a Barrier: The Immune
Functions of the Airway Epithelium in Asthma Pathogenesis. Front
Immunol, 2020. 11 : p. 761.
11. Potaczek, D.P., et al., Role of airway epithelial cells in the
development of different asthma phenotypes. Cell Signal, 2020.69 : p. 109523.
12. Bonser, L.R. and D.J. Erle, Airway Mucus and Asthma: The Role
of MUC5AC and MUC5B. J Clin Med, 2017. 6 (12).
13. Bonser, L.R., et al., Epithelial tethering of MUC5AC-rich
mucus impairs mucociliary transport in asthma. J Clin Invest, 2016.126 (6): p. 2367-71.
14. Lambrecht, B.N. and H. Hammad, The airway epithelium in
asthma. Nat Med, 2012. 18 (5): p. 684-92.
15. Hellings, P.W. and B. Steelant, Epithelial barriers in allergy
and asthma. J Allergy Clin Immunol, 2020. 145 (6): p.
1499-1509.
16. Van Lommel, A., Pulmonary neuroendocrine cells (PNEC) and
neuroepithelial bodies (NEB): chemoreceptors and regulators of lung
development. Paediatr Respir Rev, 2001. 2 (2): p. 171-6.
17. Garg, A., et al., Consider the lung as a sensory organ: A tip
from pulmonary neuroendocrine cells. Curr Top Dev Biol, 2019.132 : p. 67-89.
18. Sui, P., et al., Pulmonary neuroendocrine cells amplify
allergic asthma responses. Science, 2018. 360 (6393).
19. Schneider, C., C.E. O’Leary, and R.M. Locksley, Regulation of
immune responses by tuft cells. Nat Rev Immunol, 2019. 19 (9):
p. 584-593.
20. Kimura, S., et al., Airway M Cells Arise in the Lower Airway
Due to RANKL Signaling and Reside in the Bronchiolar Epithelium
Associated With iBALT in Murine Models of Respiratory Disease. Front
Immunol, 2019. 10 : p. 1323.
21. Ruan, Y.C., et al., CFTR interacts with ZO-1 to regulate tight
junction assembly and epithelial differentiation through the ZONAB
pathway. J Cell Sci, 2014. 127 (Pt 20): p. 4396-408.
22. Ye, W.J., et al., Differences in airway remodeling and airway
inflammation among moderate-severe asthma clinical phenotypes. J Thorac
Dis, 2017. 9 (9): p. 2904-2914.
23. Lefaudeux, D., et al., U-BIOPRED clinical adult asthma
clusters linked to a subset of sputum omics. J Allergy Clin Immunol,
2017. 139 (6): p. 1797-1807.
24. Kuruvilla, M.E., F.E. Lee, and G.B. Lee, Understanding Asthma
Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy
Immunol, 2019. 56 (2): p. 219-233.
25. Desai, M. and J. Oppenheimer, Elucidating asthma phenotypes
and endotypes: progress towards personalized medicine. Ann Allergy
Asthma Immunol, 2016. 116 (5): p. 394-401.
26. Kulkarni, N.S., et al., Eosinophil protein in airway
macrophages: a novel biomarker of eosinophilic inflammation in patients
with asthma. J Allergy Clin Immunol, 2010. 126 (1): p. 61-9.e3.
27. Kuo, C.S., et al., A Transcriptome-driven Analysis of
Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes
in U-BIOPRED. Am J Respir Crit Care Med, 2017. 195 (4): p.
443-455.
28. Roan, F., K. Obata-Ninomiya, and S.F. Ziegler, Epithelial
cell-derived cytokines: more than just signaling the alarm. J Clin
Invest, 2019. 129 (4): p. 1441-1451.
29. O’Leary, C.E., C. Schneider, and R.M. Locksley, Tuft
Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and
Neural Circuitry. Annu Rev Immunol, 2019. 37 : p. 47-72.
30. Moffatt, M.F., et al., A large-scale, consortium-based
genomewide association study of asthma. N Engl J Med, 2010.363 (13): p. 1211-1221.
31. Kabata, H., et al., Thymic stromal lymphopoietin induces
corticosteroid resistance in natural helper cells during airway
inflammation. Nat Commun, 2013. 4 : p. 2675.
32. Chen, R., et al., Allergen-induced Increases in Sputum Levels
of Group 2 Innate Lymphoid Cells in Subjects with Asthma. Am J Respir
Crit Care Med, 2017. 196 (6): p. 700-712.
