9. Author Contributions
JEB: Conceptualization; Methodology; Formal analysis; Investigation;
Writing - Original Draft; Visualization
AM: Conceptualization; Methodology; Formal analysis; Resources; Writing
- Original Draft
CK: Validation; Investigation
GL: Validation; Investigation, Resources;
MG: Validation; Investigation
IS: Validation; Formal analysis
RG: Validation; Investigation
CS: Resources, Writing Review & Editing
CL: Methodology; Formal analysis; Investigation; Writing - Original
Draft
VQ: Methodology; Formal analysis; Investigation; Writing - Original
Draft
YD: Conceptualization; Methodology, Resources;
WA: Conceptualization; Methodology; Writing - Review & Editing
IM: Conceptualization; Methodology; Writing - Review & Editing
PZ: Conceptualization; Methodology; Writing - Original Draft; Writing
Review & Editing, Visualization; Supervision; Project Administration;
Funding adquisition
Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D., & Brown, F.
(1989). The three-dimensional structure of foot-and-mouth disease virus
at 2.9 Å resolution. Nature . https://doi.org/10.1038/337709a0
Bachmann, M. F., & Zinkernagel, R. M. (1997). NEUTRALIZING ANTIVIRAL B
CELL RESPONSES. Annual Review of Immunology .
https://doi.org/10.1146/annurev.immunol.15.1.235
Baldi, L., Hacker, D. L., Adam, M., & Wurm, F. M. (2007). Recombinant
protein production by large-scale transient gene expression in mammalian
cells: State of the art and future perspectives. In Biotechnology
Letters . https://doi.org/10.1007/s10529-006-9297-y
Batista, A., Quattrocchi, V., Olivera, V., Langellotti, C., Pappalardo,
J. S., Di Giacomo, S., Mongini, C., Portuondo, D., & Zamorano, P.
(2010). Adjuvant effect of CliptoxTM on the protective
immune response induced by an inactivated vaccine against foot and mouth
disease virus in mice. Vaccine , 28 (38), 6361–6366.
https://doi.org/10.1016/j.vaccine.2010.06.098
Belsham, G. J. (2005). Translation and replication of FMDV RNA. InCurrent Topics in Microbiology and Immunology .
https://doi.org/10.1007/3-540-27109-0_3
Bertona, D., Pujato, N., Bontempi, I., Gonzalez, V., Cabrera, G.,
Gugliotta, L., Hozbor, D., Nicastro, A., Calvinho, L., & Marcipar, I.
S. (2017). Development and assessment of a new cage-like particle
adjuvant. Journal of Pharmacy and Pharmacology , 69 (10),
1293–1303. https://doi.org/10.1111/jphp.12768
Bidart, J. E., Kornuta, C., Gammella, M., Gnazzo, V., Soria, I.,
Langellotti, C. A., Mongini, C., Galarza, R., Calvinho, L., Lupi, G.,
Quattrocchi, V., Marcipar, I. S., & Zamorano, P. I. (2020). A new
cage-like particle adjuvant enhances protection of Foot and Mouth
Disease vaccine. Frontiers in Veterinary Science (in Press) .
https://doi.org/10.3389/fvets.2020.00396
Caridi, F., Vázquez-Calvo, A., Sobrino, F., & Martín-Acebes, M. A.
(2015). The pH Stability of Foot-and-Mouth Disease Virus Particles Is
Modulated by Residues Located at the Pentameric Interface and in the N
Terminus of VP1. Journal of Virology .
https://doi.org/10.1128/jvi.03358-14
den Brok, M. H., Büll, C., Wassink, M., de Graaf, A. M., Wagenaars, J.
A., Minderman, M., Thakur, M., Amigorena, S., Rijke, E. O., Schrier, C.
C., & Adema, G. J. (2016). Saponin-based adjuvants induce
cross-presentation in dendritic cells by intracellular lipid body
formation. Nature Communications , 7 (1), 13324.
https://doi.org/10.1038/ncomms13324
Doel, T. R. (2003). FMD vaccines. Virus Research , 91 (1),
81–99. https://doi.org/10.1016/S0168-1702(02)00261-7
Ellard, F. M., Drew, J., Blakemore, W. E., Stuart, D. I., & King, A. M.
