References
Deng, L., Wang, G.L., Liu, G.B., ShangGuan, Z.P., (2016). Effect of age
and land-use changes on soil carbon and nitrogen sequestrations
following cropland abandonment on the Loess Plateau, China.Ecological Engineering, 90 , 105–112.
https://doi.org/10.1016/j.ecoleng.2016.01.086
Deng, L., ShangGuan Z.P., (2017). Afforestation drives soil carbon and
nitrogen changes in China. Land Degradation & Development,28 , 151-165. https://doi.org/ 10.1002/ldr.2537
Ding, F., Hu, Y.L., Li, L.J., Li, A., Shi, S.W., Lian, P.Y., Zeng, D.H.,
(2013). Changes in soil organic carbon and total nitrogen storage after
conversion of meadow to cropland in Northeast China. Plant Soil ,373 , 659-672. https://doi.org/ 10.1007/s11104-013-1827-5
Don, A., Schumacher, J., Freibauer, A., (2011). Impact of tropical land
use change on soil organic carbon storage-a meta-analysis, Global
change biology , 17 , 1658–1670. https://doi.org/
10.1111/j.1365-2486.2010.02336.x
Du, Z.L., Angers, D.A., Ren, T.S., Zhang, Q., Li, G., (2017). The effect
of no-till on organic C storage in Chinese soils should not be
overemphasized: A meta-analysis. Agriculture, Ecosystems &
Environment, 236 , 1-11.
http://dx.doi.org/10.1016/j.agee.2016.11.007
Duan, Y.F., Wang, K.L., Feng, D., et al., (2018). Response of the
spatial pattern of soil organic carbon and total nitrogen to vegetation
restoration in a typical small karst catchment. Acta Ecologica
Sinica , 38 (5). 1560-1568. (In Chinese with English abstract)
https://doi.org/10.5846/stxb201701220184
Ellert, B.H., Bettany, J.R., (1995). Calculation of organic matter and
nutrients stored in soils under contrasting management regimes.Canadian Journal of Soil Science, 75, 529-538.
https://doi.org/10.4141/cjss95-075
Fei, L.I., Juan, L.I., Long, J., Liao, H.K., Liu, L.F., Zhang, W.J.,
(2015). Effects of vegetation Types on Soil Organic Carbon and Nitrogen
in Typical Karst Mountainous Areas. Chinese Journal of Ecology,34 , 3374-3381. (In Chinese with English abstract)
Gao, G., Li, Z., Chang, R., et al., (2019). Effects of plantation age
and precipitation gradient on soil carbon and nitrogen changes following
afforestation in the Chinese Loess Plateau. Land Degradation &
Development , 45 , 1-13.
Geisseler,D., Scow, K.M., (2014). Long-term effects of mineral
fertilizers on soil microorganisms-A review. Soil Biology and
Biochemistry , 75 , 54-63.
https://doi.org/10.1016/j.soilbio.2014.03.023
Gifford, R.M., Roderick, M.L., (2003). Soil carbon storage and bulk
density: spatial or cumulative mass coordinates as a basis of
expression? Global Change Biology , 9 , 1507-1514.
Gulab, Singh, Yawav, et al.,
(2019). Long-Term Effects of Different Passages of Vehicular Traffic on
Soil Properties and Carbon Storage of a Crosby Silt Loam in USA.Pedosphere , 29 (02):16-26.
https://doi.org/10.1016/S1002-0160(19)60796-4
Guo, L.B., Gifford, R.M., (2002). Soil carbon storage and land use
change: A meta-analysis. Global Change Biology , 8 ,
345–360.
Harris, N.L., Brown, S., Hagen, S.C., Saatchi, S.S., Petrova, S., Salas,
W., Hansen, M.C., Potapov, P.V., Lotsch, A., (2012). Baseline map of
carbon emissions from deforestation in tropical region. Science ,336 , 1573–1576. https://doi.org/ 10.1126/science.1217962
Hedges, L.V., Gurevitch, J., Curtis, P.S., (1999). The meta-analysis of
response ration in experimental ecology. Ecology, 80 ,
1150-1156. https://doi.org/
Hu, P.L., Liu, S.J., Ye, Y.Y., Zhang, W., Wang, K.L., Su, Y.R., (2018).
