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1 Introduction

It is well known that many phenomena can be described by the differential
equations with boundary conditions. Furthermore, as a natural extension of
the usual differential equations, the study of fractional type differential equa-
tions, which depend not only on integer order derivations but also on fractional
derivatives, has been one of the recent and important research areas in math-
ematics. For more details one can refer to [7, 8, 24]. Furthermore, recent
studies have shown that this research area provides also many efficient tools
in the study of models of many phenomena in various fields of science and
engineering, such as visco-elasticity, electrochemistry, control, electromagnetic,
aerodynamics, etc( for example see [1, 2, 3, 4, 5, 6]). In particular, many peo-
ple have contributed to this research area by obtaining many interesting results
about the existence of solutions to boundary value problems for fractional dif-
ferential equations ( see [15, 16, 18, 24] and the references therein). In addition
to the fractional differential equations, recently, fractional q−differential equa-
tions involving a variety of boundary conditions have been intensively studied
by several researchers, see for example [13, 20, 26, 28, 29, 30]. Using different
fixed-point theorems, many authors have established existence results for some
differential equations involving q−fractional derivatives. For more details, we
refer the reader to [17, 19, 21, 22, 23, 31] and the references therein. The study
of coupled systems involving fractional q−differential equations is also impor-
tant because such systems may occur in various problems of applied nature.

1Corresponding author.
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Such coupled systems of fractional q−differential equations have been studied
by many scholars [11, 12, 14, 27, 31]. In this paper, we discuss the existence
and uniqueness results for the following coupled system of nonlinear Caputo
fractional q−differential equations:

Dα
q x (t) =

∑k
i=1 fi (t, x (t) , y (t)) , t ∈ [0, 1] , 1 < α ≤ 2, 0 < q < 1,

Dβ
q y (t) =

∑k
i=1 gi (t, x (t) , y (t)) , t ∈ [0, 1] , 1 < β ≤ 2, 0 < q < 1,

x (0) = ϕ (x) , Dqx (1) = θx (η) , 0 < η < 1,

y (0) = φ (y) , Dqy (1) = λy (µ) , 0 < µ < 1,

(1)

where Dq is the usual q−derivative operator, Dυ
q denote the Caputo fractional

q−derivative of order υ, υ = α, β respectively, fi, gi : [0, 1] × R × R → R
(i = 1, ..., k) , k ∈ N∗, ϕ, φ : C ([0, 1] ,R) −→ R are given continuous functions
and θ, λ are real constants.

The rest of the paper is organized as follows. In Section 2, we introduce
some definitions and lemmas which will necessary to introduce main results. In
Section 3, as the first main result, the uniqueness conditions for solution of the
Caputo fractional q−differential system (1)is introduced and the related proof
is realized by Banach’s fixed point theorem. As the second main result, it is
shown by Leray-Schauder’s alternative that there are some conditions leading
to the existence of more than one solution for the system (1). Finally, in the
last section, we give some examples to illustrate our main results.

2 Preliminaries

We give some necessary definitions and mathematical preliminaries associated
with the setting of fractional q−calculus. More details, one can consult [9, 10,
25].

For a real parameter q ∈ (0, 1), a q−real number denoted by [a]q is defined
by

[a]q =
1− qa

1− q
, a ∈ R.

The q−analogue of the power function (a− b)n with n ∈ N0 is

(a− b)(0) = 1, (a− b)(n) =

n−1∏
j=0

(
a− bqj

)
, n ∈ N, a, b ∈ R.

More generally, if β ∈ R, then

(a− b)(β) = aβ
∞∏
i=0

a− bqi

a− bqβ+i
.
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It is easy to see that [a(y − z)](β) = aβ(y − z)(β). And note that if b = 0, then
a(β) = aβ .

