Abdulhalim, I., Karabchevsky, A., Patzig, C., Rauschenbach, B., Fuhrmann, B., Eltzov, E., Marks, R., Xu, J., Zhang, F., Lakhtakia, A., 2009. Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett. 94.
Aslan, K., Lakowicz, J.R., Geddes, C.D., 2005. Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence. J. Phys. Chem. B 109, 6247–6251.
Badshah, M.A., Ju, J., Lu, X., Abbas, N., Kim, S. min, 2018. Enhancing the sensitivity of DNA microarrays by metal-enhanced fluorescence using vertical nanorod structures. Sensors Actuators, B Chem. 274, 451–457.
Canales, R.D., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., Hunkapiller, K., Jensen, R. V., Knight, C.R., Lee, K.Y., Ma, Y., Maqsodi, B., Papallo, A., Peters, E.H., Poulter, K., Ruppel, P.L., Samaha, R.R., Shi, L., Yang, W., Zhang, L., Goodsaid, F.M., 2006. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115–1122.
Darvill, D., Centeno, A., Xie, F., 2013. Plasmonic fluorescence enhancement by metal nanostructures: Shaping the future of bionanotechnology. Phys. Chem. Chem. Phys. 15, 15709–15726.
Fei, X., Gu, Y., 2009. Progress in modifications and applications of fluorescent dye probe. Prog. Nat. Sci. 19, 1–7.
Fotea, C., D’Silva, C., 2004. The use of silane reagents as primers to enhance the adhesion of chromium tanned heavy-duty leather (Salz leather). Int. J. Adhes. Adhes. 24, 1–7.
Haab, B.B., 2006. Applications of antibody array platforms. Curr. Opin. Biotechnol. 17, 415–421.
Han, Y.A., Ju, J., Yoon, Y., Kim, S.M., 2014. Fabrication of cost-effective surface enhanced raman spectroscopy substrate using glancing angle deposition for the detection of urea in body fluid. J. Nanosci. Nanotechnol. 14, 3797–3799.
Jang, H., Shin, G.Y., Jang, H.Y., Ju, J., Lim, J., Kim, S.M., 2017. Design and fabrication of wire grid polarizer by nanoimprinting and glancing angle deposition processes. Mater. Trans. 58, 494–498. https://doi.org/10.2320/matertrans.M2016219
Ju, J., Byeon, E., Han, Y.A., Kim, S.M., 2013. Fabrication of a substrate for Ag-nanorod metal-enhanced fluorescence using the oblique angle deposition process. Micro Nano Lett. 8, 370–373.
Kim, S., Zhang, W., Cunningham, B.T., 2010. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy. Opt. Express 18, 4300.
Kodadek, T., 2001. Protein microarrays: Prospects and problems. Chem. Biol. 8, 105–115.
Lakowicz, J.R., 2006. Plasmonics in Biology and Plasmon-Controlled Fluorescence. Plasmonics 1, 5–33.
Liu, Q., Zhou, X., Wu, H., Wu, L., Zheng, B., 2019. A polydopamine patterned perfluoropolymer-based substrate for protein microarray applications. Sensors Actuators, B Chem. 287, 306–311.
Mori, T., Yamanouchi, G., Han, X., Inoue, Y., Shigaki, S., Yamaji, T., Sonoda, T., Yasui, K., Hayashi, H., Niidome, T., Katayama, Y., 2009. Signal-to-noise ratio improvement of peptide microarrays by using hyperbranched-polymer materials. J. Appl. Phys. 105.
Nimse, S.B., Song, K., Sonawane, M.D., Sayyed, D.R., Kim, T., 2014. Immobilization techniques for microarray: Challenges and applications. Sensors (Switzerland) 14, 22208–22229.
Peña-Alonso, R., Rubio, F., Rubio, J., Oteo, J.L., 2007. Study of the hydrolysis and condensation of γ- Aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci. 42, 595–603.
Pirrung, M.C., 2002. How to make a DNA chip. Angew. Chemie - Int. Ed. 41, 1276–1289.
Pompa, P.P., Martiradonna, L., Della Torre, A., Della Sala, F., Manna, L., de Vittorio, M., Calabi, F., Cinagolani, R., Rinaldi, R., 2006. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 1, 126–130.
Shang, L., Chen, H., Dong, S., 2007. Electrochemical preparation of silver nanostructure on the planar surface for application in metal-enhanced fluorescence. J. Phys. Chem. C 111, 10780–10784.
Singh, D.P., Kumar, S., Singh, J.P., 2015. Morphology dependent surface enhanced fluorescence study on silver nanorod arrays fabricated by glancing angle deposition. RSC Adv. 5, 31341–31346.
Strobbia, P., Languirand, E., Cullum, B.M., 2015. Recent advances in plasmonic nanostructures for sensing: a review. Opt. Eng. 54, 100902.
Suzuki, M., 2013. Practical applications of thin films nanostructured by shadowing growth. J. Nanophotonics 7, 073598.
Wellhausen, R., Seitz, H., 2012. Facing current quantification challenges in protein microarrays. J. Biomed. Biotechnol. 2012.
Zhang, W., Cunningham, B.T., 2008. Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer. Appl. Phys. Lett. 93.
Zhang, W., Ganesh, N., Block, I.D., Cunningham, B.T., 2008a. High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area. Sensors Actuators, B Chem. 131, 279–284.
Zhang, W., Ganesh, N., Mathias, P.C., Cunningham, B.T., 2008b. Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures. Small 4, 2199–2203.
Zhao, X., Tapec-Dytioco, R., Tan, W., 2003. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474–11475.
Zhao, Y., Ye, D., Wang, G.-C., Lu, T.-M., 2003. Designing nanostructures by glancing angle deposition. Nanotub. Nanowires 5219, 59.