33. Bahrami Mahneh, S., et al., Serum IL-33 Is Elevated in
Children with Asthma and Is Associated with Disease Severity. Int Arch
Allergy Immunol, 2015. 168 (3): p. 193-6.
34. Guo, Z., et al., IL-33 promotes airway remodeling and is a
marker of asthma disease severity. J Asthma, 2014. 51 (8): p.
863-9.
35. Cheng, D., et al., Epithelial interleukin-25 is a key mediator
in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care
Med, 2014. 190 (6): p. 639-48.
36. Corren, J., et al., Tezepelumab in Adults with Uncontrolled
Asthma. N Engl J Med, 2017. 377 (10): p. 936-946.
37. Choy, D.F., et al., TH2 and TH17 inflammatory pathways are
reciprocally regulated in asthma. Sci Transl Med, 2015.7 (301): p. 301ra129.
38. Raundhal, M., et al., High IFN-γ and low SLPI mark severe
asthma in mice and humans. The Journal of Clinical Investigation, 2015.125 (8): p. 3037-3050.
39. Faul, J.L., et al., Lung immunopathology in cases of sudden
asthma death. Eur Respir J, 1997. 10 (2): p. 301-7.
40. Nakagome, K. and M. Nagata, Pathogenesis of airway
inflammation in bronchial asthma. Auris Nasus Larynx, 2011.38 (5): p. 555-63.
41. Davies, D.E., et al., Airway remodeling in asthma: new
insights. J Allergy Clin Immunol, 2003. 111 (2): p. 215-25;
quiz 226.
42. Campbell, A., et al., Functional assessment of viability of
epithelial cells. Comparison of viability and mediator release in
healthy subjects and asthmatics. Chest, 1992. 101 (3 Suppl): p.
25s-27s.
43. Shrine, N., et al., Author Correction: New genetic signals for
lung function highlight pathways and chronic obstructive pulmonary
disease associations across multiple ancestries. Nat Genet, 2019.51 (6): p. 1067.
44. Shrine, N., et al., Moderate-to-severe asthma in individuals
of European ancestry: a genome-wide association study. Lancet Respir
Med, 2019. 7 (1): p. 20-34.
45. Pohunek, P., et al., Markers of eosinophilic inflammation and
tissue re-modelling in children before clinically diagnosed bronchial
asthma. Pediatr Allergy Immunol, 2005. 16 (1): p. 43-51.
46. Saglani, S., et al., Ultrastructure of the reticular basement
membrane in asthmatic adults, children and infants. Eur Respir J, 2006.28 (3): p. 505-12.
47. Kicic, A., et al., Decreased fibronectin production
significantly contributes to dysregulated repair of asthmatic
epithelium. Am J Respir Crit Care Med, 2010. 181 (9): p.
889-98.
48. Iosifidis, T., et al., Airway epithelial repair in health and
disease: Orchestrator or simply a player? Respirology, 2016.21 (3): p. 438-48.
49. Holgate, S.T., The airway epithelium is central to the
pathogenesis of asthma. Allergol Int, 2008. 57 (1): p. 1-10.
50. Puddicombe, S.M., et al., Involvement of the epidermal growth
factor receptor in epithelial repair in asthma. Faseb j, 2000.14 (10): p. 1362-74.
51. Flood-Page, P., et al., Anti-IL-5 treatment reduces deposition
of ECM proteins in the bronchial subepithelial basement membrane of mild
atopic asthmatics. J Clin Invest, 2003. 112 (7): p. 1029-36.
52. Le Cras, T.D., et al., Epithelial EGF receptor signaling
mediates airway hyperreactivity and remodeling in a mouse model of
chronic asthma. Am J Physiol Lung Cell Mol Physiol, 2011.300 (3): p. L414-21.
53. Grayson, M.H., et al., Advances in asthma in 2017: Mechanisms,
biologics, and genetics. J Allergy Clin Immunol, 2018. 142 (5):
p. 1423-1436.
54. Sehra, S., et al., Periostin regulates goblet cell metaplasia
in a model of allergic airway inflammation. J Immunol, 2011.186 (8): p. 4959-66.
55. Anderson, H.M., et al., Relationships among aeroallergen
sensitization, peripheral blood eosinophils, and periostin in pediatric
asthma development. J Allergy Clin Immunol, 2017. 139 (3): p.
