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Abstract

The aim of this paper is to present analytical solutions of fractional delay dif-
ferential equations (FDDEs) of an incompressible generalized Oldroyd-B fluid
with fractional derivatives of Caputo type. Using a modification of the method
of separation of variables the main equation with non-homogeneous boundary
conditions is transformed into an equation with homogeneous boundary condi-
tions, and the resulting solutions are then expressed in terms of Green functions
via Laplace transforms.This results presented in two condition , in first step when
0≤ α,β ≤ 1

2 and in the second step we considered 1
2 ≤ α,β ≤ 1,for each step 1,2

for the unsteady flows of a generalized Oldroyd-B fluid, including a flow with a
moving plate, are considered via examples.
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1. Introduction

Many real-world processes can be cast generally in the form of fractional dif-
ferential systems with integer order (i.e., ordinary differential equations and sys-
tems) but there is a growing number of researchers that believe that fractional-
differential equations can describe and model and complex physical processes
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more accurately than the corresponding ordinary differential equations. So, in
recent decades, the search for analytical and numerical solutions to fractional dif-
ferential equations has been of considerable interest [1, 2, 3, 4]. Fractional differ-
ential equations can be applied to the dynamic modeling of non-Newtonian fluids:
for example, in the modeling of melting plastics and in the study of emulsion plas-
tics or soft tissue. Practically speaking there are few Newtonian fluids in reality,
so most fluids are of the non-Newtonian type which there is no linear relationship
between the stress tensor and the deformation tensor [5].

Viscoelastic fluids form are an important class of non-Newtonian fluids which ex-
hibit both elastic and viscous properties. Among them the so-called Oldroyd-B
fluid can be used to describe the response of fluids that have a small memory.
This means that whenever they flow, these fluids will spend less time to find the
first state and stability [6, 7]. Due to the wide range of applications of these fluids,
considerable attention has been paid to the prediction of the behavior of non-
Newtonian fluids. Structural equations that are presented in a constitutive rheo-
logical fashion have a fractional calculation, so they are very effective for working
with viscoelastic properties [8, 9]. The viscoelastic fluid equations in fractional
models are obtained by replacing ordinary derivatives with one of many possible
definitions of fractional derivatives in the defining equations. In the study of fluids
we deal with a phenomenon called delay which is due to the distance between the
sensor and the source of changes arising from e.g., plumbing, measurement slow-
ness, or complex dynamics. Different methods for finding analytical solutions of
these type of equations are proposed: An analytical solution for unsteady helical
flows is presented by Dang et al in [10]. In Haitao and Mingyu [11] there is a
discussion of an Oldroyd-B fluid between two parallel plates. In addition, Fetecau
[12, 13] developed a generalization of the flow of viscoelastic fluids between two-
sided walls. Then Hyder[14], Qi [15], Zheng et al [16] and Hayat [17] discussed
the generalized flow of an Oldroyd-B fluid under varying conditions. In closing
this brief review we mention that Javidi and saedshoar [18], gave analytical solu-
tions of various forms of such delay equations.

Many events in the natural world can be modeled to form of fractional delay dif-
ferential equations (FDDEs). FDDEs have important applications in many fields
for example technology, economics, biology, medical science, physics and finance
[19]. Some numerical methods for FDDEs are introduced in [20, 21, 22, 23] and
etc . Saedshoar and javidi [24], proposed a numerical method based on fractional
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backward differential formulas (FBDF) for solving fractional delay differential
equations. Also they find the Green’s functions for this equation corresponding to
periodic/ anti-periodic conditions in terms of the functions of Mittag Leffler type.

In this paper we present analytical solutions for unsteady flows of a general-
ized Oldroyd-B fluid with constant delay time using Riemann-Liouville fractional
derivatives as the defining derivatives. A new separation of variables method [25]
and use of Laplace transforms for the Riemann-Liouville fractional derivative are
adapted to solve the new governing equation for fractional differential equations
with constant delay when applied to viscoelastic fluids.
The paper is structured as follows: In Section 2, we recall some basic defini-
tions of fractional calculus. In section 3 we give the derivation of the governing
equation. Section 4 deals with the method of separation of variables, the Laplace
transformation applied to fractional derivatives in two steps 0 ≤ α,β ≤ 1

2 and
1
2 ≤ α,β ≤ 1 , and the method of solution for each two steps separatively. Fi-
nally, in section 5 we give the examples dealing with varying initial conditions by
consider two condition for α and β .