Effects of environmental factors on soil organic carbon under natural or
managed vegetation restoration. Land Degradation & Development ,29 (3): 387-397. https://doi.org/ 10.1002/ldr.2876
Hu, Y.C., Zheng, F.Y., Xu, S., (2017). Assessment of Immigration Effect
of Ecological Immigrants in Immigration Areas of Guangxi.Transactions of the Chinese Society of Agricultural Engineering ,33 , 264-270. (In Chinese with English abstract)
https://doi.org/
Inglima, I., Alberti, G., Bertolini, T., Vaccari, F.P., Gioli, B.,
Miglietta, F., Cotrufo, M.F., Peressotti, A., (2009). Precipitation
pulses enhance respiration of Mediterranean ecosystems: the balance
between organic and inorganic components of increased soil CO2 efflux.Global Change Biology , 15 , 1289–1301. https://doi.org/
10.1111/j.1365-2486.2008.01793.x
JeRoMe, L.R., Denisa, A., David, P., (2010). Carbon accumulation in
agricultural soils after afforestation: a meta-analysis. Global
Change Biology , 16 , 439-453. https://doi.org/
10.1111/j.1365-2486.2009.01930.x
Jiang, Y.J., (2006).
The
impact of land use on soil properties in a Karst agricultural region of
Southwest China: A case study of Xiaojiang watershed, Yunnan.Journal of Geographical Sciences 16 , 69-77. (In Chinese
with English abstract)
Jin, Z., Dong, Y.S., Wang, Y.Q., Wei, X.R., Wang, Y.F., Cui, B.L., Zhou,
W.J., (2014).
Natural
vegetation restoration is more beneficial to soil surface organic and
inorganic carbon sequestration than tree plantation on the Loess Plateau
of China. Science of the Total Environment , 485 ,
615–623.
Jobbágy, E.G., Jackson, R.B., (2000). The vertical distribution of soil
organic carbon and its relation to climate and vegetation,Ecological Applications , 10 , 423–436.
https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
Jobbágy, E.G., Jackson, R.B., (2001). The distribution of soil nutrients
with depth: global patterns and the imprint of plants.Biogeochemistry , 53 , 51–77.
Kucharik, C.J., Brye, K.R., Norman, J.M., Foley, J.A., Bundy, G.L.G.,
(2001). Measurements and Modeling of Carbon and Nitrogen Cycling in
Agroecosystems of Southern Wisconsin: Potential for SOC Sequestration
during the Next 50 Years. Ecosystems , 4 , 237-258.
https://doi.org/10.2307/3658956
Lal, R., (2004). Soil carbon sequestration impacts on global climate
change and foodsecurity. Science , 304 ,
1623–1627. https://doi.org/ 10.1126/science.1097396
Lal, R., (2009). Challenges and opportunities in soil organic matter
research. European Journal of Soil Science, 60 ,158–169. https://doi.org/10.1111/j.1365- 2389.2008.01114.x
Lal, R., (2016). Feeding 11 billion on 0.5 billion hectare of area under
cereal crops. Food and Energy Security , 5 , 239-251.
https://doi.org/10.1002/fes3.99
Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., (2009).
Determining soil carbon storage changes: simple bulk density corrections
fail. Agr Ecosyst Environ , 134 , 251-256.
https://doi.org/10.1016/j.agee.2009.07.006
Liao H K, Li J, Long J, Zhang, W.J., Liu,L.F., (2014). Effects of Land
use and conversion of farmland on soil active Organic carbon in Karst
Mountains. Environmental Science , 35 , 240-247.
