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1 Introduction

This paper concerns the generalized hyperbolic mean curvature flow (GHMCF) for s-

pacelike curves in Minkowski space R1,1. More precisely speaking, in the present paper

we investigate the following Cauchy problem Minkowski space R1,1 is the linear space

R1+1 endowed with the Lorentz metric

ds2 = dx2 − dy2.

Spacelike curves in R1,1 are Riemanian 1-manifolds, having an everywhere lightlike nor-

mal vector n⃗ which assume to be future directed and thus satisfy the condition < n⃗, n⃗ >=
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−1. Locally, such curves can be expressed as graphs of functions y = f(x) : R 7→ R sat-

isfying the spacelike conditions |fx| < 1 for all x ∈ R.

If a family of spacelike embeddings γt = γ(·, t) : S1 7→ R1,1 with corresponding curves

Mt = γ(·, t) satisfy the following evolution equation
∂2γ

∂t2
(z, t) =

∣∣∣∣∂γ∂z
∣∣∣∣2 k(z, t)n⃗(z, t)−⟨ ∂2γ

∂s∂t
,
∂γ

∂t

⟩
t⃗(z, t),

γ(z, 0) = γ0(z),
∂γ

∂t
(z, 0) = h(z)n⃗0,

(1.1)

where k denotes the mean curvature of the curve γt, n⃗ is the unit inner normal vector of

γt,s is the arclength parameter, T⃗ stands for the unit tangent vector of γt, γ0 denotes the

initial closed curve, while h and n⃗0 are the initial velocity and unit inner normal vector

of initial curve γ0, respectively. Clearly, the initial velocity is normal to the initial curve,

and at the beginning of Section 2 we will show that the flow described by (1.1) is always

normal one. On the other hand, it is easy to see that (1.1) is an initial value problem for

a system of second-order hyperbolic differential equations. Similar to [13], we can prove

the following theorem.

Theorem A (Local existences and uniqueness) Let γ0 be a smooth spacelike acausal

closed curve immersion of S1 into R1,1, and
∂γ

∂t
(z, 0) be an initial velocity. Then there

exist a positive T and a family of smooth spacelike acausal closed curves γ(·, t) with

t ∈ [0, T ) such that the Cauchy problem (1.1) admits a unique smooth solution γ(·, t) on

I, provided that h(z) is a smooth function on S1.

Traditionally, mean curvature flow (MCF) has been extensively studied in Euclidean

space; see [7], [9], [10],[11], [14], [16] and thereferences therein, while in Minkowski space,

MCF was studied in [8, 17] for compact hypersurfaces and in [5, 6] for noncompact hyper-

surfaces. The method of MCF in [8, 17] was used to constructed spacelike hypersurfaces

with prescribed mean curvature, which, as it is well-known, have played important roles

in studying Lorentzian manifolds. In 2001, Huisken and Ilmanen introduced the inverse

mean curvature flow (IMCF), developed a theory of weak solutions of the IMCF and

used this theory to prove successfully the Riemannian Penrose inequality which plays an

important role in general relativity (see [15]).

However, to our knowledge, there is very few hyperbolic versions of mean curvature

flow. The hyperbolic version of mean curvature flow is important in both mathematics

and applications, and has attracted many mathematicians to study it (e.g., [1], [12], [28]

and [31]). Gurtin and Podio-Guidugli [12] developed a hyperbolic theory for the evolution
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of plane curves. Rostein, Brandon and Novick-Cohen [28] studied a hyperbolic theory by

the mean curvature flow. A crystalline algorithm was developed for the motion of closed

polygonal curves. Yau in [31] has suggested the following equation related to a vibrating

membrane or the motion of a surface

∂2X

∂t2
= Hn⃗, (1.2)

where H is the mean curvature and n⃗ is the unit inner normal vector of the surface.

Recently, Kong and Liu introduced the hyperbolic geometric flow which is an attempt

to solve some problems arising from differential geometry and theoretical physics (in

particular, general relativity). The hyperbolic geometric flow is a very natural tool to

understand the wave character of the metrics, wave phenomenon of the curvatures, the

evolution of manifolds and their structures (see [3], [4], [13], [19]-[26]). Contrast to the

hyperbolic mean curvature flows studied in [13], [23] and [24], hyperbolic gauss curvature

flow [2] is proposed for convex hypersurfaces. The equation satisfied by the graph of

the hypersurface under this flow gives rise to a new class of fully nonlinear Euclidean

invariant hyperbolic equations. Recently, Notz in his Ph.D thesis [27] introduced and

studied a new geometric flow equation, which describes the motion of closed hypersurfaces

in Riemannian manifolds. If the surface is spherical, this equation can be considered as

an idealised mathematical model of a moving soap bubble. It can be obtained as an

Euler-Lagrange equation of a suitable action integral. In addition to the kinetic energy

this action integral contains terms for the surface tension and the inner pressure, which

depends on the enclosed volume. The resulting Euler-Lagrange equation is a quasilinear

degenerate hyperbolic partial differential equation of second order, which describes the

motion of the surface extrinsically. The author showed the short time existence theorem,

and proved a continuation criterion which gives a sufficient condition under which the

solution can be extended to a larger time interval. Kong [20] describes the hyperbolic

mean curvature flow, some of the discoveries that have been done about it.