Q. (1999). Evidence for the role of His-142 of protein 1C in the
acid-induced disassembly of foot-and-mouth disease virus capsids.Journal of General Virology .
https://doi.org/10.1099/0022-1317-80-8-1911
Estes, D. M., & Brown, W. C. (2002). Type 1 and type 2 responses in
regulation of Ig isotype expression in cattle. Veterinary
Immunology and Immunopathology , 90 (1–2), 1–10.
https://doi.org/10.1016/S0165-2427(02)00201-5
Gnazzo, V., Quattrocchi, V., Soria, I., Pereyra, E., Langellotti, C.,
Pedemonte, A., Lopez, V., Marangunich, L., & Zamorano, P. (2020). Mouse
model as an efficacy test for foot‐and‐mouth disease vaccines.Transboundary and Emerging Diseases , tbed.13591.
https://doi.org/10.1111/tbed.13591
Grubman, M. J. (2005). Development of novel strategies to control
foot-and-mouth disease: Marker vaccines and antivirals.Biologicals . https://doi.org/10.1016/j.biologicals.2005.08.009
Grubman, M. J., & Baxt, B. (2004). Foot-and-Mouth Disease .17 (2), 465–493. https://doi.org/10.1128/CMR.17.2.465
Gullberg, M., Lohse, L., Bøtner, A., McInerney, G. M., Burman, A.,
Jackson, T., Polacek, C., & Belsham, G. J. (2016). A Prime-Boost
Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a
“Single-Cycle” Alphavirus Vector and Empty Capsid Particles.PLOS ONE , 11 (6), e0157435.
https://doi.org/10.1371/journal.pone.0157435
Hamblin, C., Barnett, I. T. R., & Hedger, R. S. (1986). A new
enzyme-linked immunosorbent assay (ELISA) for the detection of
antibodies against foot-and-mouth disease virus I. Development and
method of ELISA. Journal of Immunological Methods , 93 (1),
115–121. https://doi.org/10.1016/0022-1759(86)90441-2
Jackson, T., Sheppard, D., Denyer, M., Blakemore, W., & King, A. M. Q.
(2000). The Epithelial Integrin αvβ6 Is a Receptor for Foot-and-Mouth
Disease Virus. Journal of Virology .
https://doi.org/10.1128/jvi.74.11.4949-4956.2000
Kotecha, A., Seago, J., Scott, K., Burman, A., Loureiro, S., Ren, J.,
Porta, C., Ginn, H. M., Jackson, T., Perez-Martin, E., Siebert, C. A.,
Paul, G., Huiskonen, J. T., Jones, I. M., Esnouf, R. M., Fry, E. E.,
Maree, F. F., Charleston, B., & Stuart, D. I. (2015). Structure-based
energetics of protein interfaces guides foot-and-mouth disease virus
vaccine design. Nature Structural & Molecular Biology ,22 (10), 788–794. https://doi.org/10.1038/nsmb.3096
Langellotti, C, Quattrocchi, V., Alvarez, C., Ostrowski, M., Gnazzo, V.,
Zamorano, P., & Vermeulen, M. (2012). Foot-and-mouth disease virus
causes a decrease in spleen dendritic cells and the early release of
IFN-α in the plasma of mice. Differences between infectious and
inactivated virus. Antiviral Research , 94 (1), 62–71.
https://doi.org/https://doi.org/10.1016/j.antiviral.2012.02.009
Langellotti, Cecilia, Cesar, G., Soria, I., Quattrocchi, V., Jancic, C.,
Zamorano, P., & Vermeulen, M. (2015). Foot-and-mouth disease virus
infection of dendritic cells triggers phosphorylation of ERK1/2 inducing
class I presentation and apoptosis. Vaccine .