Luo, H.B., Liu, F., Liu, Y.S., He, T.B., Su, Y.G., (2009). Soil organic
carbon changes under different vegetation communities in Karst rocky
desertification area. Scientia Silvae Sinicae, 45 ,
24-28. (In Chinese with English abstract)
Moffet, C.A., Zartman, R.E.,
Wester, D.B., et al., (2005). Surface biosolids application: Effects on
infiltration, erosion, and soil organic carbon in Chihuahuan Desert
grasslands and shrublands. Journal of Environment Quality ,34 (1):299-311.
Morris, S.J., Sven, B., Shawel, H.M., Paul, E.A., (2007). Evaluation of
carbon accrual in afforested agricultural soils. Global Change
Biology , 13 , 1145-1156. https://doi.org/
10.1111/j.1365-2486.2007.01359.x
Mukhopadhyay, S., Masto, R.E., Cerdà, A., Ram, L.C., (2016). Rhizosphere
soil indicators for carbon sequestration in a reclaimed coal mine spoil.Catena 141 , 100–108. https://doi.org/
10.1016/j.catena.2016.02.023
Nave, L.E., Domke, G.M., Hofmeister, K.L., Mishra, U., Perry, C.H.,
Walters, B.F., Swanston, C.W., (2018). Reforestation can sequester two
petagrams of carbon in US top soils in a century. Proceedings of
the National Academy of Sciences , 115 (11), 201719685.
https://doi.org/10.1073/pnas.1719685115
Nie, Y.P., Chen, H.S., Wang, K.L., Ding, Y.L., (2014). Rooting
characteristics of two widely distributed woody plant species growing in
different Karst habitats of Southwest China. Plant Ecology215 , 1099–1109. https://doi.org/10.1007/s11258-014-0369-0
Olson, K.R., Al-Kaisi, M.M., (2015). The importance of soil sampling
depth for accurate account of soil organic carbon sequestration,
storage, retention and loss. Catena 125 , 33–37.
https://doi.org/10.1016/j.catena.2014.10.004
Oskar, B., Cezary, K., Ukasz, M.,
et al., (2017). Labile and stabile soil organic carbon fractions in
surface horizons of mountain soils-relationships with vegetation and
altitude. Journal of Mountain Science . 14 (012):
2391-2405. https://doi.org/10.1007/s11629-017-4449-1
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., Grace, P.,
(2014). Conservation agriculture and ecosystem services: an overview.Agriculture, Ecosystems & Environment , 187 , 87–105.
https://doi.org/ 10.1016/j.agee.2013.10.010
Pan, F.J., Zhang, W., Liu, S.J., Li,D.J., Wang, K.L., (2015).
Leaf
N: P stoichiometry across plant functional groups in the Karst region of
southwestern China. Trees , 29 , 883–892.
https://doi.org/ 10.1007/s00468-015-1170-y
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Wesemael, B.V.,
Schumacher, J., Gensior, A., (2011). Temporal dynamics of soil organic
carbon after land-use change in the temperate zone - carbon response
functions as a model approach. Global Change Biology ,17 , 2415–2427. https://doi.org/
10.1111/j.1365-2486.2011.02408.x
Post, W.M., Kwon, K.C., (2000). Soil carbon sequestration and land-use
change: processes and potential. Global Change Biology ,6 , 317–327. https://doi.org/ 10.1046/j.1365-2486.2000.00308.x
Powlson, D.S., Stirling, C.M., Thierfelder, C., White, R.P., Jat, M.L.,
(2016). Does conservation agriculture deliver climate change mitigation
through soil carbon sequestration in tropical agro-ecosystems?Agriculture, Ecosystems & Environment , 220 , 164–174.