2. Preliminaries

In this section, we will introduce some of the fundamental definitions.

Definition 2.1 ([1]). Euler’s gamma function is defined by the integral

Γ(z) =
∫

∞

0
e−ttz−1dt, Re(z)> 0. (1)

C(J,R) denotes the Banach space of all continuous functions from J = [0,T ] into
R with the norm

‖u‖
∞
= sup{|u(t)| : t ∈ J}, T > 0. (2)

Cn(J,R) denotes the class of all real valued functions defined on J = [0,T ], T > 0
which have continuous nth order derivatives.

Definition 2.2 ([4]). The fractional integral of order α > 0 of the function f ∈
C(J,R) is defined as

Iα f (t) =
1

Γ(α)

t∫
0

f (s)

(t− s)1−α
ds, 0 < t < T. (3)
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Definition 2.3 ([4]). The Riemann-Liouville fractional derivative of order α > 0
of the function f ∈C(J,R) is defined as

RLDα f (t) =


DnIn−α f (t) = 1

Γ(n−α)(
dn

dtn )
t∫

0

f (s)
(t−s)α−n+1 ds,

n−1 < α < n, n ∈ N,

f (n)(t), α = n.

(4)

Definition 2.4 ([4]). The Caputo fractional derivative of order α > 0 of the func-
tion f ∈Cn(J,R) is defined as

CDα f (t) =


In−αDn f (t) = 1

Γ(n−α)

t∫
0

f (n)(s)
(t−s)α−n+1 ds,

n−1 < α < n, n ∈ N,

f (n)(t), α = n.

(5)

Definition 2.5 ([4]). Mittag-leffler functions defined by

Eα,β (x) =
∞

∑
k=0

xk

Γ(αk+β )
, x,β ∈C,Re(α)> 0,Eα(x) = Eα,1. (6)

Definition 2.6 ([22]). The generalized delay exponential function (of Mittag–
Leffler type) is given by

Gλ ,τ,m
α,β (t) =

∞

∑
j=0

(
j+m
j

)
λ j(t− (m+ j)τ)α(m+ j)+β−1

Γ(α(m+ j)+β )
H(t− (m+ j)τ), t > 0,

(7)
where λ ∈C , α,β ,τ ∈ R and m ∈ Z and H(z) is the Heaviside step function. If
λ ∈C , α,β ,τ ∈ R and m ∈ Z then laplace transform of Gλ ,τ,m

α,β (t) is:

L(Gλ ,τ,m
α,β (t))(s) =

sα−β exp{−msτ}
(sα −λ exp{−sτ})m+1 , s > 0. (8)

3. Governing equations

The fundamental equations governing the unsteady motion of an incompressible
fluid are

divV = 0, (9)
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ρ
dV
dt

=−∇p+divS+Fb. (10)

The constitutive equation for a generalized Oldroyd-B fluid is given by [15, 16],

(1+λ
α Dα

Dtα
)S = µ(1+λ

β Dβ

Dtβ
)A1 , (11)

where V = (u,v,w) is the fluid velocity, S = (Si, j) is the extra-stress tensor, A1 =
(∇V )+(∇V )T present the first Rivlin-Ericksen tensor, ∇ is the gradient operator,
and p is the pressure. Here Fb = (Fbx,Fby,Fbz) is the body force, ρ,µ are the
density and the dynamic viscosity coefficient of the fluid respectively, λα and
λβ are the material constants that represent the relaxation time and retardation
time, respectively, and α , β denote the orders of the fractional derivatives, i.e.,
real numbers that satisfy 0 ≤ α,β ≤ 1. Furthermore, Dα

Dtα and Dβ

Dtβ
are fractional

material derivatives that can be expressed as

DαS
Dtα

= Dα
t S+(V.∇)S− (∇.V )S−S(∇V )T , (12)

Dβ S
Dtβ

= Dβ

t S+(V.∇)S− (∇.V )S−S(∇V )T . (13)

In Eq. (11), (13), the fractional derivative operator Dα is taken in the Caputo.

