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Abstract

This paper introduces a new direct scheme based on Dickson polynomials and collocation points to solve a

class of optimal control problems (OCPs) ruled by Volterra integro-differential equations namely Volterra

integro-OCPs (VI-OCPs). Studies in this regard require to calculate the corresponding operational matrices

for expanding the solution of this problem in terms of Dickson polynomials. This recommended method

allows us to transform the VI-OCP to a system of algebraic equations for choosing the coefficients and

control parameters optimally. The error estimation of this technique is also investigated. Finally, some

example are given to bring about the validity and applicability of this approach in comparison with those

obtained from other methods.
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1. Introduction

Over the past decades, many researchers have been trying to build an intelligent method for solving

OCPs with computational power comparable to the hardware simplicity. These efforts are often divided into

two main categories. The first category is for works that attempt to use indirect methods and the second

category comprises studies focused on the direct methods [26, 29, 4, 23]. The importance of having practical5

and scalable hardware becomes clear when we look at the results of these two methods and the complexity

of connections between them. Since it is difficult to achieve satisfactory performance in indirect methods,

it is important to examine the accurate solutions of OCPs, which are widely used in many physical and

engineering phenomena in the real world. With an overview you will notice that the direct methods have

attracted more attention because they have a greater convergence radius than indirect methods, in general10

[18, 33]. Also, fortunately, unlike indirect methods, direct methods are more strong to the primitive guess of
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parameters without general deformation the total problem. The aforementioned properties of direct methods

have encouraged some researchers to develop new computing architectures and techniques where the primary

focus was on hardware simplicity.

After the physical realization of OCPs in a diverse world [19, 24], recently, many researchers have been15

fascinated by integral dynamics in the fields of applied sciences such as epidemiology, biology, economics

and memory effects [13, 20, 5]. Optimal control of these equations have recently become a major topic

for research, for instance, one application of such equations were modeled by Kamien and Muller in [10].

Nonetheless it should be noted that due to the high complexity of integral terms in VI-OCPs, handling

analytical solutions of these problems are completely tough and even impossible. To be prevailed through20

this challenge, researchers have resorted to approximate methods. Hence, they first generalized the methods

used to solve OCPs such as homotopy analysis and parameterization method [1], reduction method [2],

Legendre polynomials [30], triangular functions [15], Hybrid functions [17] and Muntz-Legendre polynomials

[21]. Despite the existence of many applications for VI-OCPs in control systems but it is regrettable that

extremely few publications for this problem were reported [16, 22]. Therefore, it is quite clear that the25

numerical studies of this problem is still in the early stages of growth. As a matter of fact, given the complex

nature of these problems and compared to the direct methods, indirect ones have more complex dynamic

characteristics.Therefore, merging the direct methods for solving VI-OCPs is highly anticipated. In this

paper, we consider the following problem:

Min J(x(t), u(t)) =

∫ b

a

f(t, x(t), u(t))dt (1)

subject to the nonlinear time-invariant system30

x′(t) = g(t) +

∫ t

a

k(t, s, x(s), u(s))ds, (2)

with the initial condition

x(a) = x0, u(t) ∈ U, (3)

where x0 ∈ R, a and b are two positive constant, g and k are assumed to be continuously differentiable

functions in all arguments, the set U ⊂ Rm denotes the acceptable inputs and x(t) is the state variable

known as the optimal trajectory. The problem is to find u(t) that will drive the system in (2) with the initial

state (3) while minimizing the cost functional (1) where f is continuously differentiable function. Motivated35

by the above discussions, at this time, we want to introduce a direct method based on Dickson polynomials

approximation for solving VI-OCP (1)-(3) as follows:

x(t) ≃ xM (t) =
M∑
i=0

Di(t, α)xi u(t) ≃ uM (t) =
M∑
i=0

Di(t, α)ui, (4)
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where xi and ui, i = 0, 1, 2, ...,M , are the unknown Dickson coefficients. Indeed, we have chosen the Dickson

polynomials to estimate the offer state, control variable and hence the objective function. Accordingly, to

obtain an approximate solution via (4), we used the following collocation points:40

tj = a+ (
b− a

2M
)j, j = 0, 1, 2, ..., 2M, (5)

where a = t0 < t1 < t2 < ... < t2M = b. One of the main advantages of the Dickson collocation method are

its efficiency and rapidly solving a wide range of problems. In addition, these polynomials have simple forms

and computationally easy to use that vividly cause the solution procedure is either reduced and simplified.