In this paper we particularly investigate the formation of singularities of the evolution

of convex closed spacelike curves under the generalized hyperbolic mean curvature flow

in the Minkowski space R1,1. We shall prove that the smooth solution of the Cauchy

problem (1.1) will, in general, blow up in finite time, provided that the perimeter of the

initial closed curve and the initial velocity is suitably small, or the initial data satisfies

some additional (but not smallness) assumptions. Furthermore, our results show that

the curvature of the limit curve become unbounded as t → Tmax. See Section 3 for the

detailed blowup results.
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The paper is organized as follows. In Section 2, we derive a second-order quasilinear

wave equation, and by constructing the Riemann invariants we reduce the wave equation

to a reducible quasilinear hyperbolic system of first order, based on this, we analyze some

interesting properties enjoyed by this system. The main results are stated in Section 3.

Sections 4-5 are devoted to the proof of the main results.

2 Basic equations: derivation and properties

We first illustrate the flow described by (1.1) is normal one. In fact, noting

∂

∂t

⟨
∂γ

∂t
,
∂γ

∂z

⟩
=

⟨
∂2γ

∂t2
,
∂γ

∂z

⟩
+

⟨
∂γ

∂t
,
∂2γ

∂z∂t

⟩
= −

⟨
∂γ

∂t
,
∂2γ

∂z∂t

⟩
+

⟨
∂γ

∂t
,
∂2γ

∂z∂t

⟩
= 0.

we have ⟨
∂γ

∂t
,
∂γ

∂z

⟩
(z, t) =

⟨
∂γ

∂t
,
∂γ

∂z

⟩
(z, 0) = 0.

This implies that, if the initial velocity field is normal to the initial curve, then this

property is preserved during the evolution, Therefore, noting the third equation in (1.1)

we observe that the flow under consideration is normal one. Suppose that, during some

interval J , each γ(., t) is locally the graph of a function u(x, t) defined over J . Then we

can write γ as

γ(z, t) = (x, u(x, t)), ∀x ∈ J.

Thus, we have

t⃗ =
(1, ux)√
1− ux2

, n⃗ =
(ux, 1)√
1− ux2

,

and

k =
uxx

(
√

1− u2x)
3

∂γ

∂t
=

dx

dt
(1, ux) + (0, ut) . (2.1)

Taking the product with t⃗ and noting that the flow is normal, i.e.,⟨
∂γ

∂t
, t⃗

⟩
= 0,

we find that x satisfies
dx

dt
=

uxut
1− ux2

(2.2)

On the other hand, we have

∂2γ

∂t2
=

d2x

dt2
(1, ux) +

(
0, utt + 2

dx

dt
uxt +

(
dx

dt

)2

uxx

)
. (2.3)
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Taking the product with n⃗ yields

utt + 2
dx

dt
uxt +

(
dx

dt

)2

uxx = uxx, (2.4)

that is,

utt + 2
uxut

1− ux2
uxt +

[(
uxut
1− u2x

)2

− 1

]
uxx = 0 (2.5)

Let

p = ut, q = ux, (2.6)

Then (2.5) can be equivalently rewritten as
pt +

2pq

1− q2
px +

[(
pq

1− q2

)2

− 1

]
qx = 0,

qt − px = 0.

(2.7)

Setting

U = (p, q)T , (2.8)

we can write (2.7) as

Ut +A(U)Ux = 0. (2.9)

where

A(U) =

 2pq
1−q2

(
pq

1−q2

)2
− 1

−1 0

 , (2.10)

By direct calculation, the eigenvalues of A(U) read

λ± =
pq

1− q2
± 1. (2.11)

The right eigenvectors corresponding to λ± can be chosen as

r+ = (−λ+, 1)
T , r− = (−λ−, 1)

T , (2.12)

respectively; while the left eigenvectors corresponding to λ± can be taken as

l+ = (1, λ−), l− = (1, λ+), (2.13)

respectively. Summarizing the above argument gives.

Property 2.1. Under the assumption the |q| < 1, (2.7) is a strictly hyperbolic

system with two eigenvalues (see(2.11)), and the right (resp.left) eigenvectors can be

chosen as (2.12)(resp.(2.13)).
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Property 2.2. Under the assumption the |q| < 1, the characteristic field λ± are not

genuinely nonlinear in the sense of Lax (cf.Lax[20]).

