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Abstract 26 

Simulation-based methods such as Approximate Bayesian Computation (ABC) are well 27 

adapted to the analysis of complex scenarios of populations and species genetic history. In 28 

this context, supervised machine learning (SML) methods provide attractive statistical 29 

solutions to conduct efficient inferences about scenario choice and parameter estimation. 30 

The Random Forest methodology (RF) is a powerful ensemble of SML algorithms used for 31 

classification or regression problems. RF allows conducting inferences at a low 32 

computational cost, without preliminary selection of the relevant components of the ABC 33 

summary statistics, and bypassing the derivation of ABC tolerance levels. We have 34 

implemented a set of RF algorithms to process inferences using simulated datasets 35 

generated from an extended version of the population genetic simulator implemented in 36 

DIYABC v2.1.0. The resulting computer package, named DIYABC Random Forest v1.0, 37 

integrates two functionalities into a user-friendly interface: the simulation under custom 38 

evolutionary scenarios of different types of molecular data (microsatellites, DNA 39 

sequences or SNPs) and RF treatments including statistical tools to evaluate the power and 40 

accuracy of inferences. We illustrate the functionalities of DIYABC Random Forest v1.0 41 

for both scenario choice and parameter estimation through the analysis of two example 42 

datasets corresponding to pool-sequencing and individual-sequencing SNP datasets. 43 

Because of the properties inherent to the implemented RF methods and the large feature 44 

vector (including various summary statistics and their linear combinations) available for 45 

SNP data, DIYABC Random Forest v1.0 can efficiently contribute to the analysis of large 46 

SNP datasets to make inferences about complex population genetic histories. 47 

 48 

Key words: Approximate Bayesian Computation, model or scenario selection, parameter 49 

estimation, population genetics, Random Forest, Supervised Machine Learning 50 
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1 | INTRODUCTION 51 

 52 

To keep pace with a regular increase of genetic data accessible to biologists, computational 53 

methodologies for population genetic inference are constantly and rapidly being 54 

developed. Due to their great flexibility, simulation-based likelihood-free methods such as 55 

Approximate Bayesian Computation (ABC; Beaumont, Zhang & Balding, 2002) are well 56 

adapted to the analysis of complex models (hereafter referred to as scenarios) of 57 

populations and species history, in which divergence events, change of population sizes, 58 

and genetic admixture or migration events are suspected (reviewed in Beaumont 2010, 59 

Bertorelle, Benazzo, Mona 2010, and Csilléry, Blum, Gaggiotti, & François 2010). With 60 

the advent of next generation sequencing (NGS) technologies, population genetic datasets 61 

have drastically grown in size (both in terms of number of genotyped loci and number of 62 

genetically characterized populations), so that ABC users are facing two major problems: 63 

(i) the simulation of massive numbers of large datasets constituting a so called reference 64 

table, as required for ‘classical’ ABC methods, becomes prohibited without extensive 65 

computational resources, and (ii) the substantial increase of the number of non-independent 66 

statistics used to extract information from the genetic data poses various statistical issues, 67 

including the ‘curse of dimensionality’ whereby accuracy and stability of inferences 68 

decrease as the number of summary statistics grows (e.g. Beaumont et al., 2010). Although 69 

much effort has gone into dimensionality reduction and feature selection for ABC 70 

(reviewed in Blum, Nunes, Prangle, Sisson 2013; Estoup et al., 2012), reducing 71 

dimensionality might lead to loss of information if the remaining summaries fail capturing 72 

enough information from the data (i.e. if they are not sufficient statistics). 73 

In this context, supervised machine learning (SML) methods provide attractive 74 

solutions for statistical inference. SML methods allow predicting new data points through 75 
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the use of a training set of labeled simulated data examples, for which true response values 76 

are known. This data structure is reminiscent of the ABC reference table. The ability of 77 

SML methods to use simulation as a stand-in for observed data is crucial for population 78 

genetics applications, where adequately sized datasets with high-confidence labels are 79 

currently hard to obtain. Most interestingly, some SML methods are able to take advantage 80 

of high dimensional input, suffer only slightly from the curse of dimensionality and are 81 

often more robust than other statistical approaches (Chen, Cao, Wen, & Sun, 2013; 82 

Anderson, Belkin, Goyal, Rademacher & Voss, 2014; Schrider & Kern, 2018). SML 83 

approaches are currently revolutionizing many fields (e.g. Sebastiani 2002 in text 84 

categorization; Libbrecht & Noble 2015 in genomics; Angermueller, Parnamaa, Parts, & 85 

Stegle 2016 in genomics and cellular imaging), but their use in population genetics 86 

inference is still in its infancy (but see e.g. Chapuis et al., 2020; Fraimout et al., 2017; 87 

Pybus et al., 2015; Schrider & Kern, 2016, 2017; Sheeman & Song, 2016; Schrider, 88 

Ayroles, Matute, & Kern, 2018). The Random Forest (RF) approach proposed by Breiman 89 

(2001) is one of the major state-of-the-art SML algorithms for classification (e.g., for 90 

scenario choice) or regression (e.g., for estimation of continuous parameters). Pudlo et al. 91 

(2016) recently developed RF algorithms to perform scenario choice from simulated 92 

datasets summarized through a large set of statistics, as typically considered in ABC, hence 93 

leading to the so called ABC-RF approach. As compared to classical ABC methods, the 94 