https://doi.org/ 10.1016/j.agee.2016.01.005
Reich, P.B., Grigal, D.F., Aber, J.D., Gower, S.T., (1997). Nitrogen
mineralization and productivity in 50 hardwood and conifer stands on
diverse soils. Ecology , 78 , 335–347. https://doi.org/
10.2307/2266011
Richard, B., Kurt, P., Alan, L., (2006). Forest Carbon Management in the
United States. Journal of environmet quality, 35 ,
1461-1469. https://doi.org/ 10.2134/jeq2005.0162
Schrumpf, M., Schulze, E.D., Kaiser, K., Schumacher, J.,
(2011). How accurately can soil
organic carbon storage and storage changes be quantified by soil
inventories? Biogeosciences , 8 , 1193–1212.
https://doi.org/ 10.5194/bgd-8-723-2011
Shapiro, S.S., Wilk, M.B., (1965). An analysis of variance test for
normality (complete
samples). Biometrika, 591–611. https://doi.org/10.2307/2333709
Shi, S.W., Peng, C.H., Meng, W., Zhu, Q., Gang, Y., Yang, Y.Z., Xi,
T.T., Zhang, T.L., (2016). A global meta-analysis of changes in soil
carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after
forestation. Plant Soil , 407 , 1-18. https://doi.org/
10.1007/s11104-016-2889-y
Shi, W.Y., Tateno, R., Zhang, J.G., Wang, Y.L., Yamanaka, N., Du, S.,
(2011). Response of soil respiration to precipitation during the dry
season in two typical forest stands in the forest-grassland transition
zone of the Loess Plateau. Agricultural and Forest Meteorology ,151 , 854-863. https://doi.org/ 10.1016/j.agrformet.2011.02.003
Song, X., Peng, C., Zhou, G., Jiang, H., Wang, W., (2014). Chinese Grain
for Green Program led to highly increased soil organic gcarbon levels: A
meta-analysis. Scientific reports , 4 :4460.
https://doi.org/ 10.1038/srep04460
Sotta, E.D., Meir, P., Malhi, Y., Nobre, A.D., Grace, J., (2010). Soil
CO2 efflux in a tropical forest in the central Amazon. Global
Change Biology , 10 , 601-617. https://doi.org/
10.1111/j.1529-8817.2003.00761.x
Stephens, M.A., (1975). An analysis of variance test for normality
(complete samples). Publications of the American Statistical
Association , 67 , 215-216.
Tashi, S., Singh, B., Keitel, C., Adams, M., (2016). Soil carbon and
nitrogen stocks in forests along an altitudinal gradient in the eastern
Himalayas and a meta-analysis of global data. Global Change
Biology , 22 , 2255-2268. https://doi.org/ 10.1111/gcb.13234
Toledo, D.M., Galantini, J.A., Dalurzo, H.C., Vazquez, S., Bollero, G.,
(2013). Methods for assessing the effects of land use changes on carbon
storage of subtropical oxisols. Soil Science Society of America
Journal , 77 , 1542-1552. https://doi.org/
10.2136/sssaj2013.03.0087
Van Straaten O., Marife D, C., Wolf, K., Tchienkoua, M., Cuellar. E.,
Robin B, M., Veldkamp, E., (2015). Conversion of lowland tropical
forests to tree cash crop plantations loses up to one-half of stored
soil organic carbon. Proceedings of the National Academy of
Sciences , 112 , 9956-9960.
https://doi.org/10.1073/pnas.1504628112
Van Lent, J., Hergoualc, H.K., Verchot, L.V., (2015). Soil
N2O and NO emissions from land use and land-use change
in the tropics and subtropics: a meta-analysis. Biogeosciences ,12 , 7299-7313. https://doi.org/ 10.5194/bg-12-7299-2015
Vandenbygaart, A.J., Angers, D.A., (2006). Towards accurate measurements
of soil organic carbon storage change in agroecosystems. Canadian
Journal of Soil Science , 86 , 465-471. https://doi.org/
10.4141/S05-106
Vandenbygaart, A.J., Bremer, E., Mcconkey, B.G., Janzen, H.H., Angers,
D.A., Carter, M.R., Drury, C.F., Lafond, G.P., Mckenzie, R.H., (2010).