Proof. We only need to calculate the invariants ▽λ± · r±.By a direct calculation,

we have

▽λ− ·r− =

(
∂λ−
∂p

,
∂λ−
∂q

)
· (−λ−, 1)

T =

(
∂λ−
∂q

− λ−
∂λ−
∂p

)
=

p

(1− q2)2
− q

1− q2
, (2.14)

Similarly, we obtain

▽λ+ · r+ =
p

(1− q2)2
− q

1− q2
(2.15)

It is easy to observe that the system (2.7) is genuinely nonlinear in the sense of Lax

if p ̸= q(1− q2), however the genuine nonlinearity is not valid when p = q(1− q2). Thus,

the proof of Property 2.2 is completed.

Introducing the Riemann invariants

r =
p√

1− q2
+ arcsin q, s =

p√
1− q2

− arcsin q, (2.16)

as new unknown functions, then the system (2.7) can be equivalently rewritten as
rt + λ−rx = 0,

st + λ+sx = 0.
(2.17)

In what follows, we consider the system (2.17) instead of the system (2.7) (or Eq. (2.5)).

In this case, the initial data r(x, 0) , r0(x), s(x, 0) , s0(x) corresponding to the initial

data u(x, 0) , f(x), ut(x, 0) , g(x) for Eq. (2.5) read


r0(x) = r(f ′, g) =

g(x)√
1− (f ′(x))2

+ arcsin f ′(x),

s0(x) = s(f ′, g) =
g(x)√

1− (f ′(x))2
− arcsin f ′(x)

(2.18)

It follows from (2.18) that, when r − s ̸= 2kπ + π, we have

p =
r + s

2
cos

r − s

2
, q = sin

r − s

2
. (2.19)

By the (2.11) and (2.19), we have

λ+(r, s) =
r + s

2
tan

r − s

2
+ 1, λ−(r, s) =

r + s

2
tan

r − s

2
− 1. (2.20)

Let V = (r, s)T , then (2.17) can be written as

Vt +B(V )Vx = 0, (2.21)
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where

B(V ) =

 λ−(r − s) 0

0 λ−(r − s)

 , (2.22)

The right eigenvectors corresponding to λ± can be chosen as

r+ = (0, λ− − λ+)
T , r− = (λ+ − λ−, 0)

T . (2.23)

By direct calculation, we have

∂λ−
∂s

=
∂λ+

∂s
=

1

2
tan

(
r − s

2

)
− r + s

4

[
sec2

(
r − s

2

)]
, (2.24)

∂λ−
∂r

=
∂λ+

∂r
=

1

2
tan

(
r − s

2

)
+

r + s

4

[
sec2

(
r − s

2

)]
, (2.25)

∂2λ−
∂s∂r

=
∂2λ+

∂s∂r
= −r + s

4
tan

(
r − s

2

)[
sec2

(
r − s

2

)]
, (2.26)

∂2λ−
∂r2

=
∂2λ+

∂r2
=

1

2

[
sec2

(
r − s

2

)]
+

r + s

4
tan

(
r − s

2

)[
sec2

(
r − s

2

)]
, (2.27)

∂2λ−
∂s2

=
∂2λ+

∂s2
= −1

2

[
sec2

r − s

2

]
+

r + s

4
tan

(
r − s

2

)[
sec2

(
r − s

2

)]
. (2.28)

We now calculate the invariants ∇λ− ·r− and ∇λ+ ·r+ By a direct calculation, we obtain

∇λ+ · r+ =

(
∂λ+

∂r
,
∂λ+

∂s

)
· (0, λ− − λ+)

T = (λ− − λ+) ·
∂λ+

∂s

=− tan

(
r − s

2

)
+

1

2

[
sec2

(
r − s

2

)]
=− q√

1− q2
+

p√
1− q2

· 1

1− q2
,

(2.29)

Similarly, we have

∇λ− · r− =
q√

1− q2
− p√

1− q2
· 1

1− q2
. (2.30)

In particular, at V = 0 (equlv. U=0), It holds that

λ+(0) = 1, λ+(0) = −1, (2.31)

∂λ+

∂r
=

∂λ+

∂s
= 0,

∂λ−
∂r

=
∂λ−
∂s

= 0, (2.32)

∂2λ+

∂r2
=

∂2λ+

∂r2
= −1

2
,

∂2λ+

∂s2
=

∂2λ+

∂s2
=

1

2
, (2.33)

∂2λ+

∂r∂s
=

∂2λ−
∂r∂s

= 0. (2.34)
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Hence, near V = 0 we have

λ−(r, s) =λ−(0) +
∂λ−
∂r

(0)r +
∂λ−
∂s

(0)s

+
1

2

(
∂2λ−
∂r2

(0)r2 + 2
∂2λ−
∂r∂s

(0)rs+
∂2λ−
∂s2

(0)s2
)
+O((|r|+ |s|)3)

=− 1 +
1

2
(−1

2
r2 +

1

2
s2) +O((|r|+ |s|)3)