We consider unidirectional flow, that is the case where the velocity and the stress
take the form

V = u(y, t)i, S = S(y, t), (14)

where i is the unit vector along the x-direction of the Cartesian coordinate system
x, y and z. Using Eq. (15) below, the continuity Eq. (9) is satisfied automatically
while Eq. (12), bearing in mind the initial condition S(y,0) = 0, leads to the
following relationships for the constitutive equation

Sxz = Szy = Syz = Szz = Syy = 0, Syx = Sxy,Szx = Sxz,

(1+λαDα
t )Sxy = µ

(
1+λβ Dβ

t

)
∂u
∂y

, (15)
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(1+λαDα
t )Sxx−2λαSxy

∂u
∂y =−2µλβ

(
∂u
∂y

)2
.

Substituting Eqs.(15) in to momentum equation (10), we have thebfollowing equa-
tion in x-direction:

(1+λαDα
t )

∂u
∂ t

= v
(

1+λβ Dβ

t

)
∂ 2u
∂y2 +

1
ρ
(1+λαDα

t )

(
Fbx−

∂ p
∂x

)
. (16)

where ν = µ

ρ
is the kinematic viscosity coefficient of fluid.

The constitutive equation of a generalized Burgers fluid is(
1+λα

Dα

Dtα
+θ

D2α

Dt2α

)
S = µ

(
1+λβ

Dβ

Dtβ

)
A1 , (0 < α ,β ≤ 1) , (17)

where θ is the material constant.
combining the constitutive equation (17) with the equation (10) , we get the fol-
lowing fractional Burgers fluid model

(
1+λαDα

t +θD2α
t
) ∂u

∂ t
= v
(

1+λβ Dβ

t

)
∂ 2u
∂y2 +

1
ρ

(
1+λαDα

t +θD2α
t
)(

Fbx−
∂ p
∂x

)
(18)

Where ν = µ/ρ . Eqs.(16)and (18) have the following form

a0Dt
2α+1u(y, t)+a1Dt

α+1u(y, t)+a2Dt
2αu(y, t)+a3Dt

1u(y, t) (19)

+a4Dt
αu(y, t)+a5u(y, t) = b1Dβ

t
∂ 2u(y,t)

∂y2 +b2
∂ 2u(y,t)

∂y2 + f̄ (y, t) ,
the delay form of Eqs(19)is

a0Dt
2α+1u(y, t)+a1Dt

α+1u(y, t)+a2Dt
2αu(y, t)+a3Dt

1u(y, t) (20)

+a4Dt
αu(y, t)+a5u(y, t− τ) = b1Dβ

t
∂ 2u(y,t)

∂y2 +b2
∂ 2u(y,t)

∂y2 + f̄ (y, t) .
The associated initial and boundary conditions are as follows:

u(y, t) = ψ1 (y, t) , u(0, t) = ϕ1 (t) ,−τ ≤ t ≤ 0,

ut (y, t) = ψ2 (y, t) , u(L, t) = ϕ1 (t) , 0 < α,β < 1.
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4. A method of separation of variables

At first, the problem involves non-homogeneous boundary conditions. We want
transform it into a problem with homogeneous boundary conditions. So, consider

u(y, t) =W (y, t)+V (y, t) , (21)

where
V (y, t) =

(
1− y

L

)
ϕ1 (t)+

y
L

ϕ2 (t) , (22)

which satisfies the boundary conditions

V (0, t) = ϕ1 (t) ,V (L, t) = ϕ2 (t) .

Using Eqs.(21) and (22) along with the associated initial and boundary conditions
above, we have

W (y, t)+
(
1− y

L

)
ϕ1 (t)+

y
Lϕ2 (t) = ψ1 (y, t) , − τ ≤ t ≤ 0,

Wt (y, t)+
(
1− y

L

)
ϕ ′1 (t)+

y
Lϕ ′2 (t) = ψ2 (y, t) ,

W (L, t)+V (L, t) = ϕ2 (t) ,
W (L, t)+V (L, t) = ϕ2(t),
W (y, t) = ψ1 (y, t)−

(
1− y

L

)
ϕ1 (t)− y

Lϕ2 (t) = ψ1 (y, t) ,
Wt (y, t) = ψ1 (y, t)−

(
1− y

L

)
ϕ ′1 (t)− y

Lϕ ′2 (t) = ψ2(y, t).