Soil organic carbon storage on long-term agroecosystem experiments in
Canada. Canadian Journal of Soil Science , 90 , 543-550.
https://doi.org/ 10.4141/cjss10028
Virto, I., Pierre, B., Aurélien, B., Claire, C., (2012). Carbon input
differences as the main factor explaining the variability in soil
organic C storage in no-tilled compared to inversion tilled agrosystems.Biogeochemistry , 108 , 17–26. https://doi.org/
10.1007/s10533-011-9600-4
Vitousek, P.M., (2005). Nutrient cycling and limitation: Hawaii as a
model system. Princeton University Press , Princeton.
https://doi.org/10.1111/j.1442-9993.2005.01458.x
Wang, S.J., Liu, Q.M., Zhang, D.F., (2010). Karst Rocky Desertification
in Southwestern China: Geomorphology, Land use, Impact and
Rehabilitation. Land Degradation & Development , 15 ,
115-121. https://doi.org/ 10.1002/ldr.592
Wang, S.Q., Li, T.X., Zheng, Z.C., (2016). Effect of tea plantation age
on the distribution of soil organic carbon and nutrient within
micro-aggregates in the hilly region of western Sichuan, China.Ecological Engineering , 90 :113-119.
Wiesmeier, M., Lützow, M.V., Spörlein, P., Geuß, U., Hangen, E.,
Reischl, A., Schilling, B., Kögel-Knabner, I., (2016). Land use effects
on organic carbon storage in soils of Bavaria: the importance of soil
types. Soil and Tillage Research , 146 , 296–302.
https://doi.org/10.1016/j.still.2014.10.003
Xiao S.S., Dong, Y.S., Qi, Y.C., Peng, Q., He, Y.T., Yang, Z.J., (2009).
Advance in responses of soil organic carbon pool of grassland ecosystem
to human effects and global changes. Advances in Earth Science24 , 1138-1148. https://doi.org/
10.11867/j.issn.1001-8166.2009.10.1138
Xie, X.L., Sun, B., Zhou, H.Z., Li, P.Z., (2004). Storage and
influencing factors of soil organic carbon in China under different
vegetation conditions. Acta Pedologica Sinica , 41 ,
687-699. ( In Chinese with English abstract)
Xu, L., He, N.P., Yu, G.R., (2016). Methods of evaluating soil bulk
density: Impact on estimating large scale soil organic carbon storage.Catena , 144 , 94-101.
https://doi.org/10.1016/j.catena.2016.05.001
Xu, J.X., Li, X.M., Sun, G.X., et al., (2019). The fate of labile
organic carbon in paddy soil is regulated by microbial ferric iron
reduction. Environmental science & technology , 53 (15),
8533-8542. https://doi.org/10.1021/acs.est.9b01323
Yang, Y.H., Fang, J.Y., Tang, Y.H., Ji, C.J., Zheng, C.Y., He, J.S.,
Zhu, B., (2008). Storage, patterns and controls of soil organic carbon
in the Tibetan grasslands. Global Change Biology , 14 ,
1592-1599. https://doi.org/10.1111/j.1365-2486.2008.01591.x
Yang, Y.H., Luo, Y.Q., Finzi, A.C., (2011). Carbon and nitrogen dynamics
during forest stand development: a global synthesis. New
Phytologist , 190 , 977-991.
https://doi.org/10.1111/j.1469-8137.2011.03645.x
Zhang, S., Xu, M., Zhang, Y., Wang, C., Chen, G., (2014). Effects of
land use change on soil organic carbon storage in the hilly Loess
Plateau. Acta Scientiae Circumstantiate 34, 3094-3101.
(In Chinese with English abstract)
Zhu, Y.L., Han, J.G., Wu J S, (2004). Effect of agricultural practices
on soil organic carbon dynamics. Chinese Journal of Soil Science35 , 648-651. (In Chinese with English abstract)
Table 1 SOC and TN database in the Karst region of southwest
China.