790-796.
56. Takahashi, K., et al., Serum periostin levels serve as a
biomarker for both eosinophilic airway inflammation and fixed airflow
limitation in well-controlled asthmatics. J Asthma, 2019.56 (3): p. 236-243.
57. Kanemitsu, Y., et al., Increased periostin associates with
greater airflow limitation in patients receiving inhaled
corticosteroids. J Allergy Clin Immunol, 2013. 132 (2): p.
305-12.e3.
58. Semprini, R., et al., Longitudinal variation of serum
periostin levels in adults with stable asthma. J Allergy Clin Immunol,
2017. 139 (5): p. 1687-1688.e9.
59. Jia, G., et al., Periostin is a systemic biomarker of
eosinophilic airway inflammation in asthmatic patients. J Allergy Clin
Immunol, 2012. 130 (3): p. 647-654.e10.
60. Li, H., et al., A meta-analysis of anti-interleukin-13
monoclonal antibodies for uncontrolled asthma. PLoS One, 2019.14 (1): p. e0211790.
61. Hanania, N.A., et al., Efficacy and safety of lebrikizumab in
patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate,
phase 3, randomised, double-blind, placebo-controlled trials. Lancet
Respir Med, 2016. 4 (10): p. 781-796.
62. Pavlidis, S., et al., ”T2-high” in severe asthma related to
blood eosinophil, exhaled nitric oxide and serum periostin. Eur Respir
J, 2019. 53 (1).
63. Hanania, N.A., et al., Exploring the effects of omalizumab in
allergic asthma: an analysis of biomarkers in the EXTRA study. Am J
Respir Crit Care Med, 2013. 187 (8): p. 804-11.
64. Wagener, A.H., et al., External validation of blood
eosinophils, FE(NO) and serum periostin as surrogates for sputum
eosinophils in asthma. Thorax, 2015. 70 (2): p. 115-20.
65. Lakind, J.S., et al., A critical review of the use of Clara
cell secretory protein (CC16) as a biomarker of acute or chronic
pulmonary effects. Biomarkers, 2007. 12 (5): p. 445-67.
66. Zhai, J., et al., Club Cell Secretory Protein Deficiency Leads
to Altered Lung Function. Am J Respir Crit Care Med, 2019.199 (3): p. 302-312.
67. Guerra, S., et al., Relation between circulating CC16
concentrations, lung function, and development of chronic obstructive
pulmonary disease across the lifespan: a prospective study. Lancet
Respir Med, 2015. 3 (8): p. 613-20.
68. Emmanouil, P., et al., Sputum and BAL Clara cell secretory
protein and surfactant protein D levels in asthma. Allergy, 2015.70 (6): p. 711-4.
69. Rosas-Salazar, C., et al., Urine Club Cell 16-kDa Secretory
Protein and Childhood Wheezing Illnesses After Lower Respiratory Tract
Infections in Infancy. Pediatr Allergy Immunol Pulmonol, 2015.28 (3): p. 158-164.
70. Jia, M., et al., Ezrin, a Membrane Cytoskeleton Cross-Linker
Protein, as a Marker of Epithelial Damage in Asthma. Am J Respir Crit
Care Med, 2019. 199 (4): p. 496-507.
71. Wu, Q. and O. Eickelberg, Ezrin in Asthma: A First Step to
Early Biomarkers of Airway Epithelial Dysfunction. Am J Respir Crit
Care Med, 2019. 199 (4): p. 408-410.
72. Kalinauskaite-Zukauske, V., et al., Serum levels of
epithelial-derived mediators and interleukin-4/interleukin-13 signaling
after bronchial challenge with Dermatophagoides pteronyssinus in
patients with allergic asthma. Scand J Immunol, 2019. 90 (5):
p. e12820.
73. Sun, Y., et al., YKL-40 mediates airway remodeling in asthma
via activating FAK and MAPK signaling pathway. Cell Cycle, 2020.19 (11): p. 1378-1390.
74. Tang, H., et al., YKL-40 in asthmatic patients, and its
correlations with exacerbation, eosinophils and immunoglobulin E. Eur
Respir J, 2010. 35 (4): p. 757-60.
75. Guerra, S., et al., The relation of circulating YKL-40 to
levels and decline of lung function in adult life. Respir Med, 2013.107 (12): p. 1923-30.