Now main problem is solving

a0Dt
2α+1W (y, t)+a1Dt

α+1W (y, t)+a2Dt
2αW (y, t)+a3Dt

1W (y, t) (23)

+a4Dt
αW (y, t)+a5W (y, t− τ)−b1Dβ

t
∂ 2w(y,t)

∂y2 −b2
∂ 2w(y,t)

∂y2

=−a0Dt
2α+1V (y, t)−a1Dt

α+1V (y, t)−a2Dt
2αV (y, t)−a3Dt

1V (y, t)

where the initial condition is
∞

∑
n=1

Bn (0)sin nπy
L =

∞

∑
n=1

d(1)
n (0)sin nπy

L −
∞

∑
n=1

2
nπ

[ϕ1 (0)− (−1)n
ϕ2 (0)]sin nπy

L ,

∞

∑
n=1

B′n (0)sin nπy
L =

∞

∑
n=1

d(2)
n (0)sin nπy

L −
∞

∑
n=1

2
nπ

[ϕ ′1 (0)− (−1)n
ϕ ′2 (0)]sin nπy

L ,

and
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d(i)
n = 2

L

L∫
0

ψ̄i (y,0) sinnπy
L dy, i = 1,2.

Let

W (y, t) =
∞

∑
n=1

Bn (t)sin
nπy

L
,

ψi (y) =
∞

∑
n=1

d(i)
n sin

nπy
L

(i = 1,2, . . . ,m) .

Then, we have

a0Dt
2α+1

∞

∑
n=1

Bn (t)sin nπy
L +a1Dt

α+1
∞

∑
n=1

Bn (t)sin nπy
L +a2Dt

2α
∞

∑
n=1

Bn (t)sin nπy
L

+a3Dt
1

∞

∑
n=1

Bn (t)sin nπy
L +a4Dt

α
∞

∑
n=1

Bn (t)sin nπy
L +a5

∞

∑
n=1

Bn (t− τ)sin nπy
L

−b1
(nπ

L

)2Dβ

t
∞

∑
n=1

Bn (t)sin nπy
L −b2

(nπ

L

)2 ∞

∑
n=1

Bn (t)sin nπy
L

=−a0
2

nπ
Dt

2α+1
∞

∑
n=1

[ϕ1 (t)− (−1)n
ϕ2 (t)]sin nπy

L −a1
2

nπ
Dt

α+1
∞

∑
n=1

[ϕ1 (t)− (−1)n
ϕ2 (t)]sin nπy

L

−a2
2

nπ
Dt

2α
∞

∑
n=1

[ϕ1 (t)− (−1)n
ϕ2 (t)]sin nπy

L −a3
2

nπ
Dt

1
∞

∑
n=1

[ϕ1 (t)− (−1)n
ϕ2 (t)]sin nπy

L

−a4
2

nπ
Dt

α
∞

∑
n=1

[ϕ1 (t)− (−1)n
ϕ2 (t)]sin nπy

L −a5
2

nπ

∞

∑
n=1

[ϕ1 (t− τ)− (−1)n
ϕ2 (t− τ)]sin nπy

L

+
∞

∑
n=1

fn (t)sin nπy
L

Equating coefficients leads to

a0Dt
2α+1Bn (t)+a1Dt

α+1Bn (t)+a2Dt
2αBn (t)+a3Dt

1Bn (t) (24)

+a4Dt
αBn (t)+a5Bn (t− τ)−b1

(nπ

L

)2
Dβ

t Bn (t)−b2

(nπ

L

)2
Bn (t)

=−a0
2

nπ
Dt

2α+1 [ϕ1 (t)− (−1)n
ϕ2 (t)]−a1

2
nπ

Dt
α+1 [ϕ1 (t)− (−1)n

ϕ2 (t)]

−a2
2

nπ
Dt

2α [ϕ1 (t)− (−1)n
ϕ2 (t)]−a3

2
nπ

Dt
1 [ϕ1 (t)− (−1)n

ϕ2 (t)]

−a4
2

nπ
Dt

α [ϕ1 (t)− (−1)n
ϕ2 (t)]−a5

2
nπ

[ϕ1 (t− τ)− (−1)n
ϕ2 (t− τ)]+ fn (t) .

with the boundary conditions
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Bn (0) = d(1)
n (0)− 2

nπ
ϕ1 (0)+(−1)n 2

nπ
ϕ2 (0) ,

B′n (0) = d(2)
n (0)− 2

nπ
ϕ
′
1 (0)+(−1)n 2

nπ
ϕ
′
2 (0) .

