References
Abouheif, E., & Wray, G. (2002). Evolution of the gene network
underlying wing polymorphism in ants. Science , 297 (2002),
249–252. doi: 10.1126/science.1071468
Alberch, P. (1991). From genes to phenotype: dynamical systems and
evolvability. Genetica , 84 , 5–11. doi: 10.1007/BF00123979
Alexa, A., & Rahnenfuhrer, J. (2016). topGO: Enrichment Analysis
for Gene Ontoloty . R package version 2.30.1.
Badyaev, A. V. (2018). Evoulutionary transitions in controls reconcile
adaptation with continuity of evolution. Seminars in Cell and
Developmental Biology , 88 , 36–45. doi:
10.1016/j.semcdb.2018.05.014
Badyaev, A. V, & Morrison, E. S. (2018). Emergent buffering balances
evolvability and robustness in the evolution of phenotypic flexibility.Evolution , 72 (3), 647–662. doi: 10.1111/evo.13441
Baldwin, J. M. (1896). A New Factor in Evolution. The American
Naturalist , 30 , 441–451; 536–553.
Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing
genetic variation. Trends in Ecology and Evolution , 23 (1),
38–44. doi: 10.1016/j.tree.2007.09.008
Barson, N. J., Cable, J., & Van Oosterhout, C. (2009). Population
genetic analysis of microsatellite variation of guppies (Poecilia
reticulata ) in Trinidad and Tobago: Evidence for a dynamic source-sink
metapopulation structure, founder events and population bottlenecks.Journal of Evolutionary Biology , 22 (3), 485–497. doi:
10.1111/j.1420-9101.2008.01675.x
Conover, D. O., Duffy, T. A., & Hice, L. A. (2009). The covariance
between genetic and environmental influences across ecological
gradients: Reassessing the evolutionary significance of countergradient
and cogradient variation. Annals of the New York Academy of
Sciences , 1168 , 100–129. doi: 10.1111/j.1749-6632.2009.04575.x
Crawford, D. L., & Oleksiak, M. F. (2007). The biological importance of
measuring individual variation. Journal of Experimental Biology ,210 (9), 1613–1621. doi: 10.1242/jeb.005454
Dayan, D. I., Crawford, D. L., & Oleksiak, M. F. (2015). Phenotypic
plasticity in gene expression contributes to divergence of locally
adapted populations of Fundulus heteroclitus . Molecular
Ecology , 24 (13), 3345–3359. doi: 10.1111/mec.13188
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha,
S., … Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq
aligner. Bioinformatics , 29 (1), 15–21. doi:
10.1093/bioinformatics/bts635
Draghi, J. A., & Whitlock, M. C. (2012). Phenotypic plasticity
facilitates mutational variance, genetic variance, and evolvability
along the major axis of environmental variation. Evolution ,66 (9), 2891–2902. doi: 10.1111/j.1558-5646.2012.01649.x
Drion, G., O’Leary, T., & Marder, E. (2015). Ion channel degeneracy
enables robust and tunable neuronal Firing rates. PNAS . doi:
10.1073/pnas.1516400112
Efron, B., & Tibshirani, R. J. (1993). An introduction to the
bootstrap. Monographs on Statistics and Applied Probability, No. 57.
Chapman and Hall, London, 436 p. In Monographs on Statistics and
Applied Probability .
Elvidge, C. K., Ramnarine, I., & Brown, G. E. (2014). Compensatory
foraging in Trinidadian guppies: Effects of acute and chronic predation
threats. Current Zoology , 60 (3), 323–332. doi:
10.1093/czoolo/60.3.323
Endler, J. A. (1995). Multiple-trait coevolution and environmental
gradients in guppies. Trends in Ecology & Evolution ,10 (1), 22–29. doi: 10.1016/S0169-5347(00)88956-9
Espinosa-Soto, C., Martin, O. C., & Wagner, A. (2011). Phenotypic
plasticity can facilitate adaptive evolution in gene regulatory
circuits. BMC Evolutionary Biology , 11 (5), 1–14. doi:
10.1186/1471-2148-11-5
Fajen, A. V. A., & Breden, F. (1992). Mitochondrial DNA sequence
variation among natural populations of the Trinidad guppy,Poecilia reticulata . Evolution , 46 (5), 1457–1465.
Feiner, N., Rago, A., While, G. M., & Uller, T. (2017). Signatures of
selection in embryonic transcriptomes of lizards adapting in parallel to
cool climate. Evolution , 72 (1), 67–81. doi:
10.1111/evo.13397
[dataset] Fischer, E. K., Hughes, K. A., Hoke, K. L. (2020). NCBI
Sequence Read Archive. SUB6850296.