The overall layout of this manuscript is according to the following pattern. In section 2, the Dickson

polynomials have been formulated and their properties, including the function approximation and the oper-45

ational matrix of derivatives, are discussed. Also, we present a direct collocation scheme based on Dickson

polynomials to solve the VI-OCP (1)-(3). The error estimation and the convergence analysis of this approach

are carried out in section 3. The numerical results and comparison have brought in section 4 to substantiate

the efficiency of our results and then the conclusions are expressed in the last section.

2. Main matrix relation and method of solution50

Dickson polynomials Dm(t, α) are definable over a commutative ring R in which, if R = C be the set

of complex numbers, Dm(t, α) is associated with the known Chebyshev polynomials of the first kind Tm(t).

Exactly, Dm(2cosθ, 1) = 2Tm(cosθ) for any real number θ, and we have Lucas polynomials when α = −1 [6].

There have been various articles on Dickson polynomials [3, 7, 8, 9, 14, 28, 31, 32] and we refer the interested

readers to see some practical articles in this area in [11, 12]. For any integer m ≥ 1 and any element α over55

finite fields, we define the first kind of Dickson polynomials of degree m as follows:

Dm(t, α) =

⌊m
2 ⌋∑

i=0

m

m− i

(
m− i

i

)
(−α)it(m−2i), −∞ < t < ∞ (6)

where ⌊m
2 ⌋ is the floor of m

2 . Besides, D0(t, α) = 2, D1(t, α) = t and for m > 1, we have the following

recurrence relation [14]:

Dm(t, α) = tDm−1(t, α)− αDm−2(t, α), m ≥ 2 (7)

Further, the Dickson polynomials Dm(t, α) satisfy the following ordinary differential equations [14]

(t2 − 4α)x′′ + tx′ −m2x = 0, m = 0, 1, 2, ... (8)

The Dickson polynomials have the generating function [14]60

∞∑
m=0

Dm(t, α)vm =
2− t v

1− t v + α v2
. (9)
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To perform the continuous functions x(t) and u(t) of VI-OCP (1)-(3) via truncated Dickson polynomials

presented in (4), we have outline our approach in this section. Firstly, the equation (4) can be rewritten in

the following matrix form:

x(t) ≃ xM (t) = D(t, α)X = Y (t)K(α)X, (10)

u(t) ≃ uM (t) = D(t, α)U = Y (t)K(α)U,

where X = [x0, x1, ..., xM ]T and U = [u0, u1, ..., uM ]T are unknown coefficients, Y (t) = [1, t, t2, ..., tM ] and

D(t, α) = [D0(t, α), D1(t, α), ..., DM (t, α)].

In addition, if M is even

KT (α) =



2 0 0 0 ... 0

0 1
1

(
1
0

)
(−α)0 0 0 ... 0

2
1

(
1
1

)
(−α)1 0 2

2

(
2
0

)
(−α)0 0 ... 0

0 3
2

(
2
1

)
(−α)1 0 3

3

(
3
0

)
(−α)0 ... 0

...
...

...
...

. . .
...

M
M/2

(
M/2
M/2

)
(−α)M/2 0 M

(M/2)+1

(
(M/2)+1
(M/2)−1

)
(−α)(M/2)−1 0 · · · M

M

(
M
0

)
(−α)0


and if M is odd

KT (α) =



2 0 0 0 ... 0

0 1
1

(
1
0

)
(−α)0 0 0 ... 0

2
1

(
1
1

)
(−α)1 0 2

2

(
2
0

)
(−α)0 0 ... 0

0 3
2

(
2
1

)
(−α)1 0 3

3

(
3
0

)
(−α)0 ... 0

...
...

...
...

. . .
...

0 M
⌈M/2⌉

(⌈M/2⌉
⌊M/2⌋

)
(−α)⌊M/2⌋ 0 M

⌈M/2⌉+1

(⌈M/2⌉+1
⌊M/2⌋−1

)
(−α)⌊M/2⌋−1 · · · M

M

(
M
0

)
(−α)0


.

Now, for the matrix form of first derivative we have:65

x′(t) ≃ x′
M (t) = D′(t, α)X = Y ′(t)K(α)X = Y (t)CK(α)X, (11)

u′(t) ≃ u′
M (t) = D′(t, α)U = Y ′(t)K(α)U = Y (t)CK(α)U,

where

C =



0 1 0 0 . . . 0

0 0 2 0 . . . 0

0 0 0 3 . . . 0

...
...

...
...

. . .
...