The q−gamma function is defined by

Γq (v) =
(1− q)(v−1)

(1− q)v−1
, v ∈ R\ {0,−1,−2, ...} , 0 < q < 1,

and satisfies Γq (v + 1) = [v]qΓq (v) .
The q−derivative of a function f is defined by

(Dqf) (x) =
f (qx)− f (x)

(1− q)x
, x 6= 0, (Dqf) (0) = lim

x→0
(Dqf) (x) ,

and the q−derivatives of higher order by

D0
qf = f,Dn

q f = Dq

(
Dn−1
q f

)
, n ∈ N.

The q−integral of a function f defined in the interval [0, b] is given by

(Iqf) (x) =

∫ x

0

f (t) dqt = x (1− q)
∞∑
n=0

f (xqn) qn, x ∈ [0, b] .

If a ∈ [0, b] and f is defined in the interval [0, b] , its q−integral from a to b is
defined by ∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−
∫ a

0

f (t) dqt.

Similarly as done for derivatives, an operator Inq can be defined as

I0q f (x) = f (x) , Inq f (x) = Iq
(
In−1q f

)
(x) , n ∈ N.

The fundamental theorem of calculus applies to these operators Dq and Iq, i.e.,

DqIqf (x) = f (x) ,

Definition 1 [8]. Let α ≥ 0 and f be a function defined on [0, 1]. The fractional
q−integral of the Riemann-Liouville type is given by I0q f (t) = f (t) and

Iαq f (t) =
1

Γq (α)

∫ t

0

(t− qs)(α−1) f (s) dqs, α > 0, t ∈ [0, 1] .

Definition 2 [10]. The Caputo fractional q−derivative of order α ≥ 0 is de-
fined by

Dα
q f (t) = Im−αq Dm

q f (t) , α > 0,

where m is the smallest integer greater than or equal to α.

For more details on q−integral and fractional q−integral, we refer the reader
to [25].
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Lemma 3 [10]. Let α, β ≥ 0 and f be a function defined in [0, 1]. Then the
following formulas hold:

1. Iαq I
β
q f (t) = Iα+βq f (t) ;

2. Dα
q I

α
q f (t) = f (t) .

Lemma 4 [10]. Let α > 0 and σ be a positive integer. Then the following
equality holds:

Iαq D
σ
q f (t) = Dσ

q I
α
q f (t)−

σ−1∑
j=0

tα−σ+j

Γq (α+ j − σ + 1)
Dj
qf (0) .

Lemma 5 [10]. Let α ∈ R+\N. Then the following equality is valid:

Iαq D
α
q f (t) = f (t)−

n−1∑
j=0

tj

Γq (j + 1)
Dj
qf (0) .

In order to obtain the uniqueness and existence results for the fractional q−differential
system (1), we need the following lemma:

Lemma 6 Suppose that (Fi)i=1,...,k ∈ C ([0, 1] ,R) and consider the problem

Dα
q x (t) =

k∑
i=1

Fi (t) , t ∈ [0, 1] , 1 < α ≤ 2, 0 < q < 1 k ∈ N∗, (2)

with the conditions

x (0) = ϕ (x) , Dqx (1) = θx (η) , θ ∈ R, 0 < η < 1.

Then, we have

x (t) =

k∑
i=1

∫ t

0

(t− qs)(α−1)

Γq (α)
Fi (s) dqs+

θt

1− θη

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
Fi (s) dqs

(3)

− t

1− θη

k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α− 1)
Fi (s) dqs+

(
1 +

θ

1− θη
t

)
ϕ (x) ,

where θ 6= 1
η .

Proof. Applying the operator Iαq on the equation Dα
q x (t) =

∑k
i=1 Fi (t) and

by applying Lemma 5, we get

x (t) =

k∑
i=1

∫ t

0

(t− qs)(α−1)

Γq (α)
Fi (s) dqs+ κ0 + κ1t, (4)
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where c0 and c1 are arbitrary constants. By the boundary condition x (0) =
ϕ (x), we conclude that κ0 = ϕ (x).