https://doi.org/10.1016/j.vaccine.2015.07.038
Lee, B. O., Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L.,
Makris, M., Sprague, F., Lund, F. E., & Randall, T. D. (2005). CD4 T
Cell-Independent Antibody Response Promotes Resolution of Primary
Influenza Infection and Helps to Prevent Reinfection. The Journal
of Immunology . https://doi.org/10.4049/jimmunol.175.9.5827
Li, Z., Yi, Y., Yin, X., Zhang, Y., Liu, M., Liu, H., Li, X., Li, Y.,
Zhang, Z., & Liu, J. (2012). Development of a Foot-and-Mouth Disease
Virus Serotype A Empty Capsid Subunit Vaccine Using Silkworm (Bombyx
mori) Pupae. PLoS ONE , 7 (8), e43849.
https://doi.org/10.1371/journal.pone.0043849
Maradei, E., La Torre, J., Robiolo, B., Esteves, J., Seki, C.,
Pedemonte, A., Iglesias, M., D’Aloia, R., & Mattion, N. (2008).
Updating of the correlation between lpELISA titers and protection from
virus challenge for the assessment of the potency of polyvalent
aphtovirus vaccines in Argentina. Vaccine , 26 (51),
6577–6586.
https://doi.org/https://doi.org/10.1016/j.vaccine.2008.09.033
Maraskovsky, E., Schnurr, M., Wilson, N. S., Robson, N. C., Boyle, J.,
& Drane, D. (2009). Development of prophylactic and therapeutic
vaccines using the ISCOMATRIX adjuvant. Immunology and Cell
Biology , 87 (5), 371–376. https://doi.org/10.1038/icb.2009.21
Mateo, R., Luna, E., Rincón, V., & Mateu, M. G. (2008). Engineering
Viable Foot-and-Mouth Disease Viruses with Increased Thermostability as
a Step in the Development of Improved Vaccines. Journal of
Virology . https://doi.org/10.1128/jvi.01553-08
Mattion, N., Goris, N., Willems, T., Robiolo, B., Maradei, E.,
Beascoechea, C. P., Perez, A., Smitsaart, E., Fondevila, N., Palma, E.,
De Clercq, K., & La Torre, J. (2009). Some guidelines for determining
foot-and-mouth disease vaccine strain matching by serology.Vaccine . https://doi.org/10.1016/j.vaccine.2008.11.026
Mattion, N., Konig, G., Seki, C., Smitsaart, E., Maradei, E., Robiolo,
B., Duffy, S., Leon, E., Piccone, M., Sadir, A., Bottini, R., Cosentino,
B., Falczuk, A., Maresca, R., Periolo, O., Bellinzoni, R., Espinoza, A.,
Torre, J. La, & Palma, E. L. (2004). Reintroduction of foot-and-mouth
disease in Argentina: characterisation of the isolates and development
of tools for the control and eradication of the disease. Vaccine ,22 (31–32), 4149–4162.
https://doi.org/10.1016/j.vaccine.2004.06.040
McCullough, K. C., Bruckner, L., Schaffner, R., Fraefel, W., Muller, H.
K., & Kihm, U. (1992). Relationship between the anti-FMD virus antibody
reaction as measured by different assays, and protection in vivo against
challenge infection. Veterinary Microbiology , 30 (2–3),
99–112.
McCullough, K. C., Parkinson, D., & Crowther, J. R. (1988).
Opsonization-enhanced phagocytosis of foot-and-mouth disease virus.Immunology , 65 (2), 187–191.
Medina, G. N., Segundo, F. D.-S., Stenfeldt, C., Arzt, J., & de los
Santos, T. (2018). The Different Tactics of Foot-and-Mouth Disease Virus
to Evade Innate Immunity. Frontiers in Microbiology ,9 (November), 1–22. https://doi.org/10.3389/fmicb.2018.02644
Mignaqui, A. C., Ruiz, V., Perret, S., St-Laurent, G., Singh Chahal, P.,
Transfiguracion, J., Sammarruco, A., Gnazzo, V., Durocher, Y., &
Wigdorovitz, A. (2013). Transient Gene Expression in Serum-Free
Suspension-Growing Mammalian Cells for the Production of Foot-and-Mouth
Disease Virus Empty Capsids. PLOS ONE , 8 (8), e72800.
https://doi.org/10.1371/journal.pone.0072800
Mohan, T., Verma, P., & Rao, D. N. (2013). Novel adjuvants & delivery
vehicles for vaccines development: a road ahead. The Indian
Journal of Medical Research , 138 (5), 779–795.