0 0 0 0 0 M

0 0 0 0 . . . 0


.
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Now, for solving the VI-OCP (1)-(3), we need to find the approximations presented in (4). For this purpose,

based on these approximtions and also using relations (10)-(11), the performance index (1) can be rerewrite

as follow:

Min J(X,U) =

∫ b

a

f(t, Y (t)K(α)X,Y (t)K(α)U)dt ∼= G(X,U). (12)

In a similar way, taking into account the above approximations for the dynamical system (2), we have:

Y (t)CK(α)X − g(t)−
∫ t

a

k(t, s, Y (s)K(α)X,Y (s)K(α)U)ds ∼= Λ(t,X,U) ∼= 0. (13)

Furthermore, by employing the collocation points (5) into equation (13), it leads to the following system of70

algebraic equations:

Λi
∼= Λ(ti, X, U) ∼= 0, i = 1, ..., 2M. (14)

Also, by doing the similar process for the initial conditions (3), we obtain

Λ0
∼= Y (a)K(α)X − x0 = 0. (15)

To get the approximate solutions of VI-OCP (1)-(3), we can adopt the Lagrange multipliers method for

minimizing (12) subject to the conditions given in (14)-(15) as

J∗(X,U, λ) = G(X,U) + λΛ, (16)

where λ = [λ0, λ1, ..., λ2M ] are the unknown Lagrange multipliers and Λ = [Λ0,Λ1, ...,Λ2M ]. The necessary75

conditions for the optimality of functional (16) are as follows:

∂J∗

∂X
= 0,

∂J∗

∂U
= 0,

∂J∗

∂λ
= 0. (17)

To solve (17), we can use today’s mathematical packages such as Mathematica or Matlab by using Newton’s

iterative method.

3. Residual error estimation

Let PN be the set of all Dickson polynomials of degree at most N . Without loss of generality suppose that

[a, b] = [0, 1]. If f(t) be a function in L2[0, 1], since PN is a finite space, f(t) has a best unique approximation

out of PN like as f̂(t) such that:

∀g ∈ PN : ||f − f̂ ||2 ≤ ||f − g||2.

Suppose that fn ∈ PN , then there exist coefficients ck, k = 0, 1, ..., n, so that80

fn(t) ≈
n∑

k=0

ckDk(t, α) (18)

where ck, k = 0, 1, ..., n are real valued unknown coefficients and Dk(t, α) are the Dickson functions.
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Theorem 1. Let f ∈ L2[0, 1] be approximated by fn in terms of the Dickson polynomials {Dk(t, α)}nk=0

satisfied in (18). If en(t) = |f(t)− fn(t)| then limn→∞en(t) = 0.

Proof. Using the Taylor expansion, we define the following approximation of f out of PN as follows:

f̃(x) =
n∑

k=0

tk

Γ(k + 1)
f (k)(0+).

Then we have:

|f(x)− f̃(t)| ≤ tn+1

Γ(n+ 2)
sup

0≤t≤1
|f (n+1)(t)|.

Let L = sup0≤t≤1 |f (n+1)(t)|. Because f̃(t) is the best approximation of f , so

∥f − fn∥2 ≤ ∥f − f̃∥2 =

∫ 1

0

|f(t)− f̃(t)|dx ≤ L

Γ(n+ 2)

∫ 1

0

tn+1dx =
L

(n+ 2)!

When n increases, the error quickly becomes zero.

According to this theorem, the approximations of f(t) with Dickson polynomials are converging. Now, an85

error analysis dependent on residual function is implemented to improve the Dickson polynomials solutions.

By using proposed method we can obtain the residual function on t ∈ [0, 1] as

RM (t) = G(xi, ui) + λΛ(xi, ui) = L(xM (t), uM (t)), (19)

such that
M∑
i=0

xi(0)− x0 = 0. (20)

Let us now construct the residual error analysis for the Dickson polynomials. Given e1(t) = x(t) − xM (t)

and e2(t) = u(t)− uM (t). So the maximum absolute error can be evaluated as90

e(t) = max
0≤t≤1

|e1(t) + e2(t)|. (21)

Accordingly, by equation (19) and (21) the error equation is of the form

L(e(t)) = L(x(t), u(t))− L(xM (t), uM (t)) = −RM (t), (22)

subject to the initial conditions (20). Thus, we constitute the error problem by equations (20) and (22) and

obtain the estimated error function as follows:

E(t) =
M∑
k=0

e∗kDk(t, α). (23)

The E(t) is the Dickson polynomials solution of the error problem (22) with condition (20). Consequently,

the solution based on Dickson polynomials will be obtained as follows:

x∗
M = xM (t) +E(t), and u∗

M = uM (t) +E(t)
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and the corrected error function is obtained by ê1(t) = x(t)− x∗
M (t) and ê2(t) = u(t)− u∗

M (t).

According the above theorems and discussion, the approximations of a function with Dickson polynomials95

are converging. It is also easy to conclude that by increasing the number of Dickson polynomials, the error

of the operational matrix of derivative defined in Eq. (11), tends to zero.