In this part we divide the main problem in two part

4.1. 0≤ α,β ≤ 1
2

: when and 1
2 ≤ α,β ≤ 1

Applying the Laplace transform with respect to t defined by

B̄n (s) =
∞∫
0

e−stBn (t) dt.

in Eq. (24), we obtain

a0s2α+1B̄n (s)−a0s2αBn (0)+a1sα+1B̄n (s)−a1sαBn (0)+a2s2α B̄n (s)−a2s2α−1Bn (0)

+a3sB̄n (s)−a3Bn (0)+a4sα B̄n (s)−a4sα−1Bn (0)+a5e−sτ

[
0∫
−τ

e−spBn (p)d p
]

−a5e−sτ B̄n (s)−b1
(nπ

L

)2sβ B̄n (s)+b1
(nπ

L

)2sβ−1Bn (0)−b2
(nπ

L

)2B̄n (s)

=−a0
2

nπ
s2α+1 [ϕ1 (s)− (−1)n

ϕ2 (s)]+a0
2

nπ
s2α

[
d(1)

n (0)−Bn (0)
]

−a1
2

nπ
sα+1 [ϕ1 (s)− (−1)n

ϕ2 (s)]+a1
2

nπ
sα

[
d(1)

n (0)−Bn (0)
]

−a2
2

nπ
s2α [ϕ1 (s)− (−1)n

ϕ2 (s)]+a2
2

nπ
s2α−1

[
d(1)

n (0)−Bn (0)
]

−a3
2

nπ
s [ϕ1 (s)− (−1)n

ϕ2 (s)]+a3
2

nπ

[
d(1)

n (0)−Bn (0)
]

−a4
2

nπ
sα [ϕ1 (s)− (−1)n

ϕ2 (s)]+a4
2

nπ
sα−1

[
d(1)

n (0)−Bn (0)
]
−a5

2
nπ

e−sτ [ϕ1 (s)− (−1)n
ϕ2 (s)]

+a5
2

nπ
e−sτ

[
0∫
−τ

e−sp [ϕ1 (p)− (−1)n
ϕ2 (p)]d p

]
+Fn (s)
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By assumption H (S)=
0∫
−τ

e−sp [ϕ1 (p)− (−1)n
ϕ2 (p)]d p , G(s)=

0∫
−τ

e−spBn (p)d p

and kn =
nπ

L , so we can write

B̄n (s) =
Bn (0)

[
a0s2α +a1sα +a2s2α−1 +a3 +a4sα−1−b1kn

2sβ−1
]

a0s2α+1 +a1sα+1 +a2s2α +a3s+a4sα −a5e−sτ −b1kn
2sβ −b2kn

2

+
− 2

knL [ϕ1 (s)− (−1)n
ϕ2 (s)]

[
a0s2α+1 +a1sα+1 +a2s2α +a3s+a4sα +a5e−sτ

]
a0s2α+1 +a1sα+1 +a2s2α +a3s+a4sα −a5e−sτ −b1kn

2sβ −b2kn
2

+

2
knL

[
d(1)

n (0)−Bn (0)
]{

a0s2α +a1sα +a2s2α−1 +a3 +a4sα−1}
a0s2α+1 +a1sα+1 +a2s2α +a3s+a4sα −a5e−sτ −b1kn

2sβ −b2kn
2

+
−a5G(s)e−sτ +a5

2
knLe−sτH (S)+Fn (s)

a0s2α+1 +a1sα+1 +a2s2α +a3s+a4sα −a5e−sτ −b1kn
2sβ −b2kn

2 (25)

Using Eq.(25) we rewrite Eq.(24) as

B̄n (s) = esmτ
∞

∑
m=0

k+i+ j+l+n+q=m
∑

k,i, j,l,n,q≥0

(−1)m

a0m+1
m!(−kn

2)
n+q

k!i! j!l!q! a1
ka2

ia3
ja4

lb1
nb2

q

{Bn(0)[a0
sα(k+2i+l+2)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a1
sα(k+2i+l+1)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1

