References
Deng, L., Wang, G.L., Liu, G.B., ShangGuan, Z.P., (2016). Effect of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China.Ecological Engineering, 90 , 105–112. https://doi.org/10.1016/j.ecoleng.2016.01.086
Deng, L., ShangGuan Z.P., (2017). Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development,28 , 151-165. https://doi.org/ 10.1002/ldr.2537
Ding, F., Hu, Y.L., Li, L.J., Li, A., Shi, S.W., Lian, P.Y., Zeng, D.H., (2013). Changes in soil organic carbon and total nitrogen storage after conversion of meadow to cropland in Northeast China. Plant Soil ,373 , 659-672. https://doi.org/ 10.1007/s11104-013-1827-5
Don, A., Schumacher, J., Freibauer, A., (2011). Impact of tropical land use change on soil organic carbon storage-a meta-analysis, Global change biology , 17 , 1658–1670. https://doi.org/ 10.1111/j.1365-2486.2010.02336.x
Du, Z.L., Angers, D.A., Ren, T.S., Zhang, Q., Li, G., (2017). The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis. Agriculture, Ecosystems & Environment, 236 , 1-11. http://dx.doi.org/10.1016/j.agee.2016.11.007
Duan, Y.F., Wang, K.L., Feng, D., et al., (2018). Response of the spatial pattern of soil organic carbon and total nitrogen to vegetation restoration in a typical small karst catchment. Acta Ecologica Sinica , 38 (5). 1560-1568. (In Chinese with English abstract) https://doi.org/10.5846/stxb201701220184
Ellert, B.H., Bettany, J.R., (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes.Canadian Journal of Soil Science, 75, 529-538. https://doi.org/10.4141/cjss95-075
Fei, L.I., Juan, L.I., Long, J., Liao, H.K., Liu, L.F., Zhang, W.J., (2015). Effects of vegetation Types on Soil Organic Carbon and Nitrogen in Typical Karst Mountainous Areas. Chinese Journal of Ecology,34 , 3374-3381. (In Chinese with English abstract)
Gao, G., Li, Z., Chang, R., et al., (2019). Effects of plantation age and precipitation gradient on soil carbon and nitrogen changes following afforestation in the Chinese Loess Plateau. Land Degradation & Development , 45 , 1-13.
Geisseler,D., Scow, K.M., (2014). Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology and Biochemistry , 75 , 54-63. https://doi.org/10.1016/j.soilbio.2014.03.023
Gifford, R.M., Roderick, M.L., (2003). Soil carbon storage and bulk density: spatial or cumulative mass coordinates as a basis of expression? Global Change Biology , 9 , 1507-1514.
Gulab, Singh, Yawav, et al., (2019). Long-Term Effects of Different Passages of Vehicular Traffic on Soil Properties and Carbon Storage of a Crosby Silt Loam in USA.Pedosphere , 29 (02):16-26. https://doi.org/10.1016/S1002-0160(19)60796-4
Guo, L.B., Gifford, R.M., (2002). Soil carbon storage and land use change: A meta-analysis. Global Change Biology , 8 , 345–360.
Harris, N.L., Brown, S., Hagen, S.C., Saatchi, S.S., Petrova, S., Salas, W., Hansen, M.C., Potapov, P.V., Lotsch, A., (2012). Baseline map of carbon emissions from deforestation in tropical region. Science ,336 , 1573–1576. https://doi.org/ 10.1126/science.1217962
Hedges, L.V., Gurevitch, J., Curtis, P.S., (1999). The meta-analysis of response ration in experimental ecology. Ecology, 80 , 1150-1156. https://doi.org/
Hu, P.L., Liu, S.J., Ye, Y.Y., Zhang, W., Wang, K.L., Su, Y.R., (2018). Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degradation & Development ,29 (3): 387-397. https://doi.org/ 10.1002/ldr.2876
Hu, Y.C., Zheng, F.Y., Xu, S., (2017). Assessment of Immigration Effect of Ecological Immigrants in Immigration Areas of Guangxi.Transactions of the Chinese Society of Agricultural Engineering ,33 , 264-270. (In Chinese with English abstract) https://doi.org/
Inglima, I., Alberti, G., Bertolini, T., Vaccari, F.P., Gioli, B., Miglietta, F., Cotrufo, M.F., Peressotti, A., (2009). Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux.Global Change Biology , 15 , 1289–1301. https://doi.org/ 10.1111/j.1365-2486.2008.01793.x
JeRoMe, L.R., Denisa, A., David, P., (2010). Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology , 16 , 439-453. https://doi.org/ 10.1111/j.1365-2486.2009.01930.x
Jiang, Y.J., (2006). The impact of land use on soil properties in a Karst agricultural region of Southwest China: A case study of Xiaojiang watershed, Yunnan.Journal of Geographical Sciences 16 , 69-77. (In Chinese with English abstract)
Jin, Z., Dong, Y.S., Wang, Y.Q., Wei, X.R., Wang, Y.F., Cui, B.L., Zhou, W.J., (2014). Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China. Science of the Total Environment , 485 , 615–623.
