References
Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology & Biochemistry, 97 , 188-198.
Banerjee, S., Schlaeppi, K., & van der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning.Nature Reviews Microbiology, 16 (9), 567-576.
Blackwood, C. B., Waldrop, M. P., Zak, D. R., & Sinsabaugh, R. L. (2007). Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environmental Microbiology, 9 (5), 1306-1316.
Brown, S. P., Rigdon-Huss, A. R., & Jumpponen, A. (2014). Analyses of ITS and LSU gene regions provide congruent results on fungal community responses. Fungal Ecology, 9 , 65-68.
Buckeridge, K. M., Banerjee, S., Siciliano, S. D., & Grogan, P. (2013). The seasonal pattern of soil microbial community structure in mesic low arctic tundra. Soil Biology & Biochemistry, 65 (65), 338-347.
Cheng, L., Zhang, N. F., Yuan, M. T., Xiao, J., Qin, Y. J., Deng, Y., . . . Zhou, J. Z. (2017). Warming enhances old organic carbon decomposition through altering functional microbial communities.The Isme Journal, 11 (8), 1825-1835.
Christiansen, C. T., Haugwitz, M. S., Priemé, A., Nielsen, C. S., Elberling, B., Michelsen, A., . . . Blok, D. (2016). Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Global Change Biology, 23 (1), 406.
Clemmensen, K. E., Michelsen, A., Jonasson, S., & Shaver, G. R. (2006). Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytologist, 171 (2), 391-404.
Culleton, H., Mckie, V., & de Vries, R. P. (2013). Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned from Aspergillus? Biotechnology Journal, 8 (8), 884-U822.
de Graaff, M. A., Classen, A. T., Castro, H. F., & Schadt, C. W. (2010). Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188 (4), 1055-1064.
de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., . . . Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9 , 3033.
De Vries, F. T., Liiri, M. E., Bjørnlund, L., Bowker, M. A., Christensen, S., Setälä, H. M., & Bardgett, R. D. (2012). Land use alters the resistance and resilience of soil food webs to drought.Nature Climate Change, 2 (4), 276-280.
Deng, Y., Jiang, Y. H., Yang, Y. F., He, Z. L., Luo, F., & Zhou, J. Z. (2012). Molecular ecological network analyses. Bmc Bioinformatics, 13 (1), 113.
Deslippe, J. R., Hartmann, M., Simard, S. W., & Mohn, W. W. (2012). Long‐term warming alters the composition of Arctic soil microbial communities. Fems Microbiology Ecology, 82 (2), 303-315.
Fan, F. L., Li, Z. J., Wakelin, S. A., Yu, W. T., & Liang, Y. C. (2012). Mineral fertilizer alters cellulolytic community structure and suppresses soil cellobiohydrolase activity in a long-term fertilization experiment. Soil Biology & Biochemistry, 55 , 70-77.
Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10 (8), 538-550.
Fraser, R. H., Lantz, T. C., Olthof, I., Kokelj, S. V., & Sims, R. A. (2014). Warming-induced shrub expansion and lichen decline in the western Canadian Arctic. Ecosystems, 17 (7), 1151-1168.
Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature, 459 (7244), 193-199.
Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433 (7028), 895-900.
He, Z., Gentry, T. J., Schadt, C. W., Wu, L., Liebich, J., Chong, S. C., . . . Zhou, J. (2007). GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes.The Isme Journal, 1 , 67.
Hinkel, K. M., & Hurd, J. K. (2006). Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, USA.Arctic Antarctic and Alpine Research, 38 (4), 530-539.
Hultman, J., Waldrop, M. P., Mackelprang, R., David, M. M., Mcfarland, J., Blazewicz, S. J., . . . Shah, M. B. (2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.Nature, 521 (7551), 208.
Levy-Booth, D. J., Prescott, C. E., & Grayston, S. J. (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology & Biochemistry, 75 , 11-25.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., . . . Zona, D. (2016). Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology.Nature Geoscience, 9 (4), 312-318.
Liu, S., Wang, F., Xue, K., Sun, B., Zhang, Y., He, Z., . . . Yang, Y. (2015). The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.Environmental Microbiology, 17 (3), 566-576.
Malcolm, G. M., Lopez-Gutierrez, J. C., Koide, R. T., & Eissenstat, D. M. (2008). Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Global Change Biology, 14 (5), 1169-1180.
Mann, P. J., Eglinton, T. I., Mcintyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., . . . Spencer, R. G. M. (2015). Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nature Communications, 6 , 7856.
Mau, R. L., Dijkstra, P., Schwartz, E., Koch, B. J., & Hungate, B. A. (2018). Warming induced changes in soil carbon and nitrogen influence priming responses in four ecosystems. Applied Soil Ecology, 124 , 110-116.
Morgado, L. N., Semenova, T. A., Welker, J. M., Walker, M. D., Smets, E., & Geml, J. (2016). Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.Global Change Biology, 22 (9), 3080-3096.