+a2
sα(k+2i+l+2)+k+βn−1e−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a3
sα(k+2i+l)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1

+a4
sα(k+2i+l+1)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a5e−sτ sα(k+2i+l)+k+βne−smτ(
s2α+1− a5

a0
e−sτ

)m+1 ]

− 2
knL

[ϕ1 (s)− (−1)n
ϕ2 (s)] [a0

sα(k+2i+l+2)+k+βn+1e−smτ(
s2α+1− a5

a0
e−sτ

)m+1 +a1
sα(k+2i+l+1)+k+βn+1e−smτ(

s2α+1− a5
a0

e−sτ

)m+1
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+a2
sα(k+2i+l+2)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a3
sα(k+2i+l)+k+βn+1e−smτ(

s2α+1− a5
a0

e−sτ

)m+1

+a4
sα(k+2i+l+1)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a5e−sτ sα(k+2i+l)+k+βne−smτ(
s2α+1− a5

a0
e−sτ

)m+1 ]

+
2

knL

[
d(1)

n (0)−Bn (0)
]
[a0

sα(k+2i+l+2)+k+βne−smτ(
s2α+1− a5

a0
e−sτ

)m+1 +a1
sα(k+2i+l+1)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1

+a2
sα(k+2i+l+2)+k+βn−1e−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a3
sα(k+2i+l)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1 +a4
sα(k+2i+l+1)+k+βn−1e−smτ(

s2α+1− a5
a0

e−sτ

)m+1 ]

−a5G(s)e−sτ sα(k+2i+l)+k+βne−smτ(
s2α+1− a5

a0
e−sτ

)m+1 +a5
2

knL
e−sτH (S)

sα(k+2i+l)+k+βne−smτ(
s2α+1− a5

a0
e−sτ

)m+1

+Fn (s)
sα(k+2i+l)+k+βne−smτ(

s2α+1− a5
a0

e−sτ

)m+1}

Applying the discrete inverse Laplace transform to the preceding equation, we
obtain

Bn (t) =
∞

∑
m=0

k+i+ j+l+n+q=m

∑
k,i, j,l,n,q≥0

(−1)m

a0m+1

m!
(
−kn

2)n+q

k!i! j!l!q!
a1

ka2
ia3

ja4
lb1

nb2
q

{Bn (0)H (t−mτ) [a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+1 (t−mτ)+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+1 (t−mτ)

+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+2 (t−mτ)+a3G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (t−mτ)

+a4G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+2 (t−mτ)−b1kn
2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+2 (t−mτ)]

− 2
knL

[

t∫
0

[ϕ1 (t−u)− (−1)n
ϕ2 (t−u)]H (u−mτ)(a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn (u−mτ)
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+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn (u−mτ)+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+1 (u−mτ)

+a3G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn (u−mτ)+a4G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+1 (u−mτ))du]

−a5
2

knL

t∫
0

[ϕ1 (t−u)− (−1)n
ϕ2 (t−u)]H (u− τ (m+1))

G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

+
2

knL

[
d(1)

n (0)−Bn (0)
]
[a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+1 (t−mτ)

+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+1 (t−mτ)+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+2 (t−mτ)

+a3G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (t−mτ)+a4G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+2 (t−mτ)]

−a5

t∫
0

g(t−u)H (u− τ (m+1))G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

−a5
2

knL

t∫
0

h(t−u)H (u− τ (m+1))G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

+

t∫
0

fn (t−u)H (u−mτ)G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

Once the Bn(t) are known, so are the W (y, t), and thus u(y, t) as desired.

4.2. 1
2 ≤ α,β ≤ 1

In the same way in the subsection4.1 we could have

Bn (t) =
∞

∑
m=0

k+i+ j+l+n+q=m

∑
k,i, j,l,n,q≥0

(−1)m

a0m+1

m!
(
−kn

2)n+q

k!i! j!l!q!
a1

ka2
ia3

ja4
lb1

nb2
q

12



{Bn (0)H (t−mτ) [a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+1 (t−mτ)+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+1 (t−mτ)

+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+2 (t−mτ)+a3G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (t−mτ)

+a4G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+2 (t−mτ)−b1kn
2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+2 (t−mτ)]

+B′n (0)H (t−mτ) [a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+2 (t−mτ)+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+2 (t−mτ)