=− 1 +
1

4
s2 − 1

2

∫ r

0
ξdξ +O((|r|+ |s|)3),

(2.35)

and

λ+(r, s) =λ+(0) +
∂λ+

∂r
(0)r +

∂λ−
∂s

(0)s

+
1

2

(
∂2λ+

∂r2
(0)r2 + 2

∂2λ+

∂r∂s
(0)rs+

∂2λ+

∂s2
(0)s2

)
+O((|r|+ |s|)3)

=1 +
1

2
(−1

2
r2 +

1

2
s2) +O((|r|+ |s|)3)

=1− 1

4
r2 +

1

2

∫ s

0
ηdη +O((|r|+ |s|)3).

(2.36)

3 Main results

In this section, we state main results of this paper-Theorems 3.1-3.5. We first consider

the Cauchy problem for the system (2.17), i.e.,

rt + λ−rx = 0, st + λ+sx = 0. (3.1)

with the initial data

t = 0 : r = r0(x), s = s0(x), (3.2)

t where λ± are given by (2.25), while r0(x) and s0(x) are two C1 smooth functions of

x ∈ R. Since we are interested in the motion of plane curves, we particularly consider

the periodic initial data, i.e., there exists a positive constant L such that

r0(x+ L) = r0(x), s0(x+ L) = s0(x), ∀x ∈ R. (3.3)

Define

δ = max{BV L
0 (r0(x)), BV L

0 (s0(x))}. (3.4)

Let

H(r, s) =
r + s

2
. (3.5)

In order to state the main result, we introduce the following constructive conditions:
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(a) there exist a point α∗ ∈ [0, L) and a positive constant C1 < 1 independent of δ

such that

|r0(α∗)| ≥ C1δ, (3.6)

(b)there exist a point β∗ ∈ [0, L) and a positive constant C2 < 1 independent of δ such

that

|s0(β∗)| ≥ C2δ. (3.7)

Theorem 3.1. Suppose that r0(x), s0(x) are C
1 periodic functions and satisfy (3.3),

Suppose furthermore that the constructive condition (3.6) or (3.7) is satisfied. Then the

C1 solution of the Cauchy problem (3.1)-(3.2) must blow up in finite time. and the

life-span T⃗ (δ) of the solution satisfies

T̃ (δ) = O(δ−1). (3.8)

In particular, we consider the initial data with the following form

r0(x) = εr̃0(x), s0(x) = εs̃0(x), (3.9)

where r̃0(x) and s̃0(x) are two C1 smooth periodic functions with period L, ε is a small

parameter. As a corollary of Theorem 3.1, we have

Theorem 3.2. Suppose that (r̃0(x), s̃0(x)) ̸= (0, 0), then there exists a small positive

constant ε0 such that for any ε ∈ (0, ε0], the C1 solution of the Cauchy problem (3.1),

(3.9) must blow up in finite time. and the life-span T⃗ (δ) of the solution satisfies

T̃ (δ) = O(ε−1). (3.10)

In fact, in the present situation it is easy to see that

δ = O(ε)

and one of the constructive condition (3.6)-(3.7) (at least one) is automatically satisfied.

Therefore, Theorem 3.2 comes from Theorem 3.1 directly.

The assumption (3.6) or (3.7) will be used in our proof. In fact, under the assumption

(3.6) or (3.7), by the characteristics method we can prove that the characteristics of the

same family will form an envelope in finite time, this results in the breakdown of the

solution in finite time.

We now turn to Eq. (2.5). Consider the Cauchy problem for Eq.(2.5) with the initial

data

t = 0 : u = f(x), ut = g(x), (3.11)
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where f(x) is a C2 smooth function and g(x) is a C1 smooth function, moreover they

satisfy

f(x+ L) = f(x), g(x+ L) = g(x), ∀x ∈ R, (3.12)

in which L is a positive constant. By Theorem 3.1, we get the following theorem imme-

diately.

Theorem 3.3. Let

r0(x) =
g(x)√

1− f ′(x)2
+ arcsin{f ′(x)}, s0(x) =

g(x)√
1− f ′(x)2

− arcsin{f ′(x)}. (3.13)

For r0 and s0 defined as above, suppose that one of the constructive conditions (3.6)-(3.7)

is satisfied. Then the C2 solution of the Cauchy problem (2.5), (3.13) must blow up in

finite time, and the life-span Tmax(δ) of the solution satisfies

Tmax(δ) = O(δ−1). (3.14)

On the other hand, by Theorem 3.2 we have

Theorem 3.4. If

f(x) = f̃ + εf̃(x), g(x) = εg̃(x), (3.15)

where f̃(x) is C2 smooth periodic function with period L and g̃(x) is a C1 smooth function

with period L, moreover f̃(x) and g̃(x) satisfy (f̃(x), g̃(x)) ̸= (0, 0), then the C2 solution

of the Cauchy problem (2.5), (3.15) must be blow up in finite time, and the life-span

