References
Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J.
A., & Richardson, A. E. (2016). Network analysis reveals functional
redundancy and keystone taxa amongst bacterial and fungal communities
during organic matter decomposition in an arable soil. Soil
Biology & Biochemistry, 97 , 188-198.
Banerjee, S., Schlaeppi, K., & van der Heijden, M. G. A. (2018).
Keystone taxa as drivers of microbiome structure and functioning.Nature Reviews Microbiology, 16 (9), 567-576.
Blackwood, C. B., Waldrop, M. P., Zak, D. R., & Sinsabaugh, R. L.
(2007). Molecular analysis of fungal communities and laccase genes in
decomposing litter reveals differences among forest types but no impact
of nitrogen deposition. Environmental Microbiology, 9 (5),
1306-1316.
Brown, S. P., Rigdon-Huss, A. R., & Jumpponen, A. (2014). Analyses of
ITS and LSU gene regions provide congruent results on fungal community
responses. Fungal Ecology, 9 , 65-68.
Buckeridge, K. M., Banerjee, S., Siciliano, S. D., & Grogan, P. (2013).
The seasonal pattern of soil microbial community structure in mesic low
arctic tundra. Soil Biology & Biochemistry, 65 (65), 338-347.
Cheng, L., Zhang, N. F., Yuan, M. T., Xiao, J., Qin, Y. J., Deng, Y., .
. . Zhou, J. Z. (2017). Warming enhances old organic carbon
decomposition through altering functional microbial communities.The Isme Journal, 11 (8), 1825-1835.
Christiansen, C. T., Haugwitz, M. S., Priemé, A., Nielsen, C. S.,
Elberling, B., Michelsen, A., . . . Blok, D. (2016). Enhanced summer
warming reduces fungal decomposer diversity and litter mass loss more
strongly in dry than in wet tundra. Global Change Biology, 23 (1),
406.
Clemmensen, K. E., Michelsen, A., Jonasson, S., & Shaver, G. R. (2006).
Increased ectomycorrhizal fungal abundance after long-term fertilization
and warming of two arctic tundra ecosystems. New Phytologist,
171 (2), 391-404.
Culleton, H., Mckie, V., & de Vries, R. P. (2013). Physiological and
molecular aspects of degradation of plant polysaccharides by fungi: What
have we learned from Aspergillus? Biotechnology Journal, 8 (8),
884-U822.
de Graaff, M. A., Classen, A. T., Castro, H. F., & Schadt, C. W.
(2010). Labile soil carbon inputs mediate the soil microbial community
composition and plant residue decomposition rates. New
Phytologist, 188 (4), 1055-1064.
de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M.,
Gweon, H. S., . . . Bardgett, R. D. (2018). Soil bacterial networks are
less stable under drought than fungal networks. Nature
Communications, 9 , 3033.
De Vries, F. T., Liiri, M. E., Bjørnlund, L., Bowker, M. A.,
Christensen, S., Setälä, H. M., & Bardgett, R. D. (2012). Land use
alters the resistance and resilience of soil food webs to drought.Nature Climate Change, 2 (4), 276-280.
Deng, Y., Jiang, Y. H., Yang, Y. F., He, Z. L., Luo, F., & Zhou, J. Z.
(2012). Molecular ecological network analyses. Bmc Bioinformatics,
13 (1), 113.
Deslippe, J. R., Hartmann, M., Simard, S. W., & Mohn, W. W. (2012).
Long‐term warming alters the composition of Arctic soil microbial
communities. Fems Microbiology Ecology, 82 (2), 303-315.
Fan, F. L., Li, Z. J., Wakelin, S. A., Yu, W. T., & Liang, Y. C.
(2012). Mineral fertilizer alters cellulolytic community structure and
suppresses soil cellobiohydrolase activity in a long-term fertilization
experiment. Soil Biology & Biochemistry, 55 , 70-77.
Faust, K., & Raes, J. (2012). Microbial interactions: from networks to
models. Nature Reviews Microbiology, 10 (8), 538-550.
Fraser, R. H., Lantz, T. C., Olthof, I., Kokelj, S. V., & Sims, R. A.
(2014). Warming-induced shrub expansion and lichen decline in the
western Canadian Arctic. Ecosystems, 17 (7), 1151-1168.
Fuhrman, J. A. (2009). Microbial community structure and its functional
implications. Nature, 459 (7244), 193-199.
Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of
complex metabolic networks. Nature, 433 (7028), 895-900.
He, Z., Gentry, T. J., Schadt, C. W., Wu, L., Liebich, J., Chong, S. C.,
. . . Zhou, J. (2007). GeoChip: a comprehensive microarray for
investigating biogeochemical, ecological and environmental processes.The Isme Journal, 1 , 67.