+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+3 (t−mτ)+a4G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+3 (t−mτ)]

+B′′n (0)a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+3 (t−mτ)

− 2
knL

[

t∫
0

[ϕ1 (t−u)− (−1)n
ϕ2 (t−u)]H (u−mτ)(a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn (u−mτ)

+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn (u−mτ)+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+1 (u−mτ)

+a3G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn (u−mτ)+a4G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+1 (u−mτ))du]

−a5
2

knL

t∫
0

[ϕ1 (t−u)− (−1)n
ϕ2 (t−u)]H (u− τ (m+1))G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

+
2

knL

[
d(1)

n (0)−Bn (0)
]
[a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+2 (t−mτ)

+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+2 (t−mτ)+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+3 (t−mτ)]

+
2

knL

[
d(2)

n (0)−B′n (0)
]
[a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+2 (t−mτ)

+a1G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−1)−k−βn+2 (t−mτ)+a2G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+3 (t−mτ)]

+
2

knL

[
d(3)

n (0)−B′′n (0)
]

a0G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l)−k−βn+3 (t−mτ)

13



−a5

t∫
0

g(t−u)H (u− τ (m+1))G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

−a5
2

knL

t∫
0

h(t−u)H (u− τ (m+1))G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du

+

t∫
0

fn (t−u)H (u−mτ)G

(
a5
a0

)
,τ,m

2α+1,−α(k+2i+l−2)−k−βn+1 (u− τ (m+1))du}

5. Examples

We consider the flow of an Oldroyd-B fluid when the body force and the pres-
sure gradient are omitted and the plate is accelerating. We present the analytical
solution in the different initial conditions

Example 1. In this example the plate is moving at speed ct, where c is constant.
The corresponding initial problem is then given as

∂u(y, t)
∂ t

+λαDt
αu(y, t)+ θ Dt

2αu(y, t) = ν
∂ 2u(y, t)

∂y2 +νλβ Dβ

t
∂ 2u(y, t)

∂y2 −Mu(y, t− τ)

u(y, t) = c1,u(0, t) = ct,−τ ≤ t ≤ 0 , y > 0,

ut (y, t) = c2,u(L, t) = 0,
1
2
< α,β < 1,

utt (y, t) = 0.

Separating variables and use of the Laplace transformation yields,

B̄n (s) = esmτ
∞

∑
m=0

k+i+ j=m
∑

k,i, j≥0

(−1)m

(θ)m+1
m!(−kn

2
ν)

j+l
λβ

l
λα

i

k!i! j!l!

{Bn (0) [ sk+αi+β le−smτ

(s2α−M
θ

e−sτ)
m+1 +λα

sk+α(i+1)+β l−1e−smτ

(s2α−M
θ

e−sτ)
m+1 +θ

sk+α(i+2)+β l−1e−smτ

(s2α−M
θ

e−sτ)
m+1

−νλβ kn
2 sk+αi+β (1+l)−1e−smτ

(s2α−M
θ

e−sτ)
m+1 ] +B

′
n (0) [λα

sk+α(1+i)+β l−2e−smτ

(s2α−M
θ

e−sτ)
m+1 +θ

sk+α(i+2)+β l−2e−smτ

(s2α−M
θ

e−sτ)
m+1

+νλβ kn
2 sk+αi+β (1+l)−2e−smτ

(s2α−M
θ

e−sτ)
m+1 ] −Me−sτG(s) sk+αi+β le−smτ

(s2α−M
θ

e−sτ)
m+1

14



+ 2c
knL [

sk+αi+β l−1e−smτ

(s2α−M
θ

e−sτ)
m+1−Me−sτ sk+αi+β l−2e−smτ

(s2α−M
θ

e−sτ)
m+1 +Me−sτH (s) sk+αi+β le−smτ

(s2α−M
θ

e−sτ)
m+1−λα

sk+α(1+i)+β l−2e−smτ

(s2α−M
θ

e−sτ)
m+1

−θΓ(−α +2) sk+α(2+i)+β l−2e−smτ

(s2α−M
θ

e−sτ)
m+1 ]}

Taking inverse Laplace transform gives us

Bn (t) =
∞

∑
m=0

k+i+ j=m
∑

k,i, j≥0

(−1)m

(θ)m+1
m!(−kn

2
ν)

j+l
λβ

l
λα

i

k!i! j!l!