Jobbágy, E.G., Jackson, R.B., (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation,Ecological Applications , 10 , 423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
Jobbágy, E.G., Jackson, R.B., (2001). The distribution of soil nutrients with depth: global patterns and the imprint of plants.Biogeochemistry , 53 , 51–77.
Kucharik, C.J., Brye, K.R., Norman, J.M., Foley, J.A., Bundy, G.L.G., (2001). Measurements and Modeling of Carbon and Nitrogen Cycling in Agroecosystems of Southern Wisconsin: Potential for SOC Sequestration during the Next 50 Years. Ecosystems , 4 , 237-258. https://doi.org/10.2307/3658956
Lal, R., (2004). Soil carbon sequestration impacts on global climate change and foodsecurity. Science , 304 , 1623–1627. https://doi.org/ 10.1126/science.1097396
Lal, R., (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60 ,158–169. https://doi.org/10.1111/j.1365- 2389.2008.01114.x
Lal, R., (2016). Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food and Energy Security , 5 , 239-251. https://doi.org/10.1002/fes3.99
Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., (2009). Determining soil carbon storage changes: simple bulk density corrections fail. Agr Ecosyst Environ , 134 , 251-256. https://doi.org/10.1016/j.agee.2009.07.006
Liao H K, Li J, Long J, Zhang, W.J., Liu,L.F., (2014). Effects of Land use and conversion of farmland on soil active Organic carbon in Karst Mountains. Environmental Science , 35 , 240-247.
Luo, H.B., Liu, F., Liu, Y.S., He, T.B., Su, Y.G., (2009). Soil organic carbon changes under different vegetation communities in Karst rocky desertification area. Scientia Silvae Sinicae, 45 , 24-28. (In Chinese with English abstract)
Moffet, C.A., Zartman, R.E., Wester, D.B., et al., (2005). Surface biosolids application: Effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands. Journal of Environment Quality ,34 (1):299-311.