Furthermore, q−derivation of (4) with respect to t produces

Dqx (t) =

k∑
i=1

∫ t

0

[α− 1]q (t− qs)(α−2)

Γq (α)
Fi (s) dqs+ κ1. (5)

Using the boundary condition Dqx (1) = θx (η) , we obtain that

κ1 =
1

1− θη

[
θt

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
Fi (s) dqs

(6)

−
k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α− 1)
Fi (s) dqs+ θϕ (x)

]
.

Substituting the value of κ0 and κ1 in (4), we obtain the solution (3).

Now, let us introduce the space

X × Y = {(x, y) : x, y ∈ C ([0, 1],R)} ,

endowed with the norm ‖(x, y)‖ = ‖x‖+ ‖y‖ where

‖x‖ = sup{|x(t)|, t ∈ [0, 1]} and ‖y‖ = sup{|y(t)|, t ∈ [0, 1].

It is clear that (X × Y, ‖(x, y)‖) is a Banach space.

3 Main Results

In view of Lemma 6, we define an operator O : X × Y → X × Y by:

O (x, y) (t) = (O1 (x, y) (t) , O2 (x, y) (t)) ,

where

O1 (x, y) (t) =

k∑
i=1

∫ t

0

(t− qs)(α−1)

Γq (α)
fi (s, x (s) , y (s)) dqs (7)

+
θt

1− θη

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
fi (s, x (s) , y (s)) dqs

− t

1− θη

k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α− 1)
fi (s, x (s) , y (s)) dqs

+

(
1 +

θt

1− θη

)
ϕ (x) ,
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and

O2 (x, y) (t) =

k∑
i=1

∫ t

0

(t− qs)(β−1)

Γq (β)
gi (s, x (s) , y (s)) dqs (8)

+
λt

1− λµ

k∑
i=1

∫ µ

0

(µ− qs)(β−1)

Γq (β)
gi (s, x (s) , y (s)) dqs

− t

1− λµ

k∑
i=1

∫ 1

0

(1− qs)(β−2)

Γq (β − 1)
gi (s, x (s) , y (s)) dqs

+

(
1 +

λt

1− λµ

)
φ (y) ,

where 1− λµ 6= 0 and 1− θη 6= 0.

Observe that the existence of a fixed point for the operator O implies the
existence of a solution for the problem (1).

For convenience we introduce the notations:

∇1 =
1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)
, (9)

∇2 =

(
1 +

|θ|
|1− θη|

)
,

and

∆1 =
1

Γq (β + 1)
+

|λ|µβ

|1− λµ|Γq (β + 1)
+

1

|1− λµ|Γq (β)
, (10)

∆2 =

(
1 +

|λ|
|1− λµ|

)
.

3.1 Existence and Uniqueness conditions for solutions

As the first result, we concern with the uniqueness of solution for the Caputo
fractional q−differential system (1) using Banach’s contraction mapping princi-
ple.
To accomplish this easily, we need the following auxiliary conditions:

(H1) For each i = 1, ..., k, the functions fi, gi : [0, 1]× R2 −→ R are contin-
uous and there exist constants ωi > 0, $i > 0 such that for all t ∈ [0, 1] and
xj , yj ∈ R, j = 1, 2,

|fi (t, x1, x2)− fi (t, y1, y2)| ≤ ωi (|x1 − y1|+ |x2 − y2|) ,
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and

|gi (t, x1, x2)− gi (t, y1, y2)| ≤ $i (|x1 − y1|+ |x2 − y2|) ,

(H2) ϕ, φ : C ([0, 1] ,R) −→ R are given continuous functions with ϕ (0) =
φ (0) = 0 and there exist constants δ1 > 0, δ2 > 0 such that

|ϕ (x)− ϕ (y)| ≤ δ1 ‖x− y‖ , |φ (x)− φ (y)| ≤ δ2 ‖x− y‖ .