{Bn (0)H (t−mτ) [G(M
θ ),τ,m

2α,−k−α(i−2)−β l (t−mτ)+λαG(M
θ ),τ,m

2α,−k−α(i−1)−β l+1 (t−mτ)+

+θG(M
θ ),τ,m

2α,−k−αi−β l+1 (t−mτ)−νλβ kn
2G(M

θ ),τ,m
2α,−k−α(i−2)−β (1+l)+1 (t−mτ)]

+B′n (0) [λαG(M
θ ),τ,m

2α,−k−α(i−1)−β l+2 (t−mτ)+θG(M
θ ),τ,m

2α,−k−αi−β l+2 (t−mτ)

+νλβ kn
2G(M

θ ),τ,m
2α,−k−α(i−2)−β (l+1)+2 (t−mτ)]

−M
t∫
0

g(t−u)H (u− τ (m+1))G(M
θ ),τ,m

2α,−k−α(i−2)−β l (u− τ (m+1))du

+ 2c
knLH (t−mτ) [G(M

θ ),τ,m
2α,−k−α(i−2)−β l+1 (t−mτ)−λαG(M

θ ),τ,m
2α,−k−α(i−1)−β l+2 (t−mτ)−

θΓ(−α +2)G(M
θ ),τ,m

2α,−k−αi−β l+2 (t−mτ)]

+2cM
knL H (t− τ (m+1))G(M

θ ),τ,m
2α,−k−α(i−2)−β l+2 (t− τ (m+1))

+ 2c
knL

t∫
0

h(t−u)H (u− τ (m+1))G(M
θ ),τ,m

2α,−k−α(i−2)−β l (u− τ (m+1))du}

Example 2. We consider the flow of an Oldroyd-B fluid with the initial condi-
tions ψ1(y) = c,ψ2(y) = 0 and boundary conditions, ϕ1(t) = ct,ϕ2(t) = 0 where
c is a constant. The problem now becomes,

∂u(y, t)
∂ t

+λαDt
αu(y, t) = ν

∂ 2u(y, t)
∂y2 +νλβ Dβ

t
∂ 2u(y, t)

∂y2 −Mu(y, t− τ)

u(y, t) = c, u(0, t) = ct, − τ ≤ t ≤ 0, y > 0,
ut (y, t) = 0, u(L, t) = 0, 0 < α,β < 1

2 .
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Using the preceding method we obtain,

Bn (t) =
∞

∑
m=0

k+i+ j+q=m
∑

k,i, j,q≥0

(−1)m

(Mλα )
m+1

m!(−kn
2
ν)

i+ j
λβ

j

k!i! j!

{Bn (0)H (t−mτ) [G

(
M
λα

)
,τ,m

α,α−k−β j (t−mτ)+λαG

(
M
λα

)
,τ,m

α,−k−βq+1 (t−mτ)

−νλβ kn
2G

(
M
λα

)
,τ,m

α,α−k−β ( j+1)+1 (t−mτ)]−M
t∫
0

g(t−u)H (u− τ (m+1))G

(
M
λα

)
,τ,m

α,α−k−β j (u− τ (m+1))du

+ 2c
knLH (t−mτ)

[
G

(
M
λα

)
,τ,m

α,α−k−β j+1 (t−mτ)−λαG

(
M
λα

)
,τ,m

α,−k−β j+2 (t−mτ)

]

+2cM
knL H (t− τ (m+1))G

(
M
λα

)
,τ,m

α,α−k−β j+2 (t− τ(m+1)

+ 2c
knL

t∫
0

h(t−u)H (u− τ (m+1))G

(
M
λα

)
,τ,m

α,α−k−β j (t−mτ)du}

after which W (y, t) and so u(y, t) may be found.

6. Conclusion

In this paper we used a variant of the method of separation of variables to sim-
plify the governing fractional-order partial differential equations of a generalized
viscoelastic Oldroyd-B fluid with constant delay in time to a set of fractional-
order ordinary differential equations with homogeneous boundary condition. The
Laplace transformation (followed by its inverse) was then employed to obtain the
exact solutions of the linear fractional ordinary differential equation. The solu-
tions are given in terms of multivariate Green functions. We found exact solutions
for three specific situations illustrated by examples.
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