Fischer, E. K., Ghalambor, C. K., & Hoke, K. L. (2016a). Can a Network
Approach Resolve How Adaptive vs Nonadaptive Plasticity Impacts
Evolutionary Trajectories? Integrative and Comparative Biology ,56 (5), 877–888. doi: 10.1093/icb/icw087
Fischer, E. K., Ghalambor, C. K., & Hoke, K. L. (2016b). Plasticity and
evolution in correlated suites of traits. Journal of Evolutionary
Biology , 29 (5), 991–1002. doi: 10.1111/jeb.12839
Fischer, E. K., Harris, R. M., Hofmann, H. A., & Hoke, K. L. (2014).
Predator exposure alters stress physiology in guppies across timescales.Hormones and Behavior , 65 (2), 165–172. doi:
10.1016/j.yhbeh.2013.12.010
Fischer, E. K., Soares, D., Archer, K. R., Ghalambor, C. K., & Hoke, K.
L. (2013). Genetically and environmentally mediated divergence in
lateral line morphology in the Trinidadian guppy (Poecilia
reticulata ). Journal of Experimental Biology , 216 (16),
3132–3142. doi: 10.1242/jeb.081349
Fitzpatrick, S. W., Torres-Dowdall, J., Reznick, D. N., Ghalambor, C.
K., & Chris Funk, W. (2014). Parallelism Isn’t Perfect: Could Disease
and Flooding Drive a Life-History Anomaly in Trinidadian Guppies?The American Naturalist , 183 (2), 290–300. doi:
10.1086/674611
Fraser, B. A., Janowitz, I., Thairu, M., Travis, J., Hughes, K. A.,
Fraser, B. A., … Hughes, K. A. (2014). Phenotypic and genomic
plasticity of alternative male reproductive tactics in sailfin mollies.Proceedings of the Royal Society B: Biological Sciences ,281 , 20132310.
Fraser, B. A., Künstner, A., Reznick, D. N., Dreyer, C., & Weigel, D.
(2015). Population genomics of natural and experimental populations of
guppies (Poecilia reticulata ). Molecular Ecology ,24 (2), 389–408. doi: 10.1111/mec.13022
Ghalambor, C. K., Hoke, K. L., Ruell, E. W., Fischer, E. K., Reznick, D.
N., & Hughes, K. A. (2015). Non-adaptive plasticity potentiates rapid
adaptive evolution of gene expression in nature. Nature ,525 (7569), 372–375. doi: 10.1038/nature15256
Ghalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N.
(2007). Adaptive versus non-adaptive phenotypic plasticity and the
potential for contemporary adaptation in new environments.Functional Ecology , 21 (3), 394–407. doi:
10.1111/j.1365-2435.2007.01283.x
Ghalambor, C. K., Reznick, D. N., & Walker, J. A. (2004). Constraints
on adaptive evolution: The functional trade-off between reproduction and
fast-start swimming performance in the Trinidadian guppy (Poecilia
reticulata ). American Naturalist , 164 (1), 38–50. doi:
10.1086/421412
Gibbons, T. C., Metzger, D. C., Healy, T. M., & Schulte, P. M. (2017).
Gene expression plasticity in response to salinity acclimation in
threespine stickleback ecotypes from different salinity habitats.Molecular Ecology , 26 , 2711–2725. doi: 10.1111/mec.14065
Gilliam, J. F., Fraser, D. F., & Alkins-Koo, M. (1993). Structure of a
Tropical Stream Fish Community : A Role for Biotic Interactions.Ecology , 74 (6), 1856–1870.
Gleason, L. U., & Burton, R. S. (2015). RNA-seq reveals regional
differences in transcriptome response to heat stress in the marine snailChlorostoma funebralis . Molecular Ecology , 24 (3),
610–627. doi: 10.1111/mec.13047
Gompel, N., & Prud’homme, B. (2009). The causes of repeated genetic
evolution. Developmental Biology , 332 (1), 36–47. doi:
10.1016/j.ydbio.2009.04.040
Grashow, R., Brookings, T., & Marder, E. (2009). Reliable
neuromodulation from circuits with variable underlying structure.PNAS , 106 (28), 11742–11746. doi: 10.1073/pnas.0905614106
Grether, G. F. (2005). Environmental Change, Phenotypic Plasticity, and
Genetic Compensation. The American Naturalist , 166 (4),
E115–E123. doi: 10.1086/432023
Handelsman, C. A., Ruell, E. W., Torres-Dowdall, J., & Ghalambor, C. K.