The accuracy of this approximate solutions is also obtained by substituting the approximate solutions

(xM , uM ) into Eq. (2) as follow:

EM (x) = |x′
M (t)− g(t)−

∫ t

a

k(t, s, xM (s), uM (s))ds|. (24)

It is expected that EM (x) to be zero at the collocation points. Indeed, the more accurate of the proposed100

method will be obtained for the approximation solutions when EM (x) much be close to zero.

4. Numerical results

We would test introducing method by several examples. We show the efficiency of this method by solving

three non-trivial examples. In addition, we used the following uniform norms defining the absolute errors as:

||Ex||22 = ||x− x∗||22 =

∫ b

a

(x(t)− x∗(t))2dt (25)

||Eu||22 = ||u− u∗||22 =

∫ b

a

(u(t)− u∗(t))2dt,

where χ∗ and χ, χ = (x, u), denote the exact and numerical solutions. All numerical computations have105

been coded in Mathematica software. Also, we assume that the total error to be less than a given number

ϵ. To evaluate the advantages of this method, we provide the following examples.

Example 1. For the first example, we consider

Min J(x, u) =

∫ 1

0

(tx(t)− u(t))2dt,

subject to

x
′
(t) = 1− 7

12
t4 +

∫ t

0

(s2t+ su(s))x
′
(s)ds (26)

with boundary conditions

x(0) = 0. (27)

The exact control functions and optimal trajectory are u(t) = t2 and x(t) = t, respectively. The value110

J∗
M obtained based on our proposed method with ϵ = 10−12 and compared with the results reported in [1]

respectively in Tables 1 and 2. Comparing the results reveal that the accuracy of the Dickson collocation

method is higher than the method presented in [1]. The accuracy of these solutions for different choices of

t and considering M = 2, 3 are reported in Table 3. Also, the errors of control functions and trajectory for

M = 2 are depicted in Figure 1.115
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Table 1: Numerical results of J∗
M with various values of α and M = 2 for Example 1.

Itr α = −1 α = 0 α = 0.1 α = 1

M = 2 2.96059× 10−16 1.02968× 10−29 −1.38991× 10−27 −1.32764× 10−28

Table 2: Comparing the absolute errors with α = 0.1 for Example 1.

Method Itr ∥Ex∥22 ∥Eu∥22

This study M = 2 2.61098× 10−32 1.77735× 10−29

Method in [1] k = 2,M = 2 4.04054× 10−10 3.2226× 10−10

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-33

4.×10-33

6.×10-33

8.×10-33

1.×10-32

1.2×10-32

error x

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-30

1.×10-29

1.5×10-29

error u

Figure 1: Evaluated error functions x(t) and u(t) with α = 0.1 and M = 2 for Example 1.

Example 2. As a second example let us consider:

Min J(x, u) =

∫ 1

0

(x(t)− sin(t))2 + (u(t)− t2)2dt,

subject to

x(t) = g(t) +

∫ t

0

(tsx3(s) + s2u2(s))ds (28)

Table 3: Accuracy errors with α = 0.1 and M = 2, 3 at different values of t for Example 1.

t 0 0.2 0.4 0.6 0.8 1

M = 2 6.4746× 10−15 2.11771× 10−16 4.57494× 10−16 9.2826× 10−16 2.92655× 10−15 1.02668× 10−15

M = 3 6.66134× 10−16 1.54506× 10−16 1.3315× 10−16 3.84096× 10−17 1.41869× 10−16 3.05639× 10−16
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Table 4: Numerical results of J∗
M for Example 2.

Itr α = −1 α = 0 α = 0.1 α = 1

M = 4 4.88411× 10−6 5.60165× 10−4 4.02883× 10−7 5.89004× 10−7

M = 5 9.46657× 10−5 1.20529× 10−7 2.81915× 10−8 8.02963× 10−5

Table 5: Comparing the absolute errors with α = 0.1 for Example 2.

Method Itr ∥Ex∥22 ∥Eu∥22

Proposed method M = 4 1.02426× 10−8 3.9264× 10−7

M = 5 2.0124× 10−11 2.81713× 10−8

Method in [30] M = 4 9.5× 10−7 1.2× 10−7

With initial conditions

x(0) = 0. (29)

where g(t) = sin(t)− 1
7 t

7 + 1
3 t

2sin2(t)cos(t) + 2
3 t

2cos(t)− 1
9 tsin

3(t)− 2
3 tsin(t).