Tmax(ε) of the solution satisfies

Tmax(δ) = O(δ−1). (3.16)

Theorem 3.5. Suppose that the initial data r0(x) and s0(x) satisfy

−π + max
x∈[0,L]

{s0(x)} < min
x∈[0,L]

{r0(x)}, (3.17)

max
x∈[0,L]

{r0(x)} < π + min
x∈[0,L]

{s0(x)}, (3.18)

and one of the following inequalities
min

x∈[0,L]
{r0(x) + s0(x)} > max

x∈[0,L]
{r0(x)− s0(x)},

min
x∈[0,L]

{−(r0(x) + s0(x))} > max
x∈[0,L]

{s0(x)− r0(x)},
(3.19)

Then the C1 solution of the Cauchy problem (3.1)-(3.2) must blow up in finite time.

In fact, the conditions (3.17)-(3.18) guarantee

−π < r − s < π. (3.20)
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This implies that the system (3.1) is strictly hyperbolic. On the other hand, any one of

the inequalities (3.19) guarantees that the system (3.1) is genuinely nonlinear. There-

fore, Theorem 3.5 follows immediately from the standard theory on classical solutions of

reducible quasilinear hyperbolic systems.

4 Some useful lammas

In the following two sections, we prove the main result-Theorem 3.1. This section is

devoted to establishing some useful lemmas which will play an important role in the

proof of Theorem 3.1. By (3.5) and (2.40)-(2.41), λ− and λ+ can be written as

λ−(r, s) = −1 +
1

4
s2 −

∫ r

0
H(r′, 0)dr′ +O((|r|+ |s|)3), (4.1)

λ+(r, s) = 1− 1

4
r2 +

∫ s

0
H(0, s′)ds′ +O((|r|+ |s|)3), (4.2)

respectively, Introduce the characteristic curves X1(α, t) and X2(β, T ) in the (x, t)-plane

for a given solution (r, s), which are defined by

∂X1(α, t)

∂t
= λ−(r(X1(α, t), t), s(X2(α, t), t)) X1(α, 0) = α, (4.3)

∂X2(β, t)

∂t
= λ+(r(X2(β, t), t), s(X2(β, t), t)) X2(, 0) = β, (4.4)

respectively. It is easy to see from (2.22) that

r(X1(α, t), t) = r0(α), (4.5)

and

s(X2(β, t), t) = s0(β). (4.6)

Let

Z1(α, t) =
∂X1(α, t)

∂α
, (4.7)

and

Z2(β, t) =
∂X2(α, t)

∂β
, (4.8)

Differentiating (4.3) with respect to α gives

∂

∂t
Z1(α, t) =

∂λ−
∂r

r′0(α) +
∂λ−
∂s

sxZ1(α, t). (4.9)

On the other hand, by(2.22), along (X1(α, t), t), we have

d

dt
s(X1(α, t), t) = st + λ−sx = (λ− − λ+)sx = −2sx.
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Hence, along X1(α, t) it holds that

sx = −1

2

ds

dt
(4.10)

Define

Λ1(r, s) =

∫ s

0

(∂λ−/∂s)(r, η)

λ−(r, η)− λ+(r, η)
dη

=

∫ s

0

[
−1

4
tan

(
r − η

2

)
+

1

8
(r + η)

[
sec2

(
r − η

2

)]]
dη

=− r + s

4
tan

(
r − s

2

)
,

(4.11)

and

ρ1(α, t) = exp{Λ1(r(X1(α, t), t), s(X1(α, t), t))}. (4.12)

Thus, we obtain from (4.5), (4.10), (4.11) and (4.12) that

∂λ−
∂s

sx =
∂λ−
∂s

· (−1

2
)
ds

dt
=

d

dt
log ρ1(α, t). (4.13)

Integrating (4.9) leads to

Z1(α, t) =
ρ1(α, t)

ρ1(α, 0)

[
1 + r′0(α)

∫ t

0

∂λ−
∂r

ρ1(α, 0)

ρ1(α, τ)
dτ

]
, (4.14)

Similarly, along (X2(β, T ), T ) it holds that

Z2(β, t) =
ρ1(β, t)

ρ1(β, 0)

[
1 + s′0(β)

∫ t

0

∂λ+

∂s

ρ2(β, 0)

ρ2(β, τ)
dτ

]
, (4.15)

where

ρ2(β, t) = exp{Λ2(r(X2(β, t), t), s(X2(β, t), t))}, (4.16)

and

Λ2(r, s) =

∫ r

0

(∂λ+/∂r)(ξ, s)

λ+(ξ, s)− λ−(ξ, s)
dξ

=

∫ r

0

[
1

4
tan

(
ξ − s

2

)
+

1

8
(ξ + s)

[
sec2

(
ξ − s

2

)]]
dξ

=
r + s

4
tan

(
r − s

2

)
.