(2014). Phenotypic Plasticity Changes Correlations of Traits Following
Experimental Introductions of Trinidadian Guppies (Poecilia
reticulata ). Integrative and Comparative Biology , 54 (5),
794–804. doi: 10.1093/icb/icu112
Handelsman, Corey A., Broder, E. D., Dalton, C. M., Ruell, E. W.,
Myrick, C. A., Reznick, D. N., & Ghalambor, C. K. (2013).
Predator-induced phenotypic plasticity in metabolism and rate of growth:
Rapid adaptation to a novel environment. Integrative and
Comparative Biology , 53 (6), 975–988. doi: 10.1093/icb/ict057
Harris, S., Ramnarine, I. W., Smith, H. G., & Pettersson, L. B. (2010).
Picking personalities apart: Estimating the influence of predation, sex
and body size on boldness in the guppy Poecilia reticulata .Oikos . doi: 10.1111/j.1600-0706.2010.18028.x
Haskins, C., Haskins, E., McLaughlin, J., & Hewitt, R. (1961).
Polymorphism and population structure in Lebistes reticulatus, an
ecological study. In F. Blair (Ed.), Vertebrate speciation (pp.
320–395). Austin: University of Austin Press.
Ho, W. C., & Zhang, J. (2019). Genetic Gene Expression Changes during
Environmental Adaptations Tend to Reverse Plastic Changes Even after the
Correction for Statistical Nonindependence. Molecular Biology and
Evolution , 36 (3), 604–612. doi: 10.1093/molbev/msz002
Ho, W., & Zhang, J. (2018). Evolutionary adaptations to new
environments generally reverse plastic phenotypic changes. Nature
Communications , 9 (350), 1–11. doi: 10.1038/s41467-017-02724-5
Huizinga, M., Ghalambor, C. K., & Reznick, D. N. (2009). The genetic
and environmental basis of adaptive differences in shoaling behaviour
among populations of Trinidadian guppies, Poecilia reticulata .Journal of Evolutionary Biology , 22 (9), 1860–1866. doi:
10.1111/j.1420-9101.2009.01799.x
Insel, T. R., & Young, L. J. (2000). Neuropeptides and the evolution of
social behavior. Current Opinion in Neurobiology , 10 (6),
784–789. doi: 10.1016/S0959-4388(00)00146-X
Lande, R. (2009). Adaptation to an extraordinary environment by
evolution of phenotypic plasticity and genetic assimilation.Journal of Evolutionary Biology , 22 (7), 1435–1446. doi:
10.1111/j.1420-9101.2009.01754.x
Lehmann, E. L., & Romano, J. P. (2005). Testing Statistical
Hypotheses (Third Edit). New York: Springer.
Leinonen, T., Cano, J. M., Mäkinen, H., & Merilä, J. (2006).
Contrasting patterns of body shape and neutral genetic divergence in
marine and lake populations of threespine sticklebacks. Journal of
Evolutionary Biology , 19 , 1803–1812. doi:
10.1111/j.1420-9101.2006.01182.x
Li, L., Li, A., Song, K., Meng, J., Guo, X., Li, S., … Xu, F.
(2018). Divergence and plasticity shape adaptive potential of the
Pacific oyster. Nature Ecology Evolution , 2 , 1751–1760.
doi: 10.1038/s41559-018-0668-2
Losos, J. B. (2011). Convergence, adaptation, and constraint.Evolution , 65 (7), 1827–1840. doi:
10.1111/j.1558-5646.2011.01289.x
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biology , 15 (12), 1–21. doi: 10.1186/s13059-014-0550-8
Lynch, M. (2007). The frailty of adaptive hypotheses for the origins of
organismal complexity. PNAS , 104 , 8597–8604. doi:
10.17226/11790
Magurran, A. E. (2005). Evolutionary ecology: the Trinidadian guppy. InOxford Series in Ecology and Evolution (Vol. 19). doi:
10.1093/acprof
Magurran, A. E., & Seghers, B. H. (1990a). Population differences in
predator recognition and attack cone avoidance in the guppyPoecilia reticulata . Animal Behaviour , 40 (3),
443–452. doi: 10.1016/S0003-3472(05)80524-X
Magurran, A. E., & Seghers, B. H. (1990b). Population Differences in
the Schooling Behaviour of Newborn Guppies, Poecilia reticulata.Ethology , 84 , 334–342. doi:
10.1111/j.1439-0310.1990.tb00807.x
Magurran, A. E., & Seghers, B. H. (1991). Variation in Schooling and
Aggression Amongst Guppy (Poecilia Reticulata ) Populations in
Trinidad. Behaviour , 188 (3–4), 214–234. doi:
10.1163/156853991X00292
Magurran, A. E., & Seghers, B. H. (1994). Predator Inspection Behaviour
Covaries with Schooling Tendency Amongst Wild Guppy, Poecilia
Reticulata , Populations in Trinidad. Behaviour ,128 (1–2), 121–134. doi: 10.1163/156853994X00073
Mäkinen, H., Papakostas, S., Vøllestad, L. A., Leder, E. H., & Primmer,
C. R. (2016). Plastic and evolutionary gene expression responses are
correlated in European grayling (Thymallus thymallus )
subpopulations adapted to different thermal environments. Journal
of Heredity , 107 (1), 82–89. doi: 10.1093/jhered/esv069
Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B., &
Hoekstra, H. E. (2010). Convergence in pigmentation at multiple levels:
mutations, genes and function. Philosophical Transactions of the
Royal Society B: Biological Sciences , 365 (1552), 2439–2450.