The exact control functions and optimal trajectory are u(t) = t2 and x(t) = sint, respectively. Applying

the proposed method and considering ϵ = 10−7 for this problem leads to Table 4. A comparison is made120

between the absolute errors obtained by our method with the best results that achieved by Legendre poly-

nomials [30] in Table 5. The accuracy of these solutions for different choices of M and considering α = 0.1

are reported in Table 6. Figure 2 shows the graphs of absolute errors for x(t) and u(t).

Example 3. In the last example we solved the following problem:

Min J(x, u) =

∫ 1

0

(x(t)− t− 1)2 + (u(t)− t2 − t)2dt,

Table 6: Accuracy errors with α = 0.1 and M = 4, 5 for Example 2.

t 0 0.2 0.4 0.6 0.8 1

M = 4 0 1.27174× 10−6 1.44287× 10−6 3.49122× 10−6 4.46583× 10−6 3.81167× 10−7

M = 5 0 6.24637× 10−7 1.67263× 10−6 2.84911× 10−6 3.75231× 10−6 4.88179× 10−7

9



0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-12

4.×10-12

6.×10-12

8.×10-12

1.×10-11

error x

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-9

1.×10-8

1.5×10-8

2.×10-8

2.5×10-8

error u

Figure 2: Evaluated error functions x(t) and u(t) with α = 0.1 and M = 5 for Example 2.

Table 7: Numerical results of J∗
M at various values of α and M for Example3.

Itr α = −1 α = 0 α = 0.1 α = 1

M = 2 0 −2.22045× 10−16 −1.38778× 10−16 −8.88178× 10−16

M = 3 −1.77636× 10−15 −1.94289× 10−16 −4.16334× 10−17 −1.77636× 10−15

M = 4 −8.88178× 10−16 −2.77557× 10−16 −1.11022× 10−16 −4.44178× 10−16

subject to

x(t) = g(t) +

∫ t

0

(t2sx(s)u(s))ds (30)

where g(t) = − 1
5 t

7 − 1
2 t

6 − 1
3 t

5 + t+ 1.125

The exact control functions and optimal trajectory are u(t) = t2 + t and x(t) = t+ 1, respectively. The

computed results for J∗
M with different values of α and ϵ = 10−16 have been reported in Table 7. The

absolute errors of these solutions for different choices of M and α = 0.1 are reported in Table 8. Also, a

comparison is made between the absolute errors obtained by our method with the results that achieved in

[27] in this table. The accuracy of these solutions for M = 2, 3 and considering α = 0.1 are reported in Table130

9. In addition, the errors of x(t) and u(t) for M = 4 are depicted in Figure 3.

5. Conclusion

We have presented Dickson polynomials with a collocation method to solve an OCPs governed by Volterra

integro-differential equation. Our design uses the control variables and the state via a linear combination of

Dickson polynomials as basic functions. The properties of these functions, allows us to reduce the VI-OCPs135

to a system of nonlinear algebraic equations for choosing the coefficients and control parameters optimally.
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Table 8: Comparing the absolute errors with α = 0.1 for Example 3.

Method Itr J∗
N ∥Ey∥22 ∥Eu∥22

This study M = 2 −1.38778× 10−16 1.51009× 10−33 4.12303× 10−31

M = 3 −4.16334× 10−17 5.79045× 10−29 1.19787× 10−27

Method in [27] M = 3 1.36165× 10−6 7.78602× 10−7 2.60418× 10−3

M = 5 5.29848× 10−9 6.15457× 10−10 1.6276× 10−4

Table 9: Accuracy errors with α = 0.1 for Example 3.

t 0 0.2 0.4 0.6 0.8 1

M = 2 3.1961× 10−17 4.74905× 10−17 5.59174× 10−17 9.4384× 10−17 1.74039× 10−16 9.81256× 10−18

M = 3 4.29468× 10−17 3.22159× 10−17 1.17212× 10−17 1.22228× 10−17 3.59305× 10−17 6.00312× 10−17

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5.×10-26

1.×10-25

1.5×10-25

error x

0.0 0.2 0.4 0.6 0.8 1.0

1.×10-24

1.5×10-24

2.×10-24

2.5×10-24

error u

Figure 3: Evaluated error functions x(t) and u(t) with α = 0.1 and M = 4 for Example 3.

Using Dickson polynomials via a collocation method bears some advantages such as simply evaluation of high

order derivatives and integral terms of given differential equation and less expensive of computational costs.

Three examples are solved to illustrate the efficiency, applicability and high performance of this approach.

As can be seen in these examples, the parameter α plays an important role in the Dickson polynomials in a140

way that can change the behavior of the solution. The accuracy of the Dickson collocation method can be

easily concluded from the improved results by our introduced method.
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