Theorem 7 Suppose that (H1) and (H2) hold. If the inequalities

k∑
i=1

ωi∇1 <
1

2
− δ1∇2 and

k∑
i=1

$i∆1 <
1

2
− δ2∆2, (11)

are valid, then the Caputo fractional q−differential (1) has a unique solution on
[0, 1].

Proof. Let us fix Mi = supt∈[0,1] |fi (t, 0, 0)|, Ni = supt∈[0,1] |gi (t, 0, 0)| and
define

r ≥ max

 ∇1

∑k
i=1Mi +∇2

1
2 −

(
∇1

∑k
i=1 ωi + δ1

) , ∆1

∑k
i=1Ni + ∆2

1
2 −

(
∆1

∑k
i=1$i + δ2

)
 .

We first show that OBr ⊂ Br, where Br = {(x, y) ∈ X × Y : ‖(x, y)‖ ≤ r}, we
find the following estimates based on the assumptions (H1) and (H2):

|fi (t, x, y)| ≤ |fi (t, x, y)− fi (t, 0, 0)|+ fi (t, 0, 0) ≤ ωi (‖x‖+ ‖y‖) +Mi

≤ ωi ‖x, y‖+Mi ≤ ωir +Mi, i = 1, ..., k.

Similarly, we have

|gi (t, x, y)| ≤ |gi (t, x, y)− gi (t, 0, 0)|+ gi (t, 0, 0) ≤ $i (‖x‖+ ‖y‖) +Ni

≤ $i ‖x, y‖+Ni ≤ $ir +Ni, i = 1, ..., k.

and
|ϕ (x)| ≤ δ1 ‖x‖ ≤ δ1r, |φ (y)| ≤ δ2 ‖y‖ ≤ δ2r.

7



By these estimates, we have:

|O1 (x, y) (t)|

=

k∑
i=1

∫ t

0

(t− qs)(α−1)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+
|θ| t
|1− θη|

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+
t

|1− θη|

k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α− 1)
fi (s, x (s) , y (s)) dqs

+

(
1 +

|θ| t
|1− θη|

)
|ϕ (x)|

≤
[

1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)

] k∑
i=1

(ωir +Mi)

+

(
1 +

|θ|
|1− θη|

)
δ1r

=

(
∇1

k∑
i=1

ωi + δ1∇2

)
r +∇1

k∑
i=1

Mi

Hence

‖O1 (x, y)‖ ≤

(
∇1

k∑
i=1

ωi + δ1∇2

)
r +∇1

k∑
i=1

Mi ≤
r

2
.

In a similar manner, it can be shown that

‖O2 (x, y)‖ ≤

(
∆1

k∑
i=1

$i + δ2∆2

)
r + ∆1

k∑
i=1

Ni ≤
r

2
.

Consequently
‖O (x, y)‖ ≤ r,

which implies that φBr ⊂ Br. Now for xj , yj ∈ Br, j = 1, 2 and for all t ∈ [0, T ],
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we obtain:

|O1 (x1, y1) (t)−O1 (x2, y2) (t)|

≤
k∑
i=1

∫ t

0

(t− qs)(α−1)

Γq (α)
|fi (s, x1 (s) , y1 (s))− fi (s, x2 (s) , y2 (s))| dqs

+
θt

1− θη

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
|fi (s, x1 (s) , y1 (s))− fi (s, x2 (s) , y2 (s))| dqs

− t

1− θη

k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α− 1)
|fi (s, x1 (s) , y1 (s))− fi (s, x2 (s) , y2 (s))| dqs

+

(
1 +

θt

1− θη

)
(|ϕ (x1)− ϕ (x2)|) .

By (H1) and (H2), we have

‖O1 (x1, y1)−O1 (x2, y2)‖

≤

[
k∑
i=1

ωi

(
1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)

)
+

(
1 +

|θ|
|1− θη|

)
δ1

]
(‖x1 − x2‖+ ‖y1 − y2‖) .