doi: 10.1098/rstb.2010.0104
Mandic, M., Ramon, M. L., Gerstein, A. C., Gracey, A. Y., & Richards,
J. G. (2018). Variable gene transcription underlies phenotypic
convergence of hypoxia tolerance in sculpins. BMC Evolutionary
Biology , 18 , 163. doi: 10.1186/s12862-018-1275-1
Marder, E., & Goaillard, J. M. (2006). Variability, compensation and
homeostasis in neuron and network function. Nature Reviews
Neuroscience , 7 , 563–574. doi: 10.1038/nrn1949
Pankey, M. S., Minin, V. N., Imholte, G. C., Suchard, M. A., & Oakley,
T. H. (2014). Predictable transcriptome evolution in the convergent and
complex bioluminescent organs of squid. PNAS , 111 (44),
E4736–E4742. doi: 10.1073/pnas.1416574111
Pespeni, M. H., Sanford, E., Gaylord, B., Hill, T. M., Hosfelt, J. D.,
Jaris, H. K., … Palumbi, S. R. (2013). Evolutionary change during
experimental ocean acidification. PNAS , 110 (17),
6937–6942. doi: 10.1073/pnas.1220673110
Pigliucci, M. (2010). Genotype-phenotype mapping and the end of the
“genes as blueprint” metaphor. Philosophical Transactions of the
Royal Society B: Biological Sciences , 365 , 557–566. doi:
10.1098/rstb.2009.0241
Renn, S. C. P., & Schumer, M. E. (2013). Genetic accommodation and
behavioural evolution : insights from genomic studies. Animal
Behaviour , 85 (5), 1012–1022. doi: 10.1016/j.anbehav.2013.02.012
Reznick, D. A., Bryga, H., & Endler, J. A. (1990). Experimentally
induced life-history evolution in a natural population. Nature ,346 (6282), 357–359. doi: 10.1038/346357a0
Reznick, D., Butler IV, M. J., & Rodd, H. (2001). Life‐History
Evolution in Guppies. VII. The Comparative Ecology of High‐ and
Low‐Predation Environments. The American Naturalist ,157 (2), 126–140. doi: 10.1086/318627
Reznick, D. N. (1997). Life history evolution in guppies (Poecilia
reticulata ): Guppies as a model for studying the evolutionary biology
of aging. Experimental Gerontology , 32 (3), 245–258. doi:
10.1016/S0531-5565(96)00129-5
Reznick, D. N., & Bryga, H. (1987). Life-History Evolution in Guppies
(Poecilia reticulata ): 1. Phenotypic and Genetic Changes in an
Introduction Experiment. Evolution , 41 (6), 1370. doi:
10.2307/2409101
Rice, T. K., Schork, N. J., & Rao, D. C. (2008). Methods for Handling
Multiple Testing. Advances in Genetics , 60 , 293–308. doi:
10.1016/S0065-2660(07)00412-9
Rosenblum, E. B., Rompler, H., Schoneberg, T., & Hoekstra, H. E.