Hinkel, K. M., & Hurd, J. K. (2006). Permafrost destabilization and
thermokarst following snow fence installation, Barrow, Alaska, USA.Arctic Antarctic and Alpine Research, 38 (4), 530-539.
Hultman, J., Waldrop, M. P., Mackelprang, R., David, M. M., Mcfarland,
J., Blazewicz, S. J., . . . Shah, M. B. (2015). Multi-omics of
permafrost, active layer and thermokarst bog soil microbiomes.Nature, 521 (7551), 208.
Levy-Booth, D. J., Prescott, C. E., & Grayston, S. J. (2014). Microbial
functional genes involved in nitrogen fixation, nitrification and
denitrification in forest ecosystems. Soil Biology &
Biochemistry, 75 , 11-25.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G.
V., Grosse, G., . . . Zona, D. (2016). Pan-Arctic ice-wedge degradation
in warming permafrost and its influence on tundra hydrology.Nature Geoscience, 9 (4), 312-318.
Liu, S., Wang, F., Xue, K., Sun, B., Zhang, Y., He, Z., . . . Yang, Y.
(2015). The interactive effects of soil transplant into colder regions
and cropping on soil microbiology and biogeochemistry.Environmental Microbiology, 17 (3), 566-576.
Malcolm, G. M., Lopez-Gutierrez, J. C., Koide, R. T., & Eissenstat, D.
M. (2008). Acclimation to temperature and temperature sensitivity of
metabolism by ectomycorrhizal fungi. Global Change Biology,
14 (5), 1169-1180.
Mann, P. J., Eglinton, T. I., Mcintyre, C. P., Zimov, N., Davydova, A.,
Vonk, J. E., . . . Spencer, R. G. M. (2015). Utilization of ancient
permafrost carbon in headwaters of Arctic fluvial networks. Nature
Communications, 6 , 7856.
Mau, R. L., Dijkstra, P., Schwartz, E., Koch, B. J., & Hungate, B. A.
(2018). Warming induced changes in soil carbon and nitrogen influence
priming responses in four ecosystems. Applied Soil Ecology, 124 ,
110-116.
Morgado, L. N., Semenova, T. A., Welker, J. M., Walker, M. D., Smets,
E., & Geml, J. (2016). Long-term increase in snow depth leads to
compositional changes in arctic ectomycorrhizal fungal communities.Global Change Biology, 22 (9), 3080-3096.
Mundra, S., Halvorsen, R., Kauserud, H., Bahram, M., Tedersoo, L.,
Elberling, B., . . . Eidesen, P. B. (2016). Ectomycorrhizal and
saprotrophic fungi respond differently to long-term experimentally
increased snow depth in the High Arctic. Microbiologyopen, 5 (5),
856-869.
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M.,
Hallinger, M., Blok, D., . . . Vellend, M. (2015). Climate sensitivity
of shrub growth across the tundra biome. Nature Climate Change,
5 , 887-891.
Natali, S. M., Eag, S., & Rubin, R. L. (2012). Increased plant
productivity in Alaskan tundra as a result of experimental warming of
soil and permafrost. Journal of Ecology, 100 (2), 488-498.
Natali, S. M., Schuur, E. A. G., Trucco, C., Pries, C. E. H., Crummer,
K. G., & Lopez, A. F. B. (2011). Effects of experimental warming of
air, soil and permafrost on carbon balance in Alaskan tundra.Global Change Biology, 17 (3), 1394-1407.
Natali, S. M., Schuur, E. A. G., Webb, E. E., Pries, C. E. H., &
Crummer, K. G. (2014). Permafrost degradation stimulates carbon loss
from experimentally warmed tundra. Ecology, 95 (3), 602-608.
Nowinski, N. S., Taneva, L., Trumbore, S. E., & Welker, J. M. (2010).
Decomposition of old organic matter as a result of deeper active layers
in a snow depth manipulation experiment. Oecologia, 163 (3),
785-792.
Rinnan, R., Michelsen, A., Baath, E., & Jonasson, S. (2007).
Mineralization and carbon turnover in subarctic heath soil as affected
by warming and additional litter. Soil Biology & Biochemistry,
39 (12), 3014-3023.
Rovira, P., & Vallejo, V. R. (2002). Labile and recalcitrant pools of
carbon and nitrogen in organic matter decomposing at different depths in
soil: an acid hydrolysis approach. Geoderma, 107 (1-2), 109-141.
Schadt, C. W., Martin, A. P., Lipson, D. A., & Schmidt, S. K. (2003).
Seasonal dynamics of previously unknown fungal lineages in tundra soils.Science, 301 (5638), 1359-1361.
Schuur, E. A. G., Crummer, K. G., Vogel, J. G., & Mack, M. C. (2007).
Plant species composition and productivity following permafrost thaw and
thermokarst in Alaskan tundra. Ecosystems, 10 (2), 280-292.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O.,
& Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon
release and net carbon exchange from tundra. Nature, 459 (7246),
556-559.