Hence,

‖O1 (x1, y1)−O1 (x2, y2)‖ ≤

(
k∑
i=1

ωi∇1 +∇2δ1

)
‖x1 − x2, y1 − y2‖ . (12)

Similarly, we can have

‖O2 (x1, y1)−O2 (x2, y2)‖ ≤

(
k∑
i=1

$i∆1 + ∆2δ2

)
‖x1 − x2, y1 − y2‖ . (13)

It follows from (12) and (13) that

‖O (x1, y1)−O (x2, y2)‖

≤

(
k∑
i=1

ωi∇1 +∇2 +

k∑
i=1

$i∆1 + ∆2

)
‖x1 − x2, y1 − y2‖ ,

which shows that O is a contraction in view of the hypothesis:
∑k
i=1 ωi∇1 +∑k

i=1$i∆1 < 1− (∇2δ1 + ∆2δ2) . Hence, by Banach’s fixed point theorem, the
operator O has a unique fixed point which corresponds to the unique solution
of fractional q−differential system (1).This completes the proof.

In the next result, we show the existence of solutions for the q−fractional
system (1) by applying Leray–Schauder’s alternative [8].
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Lemma 8 Let O : E → E be a completely continuous operator (i.e.,a map that
restricted to any bounded set in E is compact). Let Θ(O) = {x ∈ E : x = ρO(x)
for some 0 < ρ < 1}. Then either the set Θ(O) is unbounded, or O has at least
one fixed point.

For the forthcoming result, we need to provide the following conditions:

(H3) For each i = 1, ..., k, the functions fi, gi : [0, 1]×R2 −→ R are continu-
ous and there exist real constants ai bi, di, a

′

i, b
′

i, d
′

i ≥ 0 and ai > 0, a
′

i > 0 such
that for any x1, x2 ∈ R, we have

|fi (t, x1, x2)| ≤ ai + bi |x1|+ di |x2| ,

and
|gi (t, x1, x2)| ≤ a

′

i + b
′

i |x1|+ d
′

i |x2| .

(H4) ϕ, φ : C ([0, 1] ,R) −→ R are continuous functions with ϕ (0) = φ (0) = 0
and there exist constants ϑ1 > 0, ϑ2 > 0 such that

|ϕ (x)| ≤ ϑ1 ‖x‖ , |φ (y)| ≤ ϑ2 ‖y‖ for all x, y ∈ C ([0, 1] ,R) .

Theorem 9 Assume that hypotheses (H3) and (H4) hold. Furthermore, assume
that θ 6= 1

η and λ 6= 1
µ . If

k∑
i=1

(bi∇1 + di∆1) < 1− ϑ1∇2,

k∑
i=1

(
b
′

i∆1 + d
′

2∇1

)
< 1− ϑ2∆2, (14)

then the fractional q−differential system (1) has at least one solution on [0, 1] .

Proof. In the first step, we show that the operator O : X × Y −→ X × Y is
completely continuous. By continuity of the functions fi, gi (i = 1, ..., k) ϕ and
φ, it follows that the operator O is continuous.

Let Ω ⊂ X × Y be defined. Then there exist positive constants Li,Ki

(i = 1, ..., k) such that |fi (t, x, y)| ≤ Li, |gi (t, x, y)| ≤ Ki, for each (x, y) ∈ Ω and
constants Π1,Π2 shch that |ϕ (x)| ≤ Π1, |φ (y)| ≤ Π2 for all x, y ∈ C ([0, 1] ,R).
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Then for any (x, y) ∈ Ω, we have

|O1 (x, y) (t)|

≤
k∑
i=1

∫ t

0

(t− qs)(α−1)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+
|θ| t
|1− θη|

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+
t

|1− θη|

k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+

(
1 +

|θ| t
|1− θη|

)
|ϕ (x)|

≤
k∑
i=1

Li

(
1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)

)
+

(
1 +

|θ| t
|1− θη|

)
Π1,

which implies that

‖O1 (x, y)‖ ≤
k∑
i=1

Li∇1 +∇2Π1.