http://www.ncbi.nlm.nih.gov/pubmed/24434331
Monaghan, P., Gold, S., Simpson, J., Zhang, Z., Weinreb, P. H.,
Violette, S. M., Alexandersen, S., & Jackson, T. (2005). The αvβ6
integrin receptor for Foot-and-mouth disease virus is expressed
constitutively on the epithelial cells targeted in cattle. Journal
of General Virology . https://doi.org/10.1099/vir.0.81172-0
Morein, B., Sundquist, B., Höglund, S., Dalsgaard, K., & Osterhaus, A.
(1984). Iscom, a novel structure for antigenic presentation of membrane
proteins from enveloped viruses. Nature .
https://doi.org/10.1038/308457a0
Oh, Y., Fleming, L., Statham, B., Hamblin, P., Barnett, P., Paton, D.
J., Park, J. H., Joo, Y. S., & Parida, S. (2012). Interferon-γ Induced
by In Vitro Re-Stimulation of CD4+ T-Cells Correlates with In Vivo FMD
Vaccine Induced Protection of Cattle against Disease and Persistent
Infection. PLoS ONE . https://doi.org/10.1371/journal.pone.0044365
OIE - World Organisation for Animal Health Act N° 22, Pub. L. No. 22
(2018).
http://www.oie.int/fileadmin/Home/esp/Animal_Health_in_the_World/docs/pdf/Resolutions/2018/E22_RESO_2018_FMD.pdf
OIE - World Organisation for Animal Health. (2012). Foot and Mouth
Disease (infection with FMDV). In OIE 2012 (Ed.), OIE Terrestrial
Manual (7° Edition, pp. 1–32). OIE 2012.
https://books.google.com.ar/books?id=l5b5AAAACAAJ
Ostrowski, M., Vermeulen, M., Zabal, O., Geffner, J. R., Sadir, A. M.,
& Lopez, O. J. (2005). Impairment of Thymus-Dependent Responses by
Murine Dendritic Cells Infected with Foot-and-Mouth Disease Virus.The Journal of Immunology .
https://doi.org/10.4049/jimmunol.175.6.3971
Parida, S. (2009). Vaccination against foot-and-mouth disease virus:
Strategies and effectiveness. In Expert Review of Vaccines .
https://doi.org/10.1586/14760584.8.3.347
Pérez Filgueira, D. M., Berinstein, A., Smitsaart, E., Borca, M. V., &
Sadir, A. M. (1995). Isotype profiles induced in Balb/c mice during foot
and mouth disease (FMD) virus infection or immunization with different
FMD vaccine formulations. Vaccine , 13 (10), 953–960.
https://doi.org/10.1016/0264-410X(95)00078-F
Pham, P. L., Kamen, A., & Durocher, Y. (2006). Large-scale transfection
of mammalian cells for the fast production of recombinant protein.Molecular Biotechnology . https://doi.org/10.1385/MB:34:2:225
Porta, C., Kotecha, A., Burman, A., Jackson, T., Ren, J., Loureiro, S.,
Jones, I. M., Fry, E. E., Stuart, D. I., & Charleston, B. (2013).
Rational Engineering of Recombinant Picornavirus Capsids to Produce
Safe, Protective Vaccine Antigen. PLoS Pathogens , 9 (3),
e1003255. https://doi.org/10.1371/journal.ppat.1003255
Prochetto, E., Roldán, C., Bontempi, I. A., Bertona, D., Peverengo, L.,
Vicco, M. H., Rodeles, L. M., Pérez, A. R., Marcipar, I. S., & Cabrera,
G. (2017). Trans-sialidase-based vaccine candidate protects against
Trypanosoma cruzi infection, not only inducing an effector immune
response but also affecting cells with regulatory/suppressor phenotype.Oncotarget , 8 (35), 58003–58020.
https://doi.org/10.18632/oncotarget.18217
Quattrocchi, V., Pappalardo, J. S., Langellotti, C., Smitsaart, E.,
Fondevila, N., & Zamorano, P. (2014). Early protection against
foot-and-mouth disease virus in cattle using an inactivated vaccine
formulated with Montanide ESSAI IMS D 12802 VG PR adjuvant.Vaccine , 32 (19), 2167–2172.
https://doi.org/10.1016/j.vaccine.2014.02.061
Quattrocchi, V, Langellotti, C., Pappalardo, J. S., Olivera, V., Di
Giacomo, S., van Rooijen, N., Mongini, C., Waldner, C., & Zamorano, P.