(4.17)

Obviously, in order to prove Theorem 3.1, it suffices to show that there exists either

α or β with a corresponding time, say T , such that

Z1(α, T ) = 0 (4.18)

and

Z1(β, T ) = 0 (4.19)
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To do so, we need some preliminaries, e.g., Lemmas 4.1-4.6.

Without loss of generality, we may assume r0(0) = s0(0) = 0. Thus, noting (3.4), we

have

|r0(α)| =
∣∣∣∣r0(0) + ∫ L

0
r′0(α)dα

∣∣∣∣ = ∣∣∣∣∫ L

0
r′0(α)dα

∣∣∣∣ ≤ ∫ L

0
|r′0(α)|dα ≤ δ, ∀α ∈ [0, L]

Similarly, we have

|s0(β)| ≤ δ, ∀β ∈ [0, L].

Combining the above two inequalities yields

|r0(x)|, |s0(x)| ≤ δ. (4.20)

By (4.5)-(4.6), on the existence domain of the C1 solution of the Cauchy problem (3.1)-

(3.2) it holds that

|r(x, t)|, |s(x, t)| ≤ δ. (4.21)

In what follows, O(1) stands for an absolute constant depending on the system (3.1) but

independent of δ.

Lemma 4.1. On the existence domain of the C1 solution of the Cauchy problem

(3.1)-(3.2) it holds that 
|Λi(r, s)| = O(1)δ2 (i = 1, 2),

ρ1(α, t) = 1 +O(1)δ2,

ρ2(β, t) = 1 +O(1)δ2

(4.22)

Proof. By direct calculation, we have

∂Λ1

∂r
= −1

4
tan

(
r − s

2

)
− r + s

8

[
sec2

(
r − s

2

)]
,

∂Λ1

∂s
= −1

4
tan

(
r − s

2

)
+

r + s

8

[
sec2

(
r − s

2

)]
,

∂2Λ1

∂r∂s
=

r + s

8
tan

(
r − s

2

)[
sec2

(
r − s

2

)]
,

∂2Λ1

∂r2
= −1

4

[
sec2

(
r − s

2

)]
− r + s

8
tan

(
r − s

2

)[
sec2

(
r − s

2

)]
,

∂2Λ1

∂s2
=

1

4

[
sec2

(
r − s

2

)]
− r + s

8
tan

(
r − s

2

)[
sec2

(
r − s

2

)]
.

(4.23)

Hence,

Λ1(r, s) = −1

4
r2 +

1

4
s2 +O((|r|+ |s|)3), (4.24)

and then by (4.21),

|Λ1(r, s)| = O(1)δ2. (4.25)
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Combining (4.12) and (4.25) gives

ρ1(α, t) = exp{O(1)δ2} = 1 +O(1)δ2. (4.26)

Similarly, we can prove

|Λ2(r, s)| = O(1)δ2, (4.27)

and

ρ2(β, t) = exp{O(1)δ2} = 1 +O(1)δ2. (4.28)

This completes the proof.

Lemma 4.2. Let

m = min
α,β

{−λ−(r0(α), s0(β))} = min
α,β

{λ+(r0(α), s0(β))},

M = max
α,β

{−λ−(r0(α), s0(β))} = max
α,β

{λ+(r0(α), s0(β))},

Then

m = 1 +O(1)δ2,M = 1 +O(1)δ2, (4.29)

furthermore, for given α and t, define β(α, t) ≤ α by

X1(α, t) = X2(β(α, t), t).

Similarly, for given β and t, define α(β, t) ≥ β by

X2(β, t) = X1(α(β, t), t).

Then 
2mt ≤ α− β(α, t) ≤ 2Mt,

2mt ≤ α(β, t)− β ≤ 2Mt
(4.30)

Proof.(4.29) are obvious from (4.1) and (4.2). We next prove (4.30).

Noting

α−Mt ≤ X1(α, t) ≤ α−mt, (4.31)

we have

(α−Mt)−Mt ≤ β(α, t) ≤ (α−mt)−mt. (4.32)

This completes the proof of (4.30) for β(α, t). Similarly, we can prove another half of

(4.30).

Lemma 4.3. For a given α, we define t1(β;α) for every β ≤ α such that

X1(α, t1(β;α)) = X2(β, t1(β;α)). (4.33)
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For a given β, we define t2(α;β) for every α ≤ β such that

X2(β, t2(α;β)) = X1(α, t2(α;β)). (4.34)

Then
dt1(β;α)

dβ
= −Z2(β, t1(β;α))

2
< 0, (4.35)

and
dt2(α;β)

dβ
=

Z1(α, t2(α;β))

2
> 0, (4.36)

Proof. Differentiating (4.33) and (4.34) with respect to β and α, respectively, gives

∂X1

∂t1

dt1(β;α)

dβ
=

∂X2

∂β
+

∂X2

∂t1

dt1(β;α)

dβ

and
∂X2

∂t2

dt2(α;β)

dα
=

∂X1

∂α
+

∂X1

∂t2

dt2(α;β)

dα

And then, using (4.3) and (4.4), we obtain the desired (4.35) and (4.36) immediately.