76. Gomez, J.L., et al., Characterisation of asthma subgroups
associated with circulating YKL-40 levels. Eur Respir J, 2017.50 (4).
77. Konradsen, J.R., et al., The chitinase-like protein YKL-40: a
possible biomarker of inflammation and airway remodeling in severe
pediatric asthma. J Allergy Clin Immunol, 2013. 132 (2): p.
328-35.e5.
78. James, A.J., et al., Increased YKL-40 and Chitotriosidase in
Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care
Med, 2016. 193 (2): p. 131-42.
79. Wang, J., et al., Plasma YKL-40 and NGAL are useful in
distinguishing ACO from asthma and COPD. Respir Res, 2018.19 (1): p. 47.
80. Moffatt, M.F., et al., Association between quantitative traits
underlying asthma and the HLA-DRB1 locus in a family-based population
sample. Eur J Hum Genet, 2001. 9 (5): p. 341-6.
81. Préfontaine, D., et al., Increased IL-33 expression by
epithelial cells in bronchial asthma. J Allergy Clin Immunol, 2010.125 (3): p. 752-4.
82. Woodruff, P.G., et al., Genome-wide profiling identifies
epithelial cell genes associated with asthma and with treatment response
to corticosteroids. Proc Natl Acad Sci U S A, 2007. 104 (40):
p. 15858-63.
83. Balaci, L., et al., IRAK-M is involved in the pathogenesis of
early-onset persistent asthma. Am J Hum Genet, 2007. 80 (6): p.
1103-14.
84. Koppelman, G.H., et al., Identification of PCDH1 as a novel
susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit
Care Med, 2009. 180 (10): p. 929-35.
85. Moffatt, M.F., et al., Genetic variants regulating ORMDL3
expression contribute to the risk of childhood asthma. Nature, 2007.448 (7152): p. 470-3.
86. Hallstrand, T.S., et al., Epithelial regulation of eicosanoid
production in asthma. Pulm Pharmacol Ther, 2012. 25 (6): p.
432-7.
87. Luo, W., et al., Airway Epithelial Expression Quantitative
Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases. Am
J Respir Cell Mol Biol, 2016. 54 (2): p. 177-87.
88. Yang, I.V., et al., The nasal methylome and childhood atopic
asthma. J Allergy Clin Immunol, 2017. 139 (5): p. 1478-1488.
89. Stefanowicz, D., et al., DNA methylation profiles of airway
epithelial cells and PBMCs from healthy, atopic and asthmatic children.PLoS One, 2012. 7 (9): p. e44213.
90. Breton, C.V., et al., DNA methylation in the arginase-nitric
oxide synthase pathway is associated with exhaled nitric oxide in
children with asthma. Am J Respir Crit Care Med, 2011. 184 (2):
p. 191-7.
91. Stefanowicz, D., et al., Elevated H3K18 acetylation in airway
epithelial cells of asthmatic subjects. Respir Res, 2015.16 (1): p. 95.
92. Wanet, A., et al., miR-212/132 expression and functions:
within and beyond the neuronal compartment. Nucleic Acids Res, 2012.40 (11): p. 4742-53.
93. Martinez-Nunez, R.T., et al., A microRNA network dysregulated
in asthma controls IL-6 production in bronchial epithelial cells. PLoS
One, 2014. 9 (10): p. e111659.
94. Haj-Salem, I., et al., MicroRNA-19a enhances proliferation of
bronchial epithelial cells by targeting TGFβR2 gene in severe asthma.Allergy, 2015. 70 (2): p. 212-9.
95. Woodruff, P.G., Subtypes of asthma defined by epithelial cell
expression of messenger RNA and microRNA. Ann Am Thorac Soc, 2013.10 Suppl (Suppl): p. S186-9.
96. Solberg, O.D., et al., Airway epithelial miRNA expression is
altered in asthma. Am J Respir Crit Care Med, 2012. 186 (10):
p. 965-74.
97. Fitzpatrick, A.M., Biomarkers of asthma and allergic airway
diseases. Ann Allergy Asthma Immunol, 2015. 115 (5): p. 335-40.
98. Caballero Balanza, S., et al., Leukotriene B4 and
8-isoprostane in exhaled breath condensate of children with episodic and
persistent asthma. J Investig Allergol Clin Immunol, 2010.20 (3): p. 237-43.
99. Horvath, I., et al., A European Respiratory Society technical
standard: exhaled biomarkers in lung disease. Eur Respir J, 2017.49 (4).