I. (2011). Role of macrophages in early protective immune responses
induced by two vaccines against foot and mouth disease. Antiviral
Research , 92 (2), 262–270.
https://doi.org/10.1016/j.antiviral.2011.08.007
Quattrocchi, V, Molinari, P., Langellotti, C., Gnazzo, V., Taboga, O.,
& Zamorano, P. (2013). Co-inoculation of baculovirus and FMDV vaccine
in mice, elicits very early protection against foot and mouth disease
virus without interfering with long lasting immunity. Vaccine ,31 (24), 2713–2718. https://doi.org/10.1016/j.vaccine.2013.03.067
Quattrocchi, Valeria, Bianco, V., Fondevila, N., Pappalardo, S., Sadir,
A., & Zamorano, P. (2005). Use of new adjuvants in an emergency vaccine
against foot-and-mouth disease virus: Evaluation of conferred immunity.Developments in Biologicals , 119 , 481–497.
Reed, S. G., Bertholet, S., Coler, R. N., & Friede, M. (2009). New
horizons in adjuvants for vaccine development. Trends in
Immunology , 30 (1), 23–32.
https://doi.org/10.1016/j.it.2008.09.006
Reimer, J. M., Karlsson, K. H., Lövgren-Bengtsson, K., Magnusson, S. E.,
Fuentes, A., & Stertman, L. (2012). Matrix-mTMadjuvant induces local recruitment, activation and maturation of central
immune cells in absence of antigen. PLoS ONE .
https://doi.org/10.1371/journal.pone.0041451
Rincón, V., Rodríguez-Huete, A., López-Argüello, S., Ibarra-Molero, B.,
Sanchez-Ruiz, J. M., Harmsen, M. M., & Mateu, M. G. (2014).
Identification of the structural basis of thermal lability of a virus
provides a rationale for improved vaccines. Structure .
https://doi.org/10.1016/j.str.2014.08.019
Robiolo, B., La Torre, J., Maradei, E., Beascoechea, C. P., Perez, A.,
Seki, C., Smitsaart, E., Fondevila, N., Palma, E., Goris, N., De Clercq,
K., & Mattion, N. (2010). Confidence in indirect assessment of
foot-and-mouth disease vaccine potency and vaccine matching carried out
by liquid phase ELISA and virus neutralization tests. Vaccine ,28 (38), 6235–6241. https://doi.org/10.1016/j.vaccine.2010.07.012
Rodriguez, L. L., & Grubman, M. J. (2009). Foot and mouth disease virus
vaccines. In Vaccine .
https://doi.org/10.1016/j.vaccine.2009.08.039
Romanutti, C., D’Antuono, A., Palacios, C., Quattrocchi, V., Zamorano,
P., La Torre, J., & Mattion, N. (2013). Evaluation of the immune
response elicited by vaccination with viral vectors encoding FMDV capsid
proteins and boosted with inactivated virus. Veterinary
Microbiology , 165 (3–4), 333–340.
https://doi.org/10.1016/j.vetmic.2013.04.017
Romera, S., Puntel, M., Quattrocchi, V., Zajac, P. Del, Zamorano, P.,
Blanco Viera, J., Carrillo, C., Chowdhury, S., Borca, M. V, & Sadir, A.
M. (2014). Protection induced by a glycoprotein E-deleted bovine
herpesvirus type 1 marker strain used either as an inactivated or live
attenuated vaccine in cattle. BMC Veterinary Research ,10 (1), 8. https://doi.org/10.1186/1746-6148-10-8
Servicio Nacional de Sanidad y Calidad Agroalimentaria Res 609/2017.
CABA, Argentina, Resolución (2017).