Morris, S.J., Sven, B., Shawel, H.M., Paul, E.A., (2007). Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology , 13 , 1145-1156. https://doi.org/ 10.1111/j.1365-2486.2007.01359.x
Mukhopadhyay, S., Masto, R.E., Cerdà, A., Ram, L.C., (2016). Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil.Catena 141 , 100–108. https://doi.org/ 10.1016/j.catena.2016.02.023
Nave, L.E., Domke, G.M., Hofmeister, K.L., Mishra, U., Perry, C.H., Walters, B.F., Swanston, C.W., (2018). Reforestation can sequester two petagrams of carbon in US top soils in a century. Proceedings of the National Academy of Sciences , 115 (11), 201719685. https://doi.org/10.1073/pnas.1719685115
Nie, Y.P., Chen, H.S., Wang, K.L., Ding, Y.L., (2014). Rooting characteristics of two widely distributed woody plant species growing in different Karst habitats of Southwest China. Plant Ecology215 , 1099–1109. https://doi.org/10.1007/s11258-014-0369-0
Olson, K.R., Al-Kaisi, M.M., (2015). The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena 125 , 33–37. https://doi.org/10.1016/j.catena.2014.10.004
Oskar, B., Cezary, K., Ukasz, M., et al., (2017). Labile and stabile soil organic carbon fractions in surface horizons of mountain soils-relationships with vegetation and altitude. Journal of Mountain Science . 14 (012): 2391-2405. https://doi.org/10.1007/s11629-017-4449-1
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., Grace, P., (2014). Conservation agriculture and ecosystem services: an overview.Agriculture, Ecosystems & Environment , 187 , 87–105. https://doi.org/ 10.1016/j.agee.2013.10.010
Pan, F.J., Zhang, W., Liu, S.J., Li,D.J., Wang, K.L., (2015). Leaf N: P stoichiometry across plant functional groups in the Karst region of southwestern China. Trees , 29 , 883–892. https://doi.org/ 10.1007/s00468-015-1170-y
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Wesemael, B.V., Schumacher, J., Gensior, A., (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Global Change Biology ,17 , 2415–2427. https://doi.org/ 10.1111/j.1365-2486.2011.02408.x
Post, W.M., Kwon, K.C., (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology ,6 , 317–327. https://doi.org/ 10.1046/j.1365-2486.2000.00308.x
Powlson, D.S., Stirling, C.M., Thierfelder, C., White, R.P., Jat, M.L., (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?Agriculture, Ecosystems & Environment , 220 , 164–174. https://doi.org/ 10.1016/j.agee.2016.01.005
Reich, P.B., Grigal, D.F., Aber, J.D., Gower, S.T., (1997). Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology , 78 , 335–347. https://doi.org/ 10.2307/2266011
Richard, B., Kurt, P., Alan, L., (2006). Forest Carbon Management in the United States. Journal of environmet quality, 35 , 1461-1469. https://doi.org/ 10.2134/jeq2005.0162
Schrumpf, M., Schulze, E.D., Kaiser, K., Schumacher, J., (2011). How accurately can soil organic carbon storage and storage changes be quantified by soil inventories? Biogeosciences , 8 , 1193–1212. https://doi.org/ 10.5194/bgd-8-723-2011
Shapiro, S.S., Wilk, M.B., (1965). An analysis of variance test for normality (complete
samples). Biometrika, 591–611. https://doi.org/10.2307/2333709
Shi, S.W., Peng, C.H., Meng, W., Zhu, Q., Gang, Y., Yang, Y.Z., Xi, T.T., Zhang, T.L., (2016). A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant Soil , 407 , 1-18. https://doi.org/ 10.1007/s11104-016-2889-y
Shi, W.Y., Tateno, R., Zhang, J.G., Wang, Y.L., Yamanaka, N., Du, S., (2011). Response of soil respiration to precipitation during the dry season in two typical forest stands in the forest-grassland transition zone of the Loess Plateau. Agricultural and Forest Meteorology ,151 , 854-863. https://doi.org/ 10.1016/j.agrformet.2011.02.003
Song, X., Peng, C., Zhou, G., Jiang, H., Wang, W., (2014). Chinese Grain for Green Program led to highly increased soil organic gcarbon levels: A meta-analysis. Scientific reports , 4 :4460. https://doi.org/ 10.1038/srep04460
Sotta, E.D., Meir, P., Malhi, Y., Nobre, A.D., Grace, J., (2010). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology , 10 , 601-617. https://doi.org/ 10.1111/j.1529-8817.2003.00761.x
Stephens, M.A., (1975). An analysis of variance test for normality (complete samples). Publications of the American Statistical Association , 67 , 215-216.