Mundra, S., Halvorsen, R., Kauserud, H., Bahram, M., Tedersoo, L., Elberling, B., . . . Eidesen, P. B. (2016). Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen, 5 (5), 856-869.
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., . . . Vellend, M. (2015). Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5 , 887-891.
Natali, S. M., Eag, S., & Rubin, R. L. (2012). Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology, 100 (2), 488-498.
Natali, S. M., Schuur, E. A. G., Trucco, C., Pries, C. E. H., Crummer, K. G., & Lopez, A. F. B. (2011). Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra.Global Change Biology, 17 (3), 1394-1407.
Natali, S. M., Schuur, E. A. G., Webb, E. E., Pries, C. E. H., & Crummer, K. G. (2014). Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology, 95 (3), 602-608.
Nowinski, N. S., Taneva, L., Trumbore, S. E., & Welker, J. M. (2010). Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia, 163 (3), 785-792.
Rinnan, R., Michelsen, A., Baath, E., & Jonasson, S. (2007). Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter. Soil Biology & Biochemistry, 39 (12), 3014-3023.
Rovira, P., & Vallejo, V. R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107 (1-2), 109-141.
Schadt, C. W., Martin, A. P., Lipson, D. A., & Schmidt, S. K. (2003). Seasonal dynamics of previously unknown fungal lineages in tundra soils.Science, 301 (5638), 1359-1361.
Schuur, E. A. G., Crummer, K. G., Vogel, J. G., & Mack, M. C. (2007). Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems, 10 (2), 280-292.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459 (7246), 556-559.
Semenova, T. A., Morgado, L. N., Welker, J. M., Walker, M. D., Smets, E., & Geml, J. (2016). Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth.Soil Biology & Biochemistry, 100 , 201-209.
Shi, S. J., Nuccio, E. E., Shi, Z. J., He, Z. L., Zhou, J. Z., & Firestone, M. K. (2016). The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 19 (8), 926-936.
Sturm, M., Racine, C., & Tape, K. (2001). Climate change - Increasing shrub abundance in the Arctic. Nature, 411 (6837), 546-547.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23 , GB2023.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., . . . Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346 (6213), 1256688.
Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J., & Taylor, D. L. (2014). Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic.Molecular Ecology, 23 (13), 3258-3272.
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H. W., Anderson, I. C., Jeffries, T. C., . . . Singh, B. K. (2016). Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships.The Isme Journal, 10 (11), 2593-2604.
Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., & Liski, J. (2008). Heterotrophic soil respiration—comparison of different models describing its temperature dependence. Ecological Modelling, 211 (1-2), 182-190.
Walker, M. (1996). Community baseline measurements for ITEX studies (2nd edn ed.). Copenhagen: Danish Polar Centre.
Wallenstein, M. D., McMahon, S., & Schimel, J. (2007). Bacterial and fungal community structure in Arctic tundra tussock and shrub soils.Fems Microbiology Ecology, 59 (2), 428-435.
Wang, H., He, Z., Lu, Z., Zhou, J., Van Nostrand, J. D., Xu, X., & Zhang, Z. (2012). Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming. Applied and Environmental Microbiology, 78 (21), 7652-7661.
Weber, C. F., Zak, D. R., Hungate, B. A., Jackson, R. B., Vilgalys, R., Evans, R. D., . . . Kuske, C. R. (2011). Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems. Environmental Microbiology, 13 (10), 2778-2793.
Weinstein, R. N., Montiel, P. O., & Johnstone, K. (2000). Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 92 (2), 222-229.
Wu, L., Yang, Y., Chen, S., Zhao, M., Zhu, Z., Yang, S., . . . Zhou, J. (2016). Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Research, 104 , 1-10.
Xue, K., Yuan, M. M., Zhou, J. S., Qin, Y., Deng, Y., Cheng, L., . . . Bracho, R. (2016). Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6 , 595–600.
Yergeau, E., Kang, S., He, Z., Zhou, J., & Kowalchuk, G. A. (2007). Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. The Isme Journal, 1 (2), 163-179.
Yuste, J. C., Peñuelas, J., Estiarte, M., Garciamas, J., Mattana, S., Ogaya, R., . . . Sardans, J. (2011). Drought-resistant fungi control soil organic matter decomposition and its response to temperature.Global Change Biology, 17 (3), 1475-1486.
Zak, D. R., & Kling, G. W. (2006). Microbial community composition and function across an arctic tundra landscape. Ecology, 87 (7), 1659-1670.
Zhao, M., Xue, K., Wang, F., Liu, S., Bai, S., Sun, B., . . . Yang, Y. (2014). Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping.The Isme Journal, 8 (10), 2045-2055.
Zhou, J. Z., Xue, K., Xie, J. P., Deng, Y., Wu, L. Y., Cheng, X. H., . . . Luo, Y. Q. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2 (2), 106-110.