Singh, M. (2006). Vaccine Adjuvants and Delivery Systems. InVaccine Adjuvants and Delivery Systems .
https://doi.org/10.1002/9780470134931
Soria, I., Quattrocchi, V., Langellotti, C., Gammella, M., Digiacomo,
S., Garcia de la Torre, B., Andreu, D., Montoya, M., Sobrino, F.,
Blanco, E., & Zamorano, P. (2017). Dendrimeric peptides can confer
protection against foot-and-mouth disease virus in cattle. PloS
One , 12 (9), e0185184.
https://doi.org/10.1371/journal.pone.0185184
Summerfield, A., Guzylack-Piriou, L., Harwood, L., & McCullough, K. C.
(2009). Innate immune responses against foot-and-mouth disease virus:
Current understanding and future directions. Veterinary Immunology
and Immunopathology . https://doi.org/10.1016/j.vetimm.2008.10.296
Sun, H.-X., Xie, Y., & Ye, Y.-P. (2009). ISCOMs and ISCOMATRIX.Vaccine , 27 (33), 4388–4401.
https://doi.org/10.1016/j.vaccine.2009.05.032
Thompson, D., Muriel, P., Russell, D., Osborne, P., Bromley, A.,
Rowland, M., Creigh-Tyte, S., & Brown, C. (2002). Economic costs of the
foot and mouth disease outbreak in the United Kingdom in 2001. InOIE Revue Scientifique et Technique .
https://doi.org/10.20506/rst.21.3.1353
Tizard, I. (1998). Inmunología Veterinaria, 5e(McGraw-HillInteramericana (ed.); 5e ed.). McGraw-Hill Interamericana
Mexico.
van der Poel, C. E., Spaapen, R. M., van de Winkel, J. G. J., & Leusen,
J. H. W. (2011). Functional Characteristics of the High Affinity IgG
Receptor, FcγRI. The Journal of Immunology .
https://doi.org/10.4049/jimmunol.1003526
Wilson, N. S., Duewell, P., Yang, B., Li, Y., Marsters, S., Koernig, S.,
Latz, E., Maraskovsky, E., Morelli, A. B., Schnurr, M., & Ashkenazi, A.
(2014). Inflammasome-Dependent and -Independent IL-18 Production
Mediates Immunity to the ISCOMATRIX Adjuvant. The Journal of
Immunology , 192 (7), 3259–3268.
https://doi.org/10.4049/jimmunol.1302011
Wilson, N. S., Yang, B., Morelli, A. B., Koernig, S., Yang, A., Loeser,
S., Airey, D., Provan, L., Hass, P., Braley, H., Couto, S., Drane, D.,
Boyle, J., Belz, G. T., Ashkenazi, A., & Maraskovsky, E. (2012).
ISCOMATRIX vaccines mediate CD8 + T‐cell cross‐priming by a
MyD88‐dependent signaling pathway. Immunology & Cell Biology ,90 (5), 540–552. https://doi.org/10.1038/icb.2011.71
Xiao, Y., Chen, H.-Y., Wang, Y., Yin, B., Lv, C., Mo, X., Yan, H., Xuan,
Y., Huang, Y., Pang, W., Li, X., Yuan, Y. A., & Tian, K. (2016).
Large-scale production of foot-and-mouth disease virus (serotype Asia1)
VLP vaccine in Escherichia coli and protection potency evaluation in
cattle. BMC Biotechnology , 16 (1), 56.
https://doi.org/10.1186/s12896-016-0285-6
Zamorano, P., Decheneux, C., Quattrocchi, V., Olivera, V., Langellotti,
C., DiGiacomo, S., Kahn, N., Trotta, M., Guinzburg, M., Sadir, A., &
Smitsaart, E. (2010). Vaccination against Foot-and-Mouth Disease,
association between humoral immune response in cattle and mice. In
OIE-IABS (Ed.), Practical Alternatives to Reduce Animal Testing in
Quality Control of Veterinary Biologicals in the Americas (pp.
100–111). OIE-IABS.
Zhang, Z. D., Hutching, G., Kitching, P., & Alexandersen, S. (2002).