Similarly, we get

‖O2 (x, y)‖ ≤
k∑
i=1

Ki∆1 + ∆2Π2.

Thus, it follows from the above inequalities that the operator O is uniformly
bounded.

Next, we show that O is equicontinuous sets of X. Let t1, t2 ∈ [0, 1] with
t1 < t2. Then, we have

|O1 (x, y) (t2)−O1 (x, y) (t1)|

≤

∣∣∣∣∣
k∑
i=1

∫ t2

0

(t− qs)(α−1)

Γq (α)
fi (s, x (s) , y (s)) dqs

−
k∑
i=1

∫ t1

0

(t− qs)(α−1)

Γq (α)
fi (s, x (s) , y (s)) dqs

∣∣∣∣∣
+
|θ| |t2 − t1|
|1− θη|

k∑
i=1

∫ η

0

(η − qs)(α−1)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+
|t2 − t1|
|1− θη|

k∑
i=1

∫ 1

0

(1− qs)(α−2)

Γq (α)
|fi (s, x (s) , y (s))| dqs

+
|θ| |t2 − t1|
|1− θη|

|ϕ (x)| .
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Hence, we obtain

|O1 (x, y) (t2)−O1 (x, y) (t1)|

≤
k∑
i=1

Li

∫ t1

0

∣∣∣(t2 − qs)(α−1) − (t1 − qs)(α−1)
∣∣∣

Γq (α)
dqs

+

k∑
i=1

Li

∫ t2

t1

∣∣∣(t2 − qs)(α−1)∣∣∣
Γq (α)

dqs+
|θ| |t2 − t1|
|1− θη|

k∑
i=1

Li

∫ η

0

(η − qs)(α−1)

Γq (α)
dqs

|t2 − t1|
|1− θη|

k∑
i=1

Li

∫ 1

0

(1− qs)(α−2)

Γq (α)
dqs+

|θ| |t2 − t1|
|1− θη|

(|x0|+ Π1) .

Therefore,

|O1 (x, y) (t2)−O1 (x, y) (t1)| (15)

≤
∣∣∣t(α)2 − t(α)1

∣∣∣ ∑k
i=1 Li

Γq (α+ 1)
+ |t2 − t1|

( ∑k
i=1 Liη

(α) |θ|
|1− θη|Γq (α+ 1)

+

∑k
i=1 Li

|1− θη|Γq (α)
+

|θ|
|1− θη|

Π1

)
.

We can also show that

|O2 (x, y) (t2)−O2 (x, y) (t1)| (16)

≤
∣∣∣t(β)2 − t(β)1

∣∣∣ ∑k
i=1Ki

Γq (β + 1)
+ |t2 − t1|

( ∑k
i=1Kiµ

(β) |λ|
|1− λµ|Γq (β + 1)

+

∑k
i=1Ki

|1− λµ|Γq (β)
+

|λ|
|1− λµ|

Π2

)
.

Thanks to (15) and (16), we can state that ‖O (x, y) (t2)−O (x, y) (t1)‖ → 0
as t2 − t1 → 0. Therefore, O : X × Y → X × Y is completely continuous by
application of the Arzela-Ascoli theorem.

Finally, we show that the set Θ defined by

Θ = {(x, y) ∈ X × Y : (x, y) = ρO (x, y) , 0 < ρ < 1} ,

is bounded. Let (x, y) ∈ Θ, then (x, y) = ρO (x, y) . For each t ∈ [0, 1] , we have

x (t) = ρO1 (x, y) (t) , y (t) = ρO2 (x, y) (t) .

Then

|x (t)| = |ρO1 (x, y) (t)| ≤
k∑
i=1

(ai + bi ‖x‖+ di ‖y‖)
[

1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)

+

(
1 +

|θ|
|1− θη|

)
ϑ1 ‖x‖ .