Lemma4.4. If λ− satisfies (4.1) and λ+ satisfies (4.2), then

(i) it holds that

Z1(α, t) = O(1)[1 + |r′0(α)|δt] (4.37)

and

Z2(β, t) = O(1)[1 + |s′0(β)|δt] (4.38)

(ii) (a) if β2 ≤ β1 ≤ α, then

0 ≤ t1(β2;α)− t1(β1;α) ≤ O(1)(β1 − β2) +O(1)δ2t, (4.39)

(b)if β ≤ α1 ≤ α2, then

0 ≤ t2(α2;β)− t2(α1;β) ≤ O(1)(α2 − α1) +O(1)δ2t, (4.40)

(iii) for Z1 and Z2, it holds that

|Z1(α, t2)−Z1(α, t1)| = O(1)|r′0(α)|δ(t2− t1)+O(1)δ2(1+ |r′0(α)|δt1), ∀t2 > t1, (4.41)

and

|Z2(β, t2)−Z2(β, t1)| = O(1)|s′0(β)|δ(t2− t1)+O(1)δ2(1+ |s′0(β)|δt1), ∀t2 > t1, (4.42)

Proof. Part (i) is an easy consequence of (4.14)-(4.15), Lemma 4.1, (4.1) and (4.2).

We now prove part (ii).
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It follows from (4.35) that, if β2 ≤ β1 ≤ α, we have

t1(β2;α)− t1(β1;α) ≥ 0.

Integrating (4.35) leads to

t1(β2;α)− t1(β1;α) =

∫ β2

β1

−Z2(β, t1(β;α))

2
dβ,

=

∫ β1

β2

O(1)(1 + |s′0(β)|δt)
2

dβ

=O(1)(β1 − β2) +O(1)δ2t.

This proves (4.39). Similarly,we can prove (4.40).

We next prove part (iii).

It follows from (4.14) that, for t2 > t1,

Z1(α; t2)− Z1(α; t1) =
ρ1(α, t2)− ρ1(α, t1)

ρ1(α, 0)

[
1 + r′0(α)

∫ t1

0

∂λ−
∂r

ρ1(α, 0)

ρ1(α, τ)
dτ

]
+ ρ1(α, t2)r

′
0(α)

∫ t2

t1

∂λ−
∂r

1

ρ1(α, τ)
dτ

=
ρ1(α, t2)− ρ1(α, t1)

ρ1(α, t1)
Z1(α, t1) + ρ1(α, t2)r

′
0(α)

∫ t2

t1

∂λ−
∂r

1

ρ1(α, τ)
dτ.

Using part (i) and (4.22), we have

|Z1(α, t2)−Z1(α, t1)| ≤ C[|r′0(α)|·|t2−t1|δ+|ρ1(α, t2)−ρ1(α, t1)|(1+|r′0(α)|δt1)], (4.43)

where C is a positive constant. Thus (4.41) follows now with the following remark

|ρ1(α, t2)− ρ1(α, t1)| = O(δ2).

Similarly, we can prove (4.42). This completes the proof.

Lemma 4.5. If λ− satisfies (4.1) and λ+ satisfies (4.2), then it holds that

Z1(α, t) =1− r′0(α)

∫ t

0

r0(α)

2
dt′ +O(1)δ2[1 + |r′0(α)|t]

=1 +
r′0(α)

2

∫ β(α,t)

α

r0(α)

2
Z2(β, t1(β;α))dβ

+O(1)δ2[1 + |r′0(α)|t],

(4.44)

and

Z2(β, t) =1 + s′0(β)

∫ t

0

s0(β)

2
dt′ +O(1)δ2[1 + |s′0(β)|t]

=1 +
s′0(β)

2

∫ α(β,t)

β

s0(β)

2
Z1(α, t1(α;β))dα

+O(1)δ2[1 + |s′0(β)|t].

(4.45)
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Proof. By (4.1), (4.14) and (4.22), we have

Z1(α, t) =[1 +O(δ2)]

[
1 + r′0(α)

∫ t

0

[
−r0(α)

2
+O(δ2)

]
[1 +O(δ2)]dt′

]
=1− r′0(α)

∫ t

0

r0(α)

2
dt′ +O(1)δ2[1 + |r′0(α)|t]dt′

=1 + r′0(α)

∫ β(α,t)

α

r0(α)

2

dt1(β;α)

dβ
dβ +O(1)δ2[1 + |r′0(α)|t]

=1 +
r′0(α)

2

∫ β(α,t)

α

r0(α)

2
Z2(β, t1(β;α))(1 +O(δ2))dβ +O(1)δ2[1 + |r′0(α)|t]

=1 +
r′0(α)

2

∫ β(α,t)

α

r0(α)

2
Z2(β, t1(β;α))dβ +O(1)δ2[1 + |r′0(α)|t].

This proves(4.44). Similarly, we can prove (4.45). The proof is complete.