The effects of gamma interferon on replication of foot-and-mouth disease
virus in persistently infected bovine cells. Archives of
Virology . https://doi.org/10.1007/s00705-002-0867-6
Figure 1 . Selection of VLPs dose for vaccination of BALB/c
mice. Groups of mice (n=5) were vaccinated with 8, 4, 2, 1, 0.5, 0.3,
0.15 or 0 µg VLPs in PBS at 0 and 21 days and challenged with infective
virus at 36 dpv. (A) Abs against FMDV elicited by vaccination with
different amounts of VLPs measured by sandwich ELISA at 36 dpv. (B)
Percentages of protected animals upon viral challenge. Animals were
considered protected if viremia was absent at 24 h post challenge.
Protection percentages were calculated as: 100 x [number of vaccinated
animals without viremia / number of vaccinated animals].
Figure 2 . Protection upon viral challenge elicited by
experimental vaccines. Groups of mice (n=5) were vaccinated with VLPs
(0.5 µg), VLPs (0.5 µg)-ISPA, VLPs (0.5 µg)-CA or a Control (+) vaccine,
and groups of mice (n=2) were vaccinated with ISPA, CA or PBS alone at 0
dpv and 21 dpv, and challenged with infective FMDV at 36 dpv. Protection
was calculated as in Figure 1.
Figure 3 . Abs against FMDV elicited by experimental vaccines in
mice. FMDV specific antibody titers were measured by (A) sandwich ELISA
at 15, 21 and 36 dpv. Each point represents the mean (n=5) Ab titer ± SD
in each group. * Significant differences against VLPs group. **
(p< 0.01); ***(p< 0.001). (B) Isotype profile of
vaccinated animals at 36 dpv. Data are expressed as the mean Ab titer ±
SD. *** p< 0.001, **(p< 0.01).
Figure 4 . Lymphocyte
proliferative response after stimulation with iFMDV measured by CFSE
loss, at 36 dpv. Results are expressed as the difference (Δ%) between
the percentage of proliferating splenocytes stimulated with inactivated
virus and the percentage of proliferating splenocytes without stimuli.
Animals were vaccinated with VLPs, VLPs-ISPA, VLPs-CA, control (+)
vaccine, ISPA, commercial adjuvant alone or PBS. *** p<0.001;
*p< 0.05.
Figure 5 . Humoral response elicited in cattle by experimental
vaccines. FMDV-specific antibody titers were measured by Lp ELISA. (A)
Kinetics of total anti-FMDV serum Abs. Each bar represents the mean Ab
titer ± SD (n= 4) at 15, 30 and 45 dpv. (B) FMDV-specific serum IgG1 and
IgG2 response at 45 dpv. Each point represents the serum IgG1 or IgG2
anti-FMDV Ab titers (log10) of each animal. Isotype profiles at 45 dpv,
expressed as mean Ab titers ± SD. ** p< 0.01, *p<
0.05.
Figure 6 . IFN-γ production by PBMC from calves inoculated with
experimental vaccines at 45 dpv. Cells were stimulated in vitro with
iFMDV. Supernatants were tested by ELISA. Each bar represents the IFNγ
levels (pg/ml) secreted by PBMCs from each bovine when they were
stimulated in vitro with iFMDV, *p< 0.05.
Supplementary Figure 1. Flow cytometry analysis of CD4+/IFNγ+
and CD8+/IFNγ+ cell percentages. At 36 dpv, splenocytes from vaccinated
BALB/c were (i) not stimulated stimulated (mock) or stimulated with (ii)
2.5 μg/ml iFMDV or (iii) 5 μg/ml Concanavalin A as positive control.
Cells were incubated for 18 h in the presence of brefeldin A. Permeated
cells were incubated with anti-mouse INF-γ. Then, cells were stained
with anti-mouse CD4 or anti-mouse CD8. Splenocytes were obtained from
mice vaccinated with VLPs, VLPs-ISPA, VLPs-CA, Commercial vaccine, ISPA,
CA alone or PBS. (A) Percentages of CD4+/IFNγ+ T cells and (B)
percentages of CD8+/IFNγ+ T cells from mice spleens. ** p<
0.01; *p< 0.05.