Semenova, T. A., Morgado, L. N., Welker, J. M., Walker, M. D., Smets,
E., & Geml, J. (2016). Compositional and functional shifts in arctic
fungal communities in response to experimentally increased snow depth.Soil Biology & Biochemistry, 100 , 201-209.
Shi, S. J., Nuccio, E. E., Shi, Z. J., He, Z. L., Zhou, J. Z., &
Firestone, M. K. (2016). The interconnected rhizosphere: High network
complexity dominates rhizosphere assemblages. Ecology Letters,
19 (8), 926-936.
Sturm, M., Racine, C., & Tape, K. (2001). Climate change - Increasing
shrub abundance in the Arctic. Nature, 411 (6837), 546-547.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova,
G., & Zimov, S. (2009). Soil organic carbon pools in the northern
circumpolar permafrost region. Global Biogeochemical Cycles, 23 ,
GB2023.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S.,
Wijesundera, R., . . . Abarenkov, K. (2014). Global diversity and
geography of soil fungi. Science, 346 (6213), 1256688.
Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J., & Taylor, D. L.
(2014). Rich and cold: diversity, distribution and drivers of fungal
communities in patterned-ground ecosystems of the North American Arctic.Molecular Ecology, 23 (13), 3258-3272.
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H. W., Anderson, I.
C., Jeffries, T. C., . . . Singh, B. K. (2016). Microbial regulation of
the soil carbon cycle: evidence from gene-enzyme relationships.The Isme Journal, 10 (11), 2593-2604.
Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., & Liski, J. (2008).
Heterotrophic soil respiration—comparison of different models
describing its temperature dependence. Ecological Modelling,
211 (1-2), 182-190.
Walker, M. (1996). Community baseline measurements for ITEX
studies (2nd edn ed.). Copenhagen: Danish Polar Centre.
Wallenstein, M. D., McMahon, S., & Schimel, J. (2007). Bacterial and
fungal community structure in Arctic tundra tussock and shrub soils.Fems Microbiology Ecology, 59 (2), 428-435.
Wang, H., He, Z., Lu, Z., Zhou, J., Van Nostrand, J. D., Xu, X., &
Zhang, Z. (2012). Genetic linkage of soil carbon pools and microbial
functions in subtropical freshwater wetlands in response to experimental
warming. Applied and Environmental Microbiology, 78 (21),
7652-7661.
Weber, C. F., Zak, D. R., Hungate, B. A., Jackson, R. B., Vilgalys, R.,
Evans, R. D., . . . Kuske, C. R. (2011). Responses of soil cellulolytic
fungal communities to elevated atmospheric CO2 are
complex and variable across five ecosystems. Environmental
Microbiology, 13 (10), 2778-2793.
Weinstein, R. N., Montiel, P. O., & Johnstone, K. (2000). Influence of
growth temperature on lipid and soluble carbohydrate synthesis by fungi
isolated from fellfield soil in the maritime Antarctic. Mycologia,
92 (2), 222-229.
Wu, L., Yang, Y., Chen, S., Zhao, M., Zhu, Z., Yang, S., . . . Zhou, J.
(2016). Long-term successional dynamics of microbial association
networks in anaerobic digestion processes. Water Research, 104 ,
1-10.
Xue, K., Yuan, M. M., Zhou, J. S., Qin, Y., Deng, Y., Cheng, L., . . .
Bracho, R. (2016). Tundra soil carbon is vulnerable to rapid microbial
decomposition under climate warming. Nature Climate Change, 6 ,
595–600.
Yergeau, E., Kang, S., He, Z., Zhou, J., & Kowalchuk, G. A. (2007).
Functional microarray analysis of nitrogen and carbon cycling genes
across an Antarctic latitudinal transect. The Isme Journal, 1 (2),
163-179.
Yuste, J. C., Peñuelas, J., Estiarte, M., Garciamas, J., Mattana, S.,
Ogaya, R., . . . Sardans, J. (2011). Drought-resistant fungi control
soil organic matter decomposition and its response to temperature.Global Change Biology, 17 (3), 1475-1486.
Zak, D. R., & Kling, G. W. (2006). Microbial community composition and
function across an arctic tundra landscape. Ecology, 87 (7),
1659-1670.
Zhao, M., Xue, K., Wang, F., Liu, S., Bai, S., Sun, B., . . . Yang, Y.
(2014). Microbial mediation of biogeochemical cycles revealed by
simulation of global changes with soil transplant and cropping.The Isme Journal, 8 (10), 2045-2055.
Zhou, J. Z., Xue, K., Xie, J. P., Deng, Y., Wu, L. Y., Cheng, X. H., . .
. Luo, Y. Q. (2012). Microbial mediation of carbon-cycle feedbacks to
climate warming. Nature Climate Change, 2 (2), 106-110.