Tashi, S., Singh, B., Keitel, C., Adams, M., (2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology , 22 , 2255-2268. https://doi.org/ 10.1111/gcb.13234
Toledo, D.M., Galantini, J.A., Dalurzo, H.C., Vazquez, S., Bollero, G., (2013). Methods for assessing the effects of land use changes on carbon storage of subtropical oxisols. Soil Science Society of America Journal , 77 , 1542-1552. https://doi.org/ 10.2136/sssaj2013.03.0087
Van Straaten O., Marife D, C., Wolf, K., Tchienkoua, M., Cuellar. E., Robin B, M., Veldkamp, E., (2015). Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proceedings of the National Academy of Sciences , 112 , 9956-9960. https://doi.org/10.1073/pnas.1504628112
Van Lent, J., Hergoualc, H.K., Verchot, L.V., (2015). Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences ,12 , 7299-7313. https://doi.org/ 10.5194/bg-12-7299-2015
Vandenbygaart, A.J., Angers, D.A., (2006). Towards accurate measurements of soil organic carbon storage change in agroecosystems. Canadian Journal of Soil Science , 86 , 465-471. https://doi.org/ 10.4141/S05-106
Vandenbygaart, A.J., Bremer, E., Mcconkey, B.G., Janzen, H.H., Angers, D.A., Carter, M.R., Drury, C.F., Lafond, G.P., Mckenzie, R.H., (2010). Soil organic carbon storage on long-term agroecosystem experiments in Canada. Canadian Journal of Soil Science , 90 , 543-550. https://doi.org/ 10.4141/cjss10028
Virto, I., Pierre, B., Aurélien, B., Claire, C., (2012). Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems.Biogeochemistry , 108 , 17–26. https://doi.org/ 10.1007/s10533-011-9600-4
Vitousek, P.M., (2005). Nutrient cycling and limitation: Hawaii as a model system. Princeton University Press , Princeton. https://doi.org/10.1111/j.1442-9993.2005.01458.x
Wang, S.J., Liu, Q.M., Zhang, D.F., (2010). Karst Rocky Desertification in Southwestern China: Geomorphology, Land use, Impact and Rehabilitation. Land Degradation & Development , 15 , 115-121. https://doi.org/ 10.1002/ldr.592
Wang, S.Q., Li, T.X., Zheng, Z.C., (2016). Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China.Ecological Engineering , 90 :113-119.
Wiesmeier, M., Lützow, M.V., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., Kögel-Knabner, I., (2016). Land use effects on organic carbon storage in soils of Bavaria: the importance of soil types. Soil and Tillage Research , 146 , 296–302. https://doi.org/10.1016/j.still.2014.10.003
Xiao S.S., Dong, Y.S., Qi, Y.C., Peng, Q., He, Y.T., Yang, Z.J., (2009). Advance in responses of soil organic carbon pool of grassland ecosystem to human effects and global changes. Advances in Earth Science24 , 1138-1148. https://doi.org/ 10.11867/j.issn.1001-8166.2009.10.1138
Xie, X.L., Sun, B., Zhou, H.Z., Li, P.Z., (2004). Storage and influencing factors of soil organic carbon in China under different vegetation conditions. Acta Pedologica Sinica , 41 , 687-699. ( In Chinese with English abstract)
Xu, L., He, N.P., Yu, G.R., (2016). Methods of evaluating soil bulk density: Impact on estimating large scale soil organic carbon storage.Catena , 144 , 94-101. https://doi.org/10.1016/j.catena.2016.05.001
Xu, J.X., Li, X.M., Sun, G.X., et al., (2019). The fate of labile organic carbon in paddy soil is regulated by microbial ferric iron reduction. Environmental science & technology , 53 (15), 8533-8542. https://doi.org/10.1021/acs.est.9b01323
Yang, Y.H., Fang, J.Y., Tang, Y.H., Ji, C.J., Zheng, C.Y., He, J.S., Zhu, B., (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology , 14 , 1592-1599. https://doi.org/10.1111/j.1365-2486.2008.01591.x
Yang, Y.H., Luo, Y.Q., Finzi, A.C., (2011). Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist , 190 , 977-991. https://doi.org/10.1111/j.1469-8137.2011.03645.x
Zhang, S., Xu, M., Zhang, Y., Wang, C., Chen, G., (2014). Effects of land use change on soil organic carbon storage in the hilly Loess Plateau. Acta Scientiae Circumstantiate 34, 3094-3101. (In Chinese with English abstract)
Zhu, Y.L., Han, J.G., Wu J S, (2004). Effect of agricultural practices on soil organic carbon dynamics. Chinese Journal of Soil Science35 , 648-651. (In Chinese with English abstract)
Table 1 SOC and TN database in the Karst region of southwest China.