100. Brinkman, P., A.M. Zee, and A.H. Wagener, Breathomics and
treatable traits for chronic airway diseases. Curr Opin Pulm Med, 2019.25 (1): p. 94-100.
101. Simpson, J.L., P. McElduff, and P.G. Gibson, Assessment and
reproducibility of non-eosinophilic asthma using induced sputum.Respiration, 2010. 79 (2): p. 147-51.
102. McGrath, K.W., et al., A large subgroup of mild-to-moderate
asthma is persistently noneosinophilic. Am J Respir Crit Care Med,
2012. 185 (6): p. 612-9.
103. Noah, T.L., et al., Nasal lavage cytokines in normal,
allergic, and asthmatic school-age children. Am J Respir Crit Care Med,
1995. 152 (4 Pt 1): p. 1290-6.
104. Vieira Braga, F.A., et al., A cellular census of human lungs
identifies novel cell states in health and in asthma. Nat Med, 2019.25 (7): p. 1153-1163.
105. Lee, P.H., et al., Alteration in Claudin-4 Contributes to
Airway Inflammation and Responsiveness in Asthma. Allergy Asthma
Immunol Res, 2018. 10 (1): p. 25-33.
106. Sweerus, K., et al., Claudin-18 deficiency is associated with
airway epithelial barrier dysfunction and asthma. J Allergy Clin
Immunol, 2017. 139 (1): p. 72-81.e1.
107. Hillas, G., et al., Increased levels of osteopontin in sputum
supernatant of smoking asthmatics. Cytokine, 2013. 61 (1): p.
251-5.
108. Samitas, K., et al., Osteopontin expression and relation to
disease severity in human asthma. Eur Respir J, 2011. 37 (2):
p. 331-41.
109. Xu, H., W. Lou, and F. Fu, Association between osteopontin
expression and asthma: a meta-analysis. J Int Med Res, 2019.47 (8): p. 3513-3521.
110. Chauhan, A., et al., Correlation of TSLP, IL-33, and CD4 +
CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma, 2015.52 (9): p. 868-72.
111. Ketelaar, M.E., et al., The challenge of measuring IL-33 in
serum using commercial ELISA: lessons from asthma. Clin Exp Allergy,
2016. 46 (6): p. 884-7.
112. Corrigan, C.J., et al., Allergen-induced expression of IL-25
and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous
responses. J Allergy Clin Immunol, 2011. 128 (1): p. 116-24.
113. Seys, S.F., et al., Sputum cytokine mapping reveals an ’IL-5,
IL-17A, IL-25-high’ pattern associated with poorly controlled asthma.Clin Exp Allergy, 2013. 43 (9): p. 1009-17.
114. Bazan-Socha, S., et al., Increased blood levels of cellular
fibronectin in asthma: Relation to the asthma severity, inflammation,
and prothrombotic blood alterations. Respir Med, 2018. 141 : p.
64-71.
115. Desai, D., et al., Sputum mediator profiling and relationship
to airway wall geometry imaging in severe asthma. Respir Res, 2013.14 : p. 17.
116. Shikotra, A., et al., Increased expression of immunoreactive
thymic stromal lymphopoietin in patients with severe asthma. J Allergy
Clin Immunol, 2012. 129 (1): p. 104-11.e1-9.
117. Zissler, U.M., et al., Biomatrix for upper and lower airway
biomarkers in patients with allergic asthma. J Allergy Clin Immunol,
2018. 142 (6): p. 1980-1983.
118. O’Neil, S.E., et al., Quantitative expression of osteopontin
in nasal mucosa of patients with allergic rhinitis: effects of pollen
exposure and nasal glucocorticoid treatment. Allergy Asthma Clin
Immunol, 2010. 6 (1): p. 28.
119. Boulay, M.E., et al., Metalloproteinase-9 in induced sputum
correlates with the severity of the late allergen-induced asthmatic
response. Respiration, 2004. 71 (3): p. 216-24.
120. Karakoc, G.B., et al., Exhaled breath condensate MMP-9 level
and its relationship with asthma severity and interleukin-4/10 levels in
children. Ann Allergy Asthma Immunol, 2012. 108 (5): p. 300-4.
121. Shan, L., et al., Inverse relationship between Sec14l3
mRNA/protein expression and allergic airway inflammation. Eur J
Pharmacol, 2009. 616 (1-3): p. 293-300.