12



Hence,

‖x‖ ≤

(
k∑
i=1

bi∇1 + ϑ1∇2

)
‖x‖+

k∑
i=1

di∇1 ‖y‖+

k∑
i=1

ai∇1 +∇2. (17)

We also have

‖y‖ ≤
k∑
i=1

b
′

i∆1 ‖x‖+

(
k∑
i=1

d
′

i∆1 + ϑ2∆2

)
‖y‖+

k∑
i=1

a
′

i∆1 + ∆2. (18)

It follows from (17) and (18), that

‖x‖+ ‖y‖ ≤

[
k∑
i=1

(
bi∇1 + b

′

i∆1

)
+ ϑ1∇2

]
‖x‖

+

[
k∑
i=1

(
d
′

2∆1 + d2∇1

)
+ ϑ2∆2

]
‖y‖

+

k∑
i=1

(
ai∇1 + a

′

i∆1

)
+∇2 + ∆2.

Consequently,

‖(x, y)‖ ≤

∑k
i=1

(
ai∇1 + a

′

i∆1

)
+∇2 + ∆2

Π
,

where

Π = min

{
1−

(
k∑
i=1

(bi∇1 + di∆1) + ϑ1∇2

)
, 1−

(
k∑
i=1

(
b
′

i∆1 + d
′

2∇1

)
+ ϑ2∆2

)}
.

This shows that Θ is bounded. Hence, by Lemma 8, the operator O has at least
one fixed point. Hence, the fractional q−differential system (1) has at least one
solution on [0, 1]. The proof is complete.
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3.2 Examples

Example 10 Consider the following coupled system of fractional q−differential
equations

D
5
3
q = |x(t)|

6π(2t2+5)(1+|x(t)|) + 1
2 + e−3t sin(2πy(t))

60π2 + cos x(t)
39t

+ |y(t)|
39(1+t2)(e−t2+|y(t)|)

+ arctan
(
t2 + 1

)
, t ∈ [0, 1] ,

D
3
2
q = sin2 x(t)

40
√
π(3t2+1)

+ |y(t)|
20(et+2

√
π)(1+|y(t)|)

+
1+sinh(1+25et)

15

+ cos(x(t)+y(t))

40(ln(t+1)+
√
π)

+ ln
(
t2 + 4t+ 5

)
, t ∈ [0, 1] ,

x (0) = 1
15x (t) , Dqx (1) = 4

11x
(
2
5

)
,

y (0) = 1
16y (t) , Dqx (1) = 10

13x
(
1
3

)
,

(19)

where q = 1
2 . So, it is easy to see that θ 6= 1

η and λ 6= 1
µ .

On the other hand,

f1 (t, x, y) =
|x|

6π (2t2 + 5) (1 + |x|)
+

1

2
+
e−3t sin (2πy)

60π2
,

f2 (t, x, y) =
cosx

39t
+

|y|
39 (1 + t2)

(
e−t2 + |y (t)|

) + arctan
(
t2 + 1

)
.

and

g1 (t, x, y) =
sin2 x

40
√
π (3t2 + 1)

+
|y|

20 (et + 2
√
π) (1 + |y (t)|)

+
1 + sinh (1 + 25et)

15
,

g2 (t, x, y) =
cos (x (t) + y (t))

40 (ln (t+ 1) +
√
π)

+ ln
(
t2 + 4t+ 5

)
.

So, for t ∈ [0, 1] and xj , yj ∈ R, j = 1, 2, we have

|f1 (t, x1, y1)− f1 (t, x2, y2)| ≤ 1

6π (2t2 + 5)
|x1 − x2|+

e−3t

30π
|y2 − y2| ,

|f2 (t, x1, y1)− f2 (t, x2, y2)| ≤ 1

39
|x1 − x2|+

1

39 (1 + t2)
|y2 − y2| ,

and

|g1 (t, x1, y1)− g1 (t, x2, y2)| ≤ 1

40
√
π (3t2 + 1)

|x1 − x2|+
1

20 (et + 2
√
π)
|y2 − y2| ,

|g2 (t, x1, y1)− g2 (t, x2, y2)| ≤ 1

40 (ln (t+ 1) +
√
π)
|x1 − x2|+

1

40 (ln (t+ 1) +
√
π)
|y2 − y2| .
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We can take

ω1 =
1

30π
, ω2 =

1

39
, $1 =

1

40
√
π
,$2 =

1

40
, δ1 =

1

15
, δ2 =

1

16
.