(2010). Molecular and functional basis of phenotypic convergence in
white lizards at White Sands. PNAS , 107 (5), 2113–2117.
doi: 10.1073/pnas.0911042107
Ruell, E. W., Handelsman, C. A., Hawkins, C. L., Sofaer, H. R.,
Ghalambor, C. K., & Angeloni, L. (2013). Fear, food and sexual
ornamentation: plasticity of colour development in Trinidadian guppies.Proceedings of the Royal Society B: Biological Sciences ,280 (1758), 20122019–20122019. doi: 10.1098/rspb.2012.2019
Schaum, E., Rost, B., Millar, A. J., & Collins, S. (2013). Variation in
plastic responses of a globally distributed picoplankton species to
ocean acidification. Nature Climate Change , 3 (3),
298–302. doi: 10.1038/nclimate1774
Scoville, A. G., & Pfrender, M. E. (2010). Phenotypic plasticity
facilitates recurrent rapid adaptation to introduced predators.PNAS , 107 (9), 4260–4263. doi: 10.1073/pnas.0912748107
Shaw, J. R., Hampton, T. H., King, B. L., Whitehead, A., Galvez, F.,
Gross, R. H., … Stanton, B. A. (2014). Natural selection
canalizes expression variation of environmentally induced
plasticity-enabling genes. Molecular Biology and Evolution ,31 (11), 3002–3015. doi: 10.1093/molbev/msu241
Siegal, M. L., & Leu, J.-Y. (2014). On the Nature and Evolutionary
Impact of Phenotypic Robustness Mechanisms. Annual Review of
Ecology, Evolution, and Systematics , 45 (1), 495–517. doi:
10.1146/annurev-ecolsys-120213-091705
Song, L., & Florea, L. (2015). Rcorrector: Efficient and accurate error
correction for Illumina RNA-seq reads. GigaScience , 4 (1),
1–8. doi: 10.1186/s13742-015-0089-y
Stern, D. L., & Orgogozo, V. (2008). The loci of evolution: How
predictable is genetic evolution? Evolution , 62 (9),
2155–2177. doi: 10.1111/j.1558-5646.2008.00450.x
Storey, J. D. (2002). A direct approach to false discovery rates.Journal of the Royal Statistical Society. Series B: Statistical
Methodology , 64 , 479–498. doi: 10.1111/1467-9868.00346
Strimmer, K. (2008). fdrtool: A versatile R package for estimating local
and tail area-based false discovery rates. Bioinformatics ,24 (12), 1461–1462. doi: 10.1093/bioinformatics/btn209
Thompson, K. A., Osmond, M. M., & Schluter, D. (2019). Parallel genetic
evolution and speciation from standing variation. Evolution
Letters , 3 (2), 129–141. doi: 10.1002/evl3.106
Torres-Dowdal, J., Handelsman, C. a, Reznick, D. N., & Ghalambor, C. K.
(2012). Local adaptation and the evolution of of phenotypic plasticity
in Trinidadian guppies (Poecilia reticulata ). Evolution ,66 (11), 3432–3443. doi: 10.5061/dryad.84gf5
Torres Dowdall, J., Handelsman, C. A., Ruell, E. W., Auer, S. K.,
Reznick, D. N., & Ghalambor, C. K. (2012). Fine-scale local adaptation
in life histories along a continuous environmental gradient in
Trinidadian guppies. Functional Ecology , 26 (3), 616–627.
doi: 10.1111/j.1365-2435.2012.01980.x
Velotta, J. P., & Cheviron, Z. A. (2018). Remodeling Ancestral
Phenotypic Plasticity in Local Adaptation : A New Framework to Explore
the Role of Genetic Compensation in the Evolution of Homeostasis.Integrative and Comparative Biology , 58 (6), 1098–1110.
doi: 10.1093/icb/icy117
Wagner, A. (2011). The origins of evolutionary innovations: a
theory of transformative change in living systems . Oxford: Oxford
University Press.
Wang, S. P., & Althoff, D. M. (2019). Phenotypic plasticity facilitates
initial colonization of a novel environment. Evolution ,73 (2), 303–316. doi: 10.1111/evo.13676
West-Eberhard, M. J. (2003). Developmental plasticity and
evolution . doi: 10.2002/ajpa.20219
Willing, E. M., Bentzen, P., Van Oosterhout, C., Hoffmann, M., Cable,
J., Breden, F., … Dreyer, C. (2010). Genome-wide single
nucleotide polymorphisms reveal population history and adaptive
divergence in wild guppies. Molecular Ecology , 19 (5),
968–984. doi: 10.1111/j.1365-294X.2010.04528.x
Yang, J. R., Maclean, C. J., Park, C., Zhao, H., & Zhang, J. (2017).
Intra and interspecific variations of gene expression levels in yeast
are largely neutral. Molecular Biology and Evolution . doi:
10.1093/molbev/msx171
Zandonà, E., Auer, S. K., Kilham, S. S., Howard, J. L., López-Sepulcre,
A., O’Connor, M. P., … Reznick, D. N. (2011). Diet quality and
prey selectivity correlate with life histories and predation regime in
Trinidadian guppies. Functional Ecology , 25 (5), 964–973.
doi: 10.1111/j.1365-2435.2011.01865.x