Similar to the proof of Lemma 4.6 in [24], we can get the following results.

Lemma 4.6. If λ− satisfies (4.1) and λ+ satisfies (4.2), then it holds that

α− (N2 + 1)L < β(α, t) ≤ α−N2L and β +N1L ≤ α(β, t) < β + (N1 + 1)L,

then

Z1(α, t) =1− r′0(α)

2L

∫ L

0

r0(α)

2
dβ ·N2L+O(1)δ|r′0(α)|(t− t1(α−N2L;α))

+O(1)δ2(1 + |r′0(α)|t+ |r′0(α)|2δ2t2),
(4.46)

and

Z2(β, t) =1 +
s′0(β)

2L

∫ L

0

s0(β)

2
dα ·N1L+O(1)δ|r′0(α)|(t− t1(β;β +N1L))

+O(1)δ2(1 + |s′0(β)|t+ |r′0(β)|2δ2t2).
(4.47)

5 Formation of singularities-Proof of Theorem 3.1

Since at the original (r, s) = (0, 0), the system (3.1) is not genuinely nonlinear, it is

difficult but interesting to discuss the solution of the system (3.1) in a neighborhood of

the original of the (r, s)-plane. Therefore, as in Section 4, without loss of generality, we

suppose that

r0(0) = s0(0) = 0. (5.1)

Thus, as before, we have

|r0(x)|, |s0(x)| ≤ δ, ∀x ∈ R, (5.2)

and

|r(x, t)|, |s(x, t)| ≤ δ (5.3)
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for any point (x, t) in the existence domain of the C1 Solution of the Cauchy problem

(3.1)-(3.2).

On the one hand, it follows from (4.22) that

α− β(α, t) ≥ 2mt,

and then

N2L ≥ 2mt− L,

Noting Lemma 4.2 and using (4.1) and (4.2), we have

m ≥ 1− Cδ2

for small δ, where C is a positive absolute constant. Thus, we obtain

2t− L− Cδ2t ≤ N2L, (5.4)

hence,

N2L = O(1)t. (5.5)

On the other hand, noting the hypotheses (3.8) and (3.9), without loss of generality,

we may assume that there exist some points α ∈ I ⊂ [0, L] and a positive constant C1

independent of δ such that

r0(α) ≥ C1δ, ∀α ∈ I (5.6)

Without loss of generality, we may assume that

measure{I} > 0.

Otherwise, take the absolute constant C1
2 as C1. Thus, it is obvious that there exists a

point α∗ ∈ I such that

r′0(α
∗) > 0 and r0(α

∗) ≥ C1δ. (5.7)

Define α∗
N2

by

α∗
N2

= α∗ −N2L, (5.8)

and tN2 by

X1(α
∗, tN2) = X2(α

∗
N2

, tN2). (5.9)

It follows from (4.45) and (4.47) that

Z1(X1(α
∗, tN2), tN2) =1−O(1)

r′0(α
∗)tN2

2L

∫ L

0

r0(α
∗)

2
dβ

+O(1)δ2[1 + r′0(α
∗)tN2 + (r′0(α

∗))2δ2t2N2
],

(5.10)
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then

Z1(X1(α
∗, tN2), tN2) ≤1−O(1)

C1

2L
r′0(α

∗)δtN2

+O(1)δ2[1 + r′0(α
∗)tN2 + (r′0(α

∗))2δ2t2N2
]

(5.11)

In (5.10), we have made use of the fact that N2 = O(1)tN2 . Choosing

−3

2
≤ 1−O(1)

C1

2L
r′0(α

∗)δtN2 < −1

2
, (5.12)

we have

Z1(X1(α
∗, tN2), tN2 ≤ −1

2
+O(1)δ ≤ 0. (5.13)

Thus, noting

Z1(X1(α
∗, 0), 0) = 1, (5.14)

we observe that there exists a time T ∈ [0, tN2) such that

Z1(X1(α
∗, T ), T ) = 0. (5.15)

On the other hand, along the characteristic x = X1(α
∗, t) we have

rx · Z1(X1(α
∗, t), t) = r′0(α

∗), ∀t ∈ [0, T ). (5.16)

Combining (5.15) and (5.16), we find that rx goes to the infinity as t → T . This implies

that the C1 smooth solution of the Cauchy problem (3.1)-(3.2) must blow up before the

time t = T . Obviously, the life-span satisfies (3.10). This completes the proof of Theorem

3.1.
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