It follows that

∇1 =
1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)
= 2. 190,

∇2 =

(
1 +

|θ|
|1− θη|

)
= 1.425

and

∆1 =
1

Γq (β + 1)
+

|λ|µβ

|1− λµ|Γq (β + 1)
+

1

|1− λµ|Γq (β)
= 2. 613,

∆2 =

(
1 +

|λ|
|1− λµ|

)
= 0.743.

Then

2∑
i=1

ωi∇1 +∇2δ1 = 0.174 <
1

2
,

2∑
i=1

$i∆1 + ∆2δ2 = 0.132 <
1

2
.

Thus, by Theorem 7, fractional q−differential system (19) has a unique solution
on [0, 1].

Example 11 To illustrate the second main result, we consider the fractional
q−differential system

D
3
2
q x (t) = cosh t√

39+t
+ sin x(t)

32π(t+1) + 1
25(ln(t+1)+1)

y(t)|x(t)|
1+|x(t)| + πe−t

(et2+16π)

+ |x(t)|
32(1+y2(t)) + cos y(t)

(27e3t+1) , t ∈ [0, 1] ,

D
5
3
q y (t) = ln(1+t)

27(1+t2) + x(t)
40(1+sin2 y(t))

+ e−3t

60π2 cos (y (t)) + 1
38 ln(1+t)

+ sin(2πx(t))

16π(t+2)2
+ arctan y(t)

25(t+1) , t ∈ [0, 1] ,

x (0) = 1
45 sinx (t) , Dqx (1) = 8

9x
(
3
7

)
,

y (0) = 1
55 cos y (t) , Dqx (1) = 13

14x
(
5
9

)
,

(20)

where q = 1
2 . It is easy to see that θ 6= 1

η and λ 6= 1
µ .

On the other hand,

f1 (t, x, y) ≤ 1√
39

+
1

64
‖x‖+

1

25 (ln (2) + 1)
‖y‖ ,

f2 (t, x, y) ≤ 1

16
+

1

32
‖x‖+

1

28
‖y‖ ,

g1 (t, x, y) ≤ ln 2

54
+

1

40
‖x‖+

1

60π2
‖y‖ ,
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and

g2 (t, x, y) ≤ 1

38 ln 2
+

1

32
‖x‖+

1

25
‖y‖ .

Using the given data, we find that

b1 =
1

64
, d1 =

1

25 (ln (2) + 1)
, b2 =

1

32
, d2 =

1

28
,

b
′

1 =
1

40
, d
′

1 =
1

60π2
, b
′

2 =
1

32
, d
′

2 =
1

25
,

∇1 =
1

Γq (α+ 1)
+

|θ| ηα

|1− θη|Γq (α+ 1)
+

1

|1− θη|Γq (α)
= 2.828,

∆1 =
1

Γq (β + 1)
+

|λ|µβ

|1− λµ|Γq (β + 1)
+

1

|1− λµ|Γq (β)
= 3. 691,

∇2 = 1 +
|θ|

|1− θη|
= 2.436, ∆2 = 1 +

|λ|
|1− λµ|

= 2.918,

and then

2∑
i=1

(bi∇1 + di∆1) = 0.351 < 1− ϑ1∇2 = 0.945,

2∑
i=1

(
b
′

i∆1 + d
′

2∇1

)
= 0.325 , 1− ϑ2∆2 = 0.946 .

Obviously all conditions of Theorem 9 are satisfied. Thus, by the conclusion of
Theorem 10, the fractional q−differential system (20) has at least one solution
on [0, 1].
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