ABC-RF approach enables efficient discrimination among scenarios and estimation of the 95 

posterior probability of the best scenario, with a lower computational burden. More 96 

specifically, ABC-RF and other ABC methods provide consistent results for analyses 97 

based on a large number of simulated datasets, but ABC-RF outperforms other ABC 98 

methods for analyses of multiple complex scenarios based on smaller (hence more 99 

manageable) number of simulated datasets (Fraimout et al., 2017; Pudlo et al., 2016). 100 
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Building on these results, Raynal et al. (2019) recently proposed an extension of the RF 101 

approach in a (non-parametric) regression setting to characterize the posterior distributions 102 

of parameters of interest in a given scenario. As compared to alternative ABC solutions, 103 

Raynal et al.’s (2019) RF method offers many advantages, out of which (i) a significant 104 

improvement of robustness to the choice of summary statistics; (ii) the non-requirement of 105 

any type of tolerance level; and (iii) a good trade-off between the precision of point 106 

estimates of parameters and the accuracy of credible intervals for a given computational 107 

burden.  108 

The workflow to applying any SML methods to population genetic data passed 109 

through several stages: (i) the simulation of data under one or several evolutionary 110 

scenarios; (ii) the encoding of both simulated and real data as feature vectors (i.e., 111 

summary statistics as in ABC); and (iii) the training of the algorithm, applying it on new 112 

(observed) data point(s), and assessing its performance in term of prediction (through the 113 

computation of error and accuracy measurements). Any effort to create self-contained, 114 

efficient, and user-friendly software packages capable of performing this entire workflow 115 

would streamline SML methods and make them more accessible to researchers, including 116 

non-specialist users. To that end, we have implemented in a new computer package a set of 117 

RF algorithms to infer population histories from genetic polymorphisms, building upon an 118 

extended version of the population genetics simulator implemented in DIYABC 2.1.0 119 

(Cornuet et al., 2014). The data correspond to various types of genetic markers: 120 

microsatellites, DNA sequences and SNPs, including pool-sequencing data, which consist 121 

of whole-genome sequences obtained from pools of DNA extracted from tens to hundreds 122 

of individuals (Gautier et al., 2013; Schlötterer, Tobler, Kofler, & Nolte, 2014). A large set 123 

of summary statistics has also been implemented to improve the extraction of genetic 124 

information from SNP datasets. The resulting package, named DIYABC Random Forest 125 
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v1.0, integrates two functionalities in a user-friendly interface: the simulation under 126 

custom evolutionary scenarios of polymorphism data (summarized into a large set of 127 

descriptive statistics) and RF treatments including various statistical tools to evaluate the 128 

power and accuracy of RF-based inferences. Here we describe the main statistical features 129 

of DIYABC Random Forest v1.0 and illustrate its potentialities and functionalities for both 130 

scenario choice and parameter estimation through the analyses of two examples of NGS 131 

datasets corresponding to pool-sequencing and individual-sequencing SNP data. 132 

 133 

2 | METHODS 134 

 135 

2.1 | ABC Random Forest in the realm of supervised machine learning 136 

The guiding idea of supervised machine learning (SML) approaches is to use a set of data 137 

made of explanatory variables (input) and response values (output), in order to learn the 138 

relationship between these two, and hence emit a predicted response value for each new 139 

input of interest. More formally, SML methods learn this relationship thanks to a function, 140 

f, that predicts a response variable, y, from a feature vector, x, containing M input 141 

variables, such that f(x) = y. If y is a categorical variable (e.g. for scenario choice), one 142 

refers to the task as a classification problem, whereas if y is a continuous variable one 143 

refers to it as regression (e.g. for parameter estimation). In supervised learning, the 144 

objective is to optimize f:x→y using a training set of labeled data (i.e., whose response 145 

values are known). The training set includes values of a feature vector which is a 146 

multidimensional representation of any data point made up of measurements (or features) 147 

taken from it. That is, one assumes to have a set of training data of length n of the form 148 

{(x1, y1),…,(xn, yn)}, where x Є RM. A variety of learning algorithms exist which can 149 
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generate functions that can perform either classification or regression (reviewed in e.g. 150 

Schrider & Kern, 2018) 151 

In our inferential framework, SML methods learn from simulations coming from 152 

one or several generative model(s) (i.e. scenario(s)). A relevant way to take benefits from 153 

generative scenario simulations is the Bayesian paradigm and therefore the ABC type 154 

approach (Beaumont et al., 2002). Here, the training set is equivalent to the ABC reference 155 

table, which includes a given number of datasets that have been simulated for different 156 

scenarios using parameter values drawn from prior distributions, each dataset being 157 

summarized with a set of descriptive statistics. Random Forest (RF; Breiman, 2001) are 158 

currently considered as one of the major state-of-the-art SML algorithm for classification 159 

or regression. Briefly, RF aggregates the predictions of a collection of classification trees 160 

or regression trees, depending on whether the output is categorical (e.g., the identity of a 161 

finite number of compared scenarios) or quantitative (e.g., the simulated values of a 162 

parameter of interest). Each tree is built by using the information provided by a bootstrap 163 

sample of the training set and manages to capture one part of the dependency between the 164 

output and the covariates of the feature vector. Based on these random trees which are 165 

individually poor to predict the output, a random forest is built by aggregating the tree 166 

predictions in order to increase the predictive performances to a high level of accuracy, 167 

mainly due to the variance reduction of predictions compared to an individual tree 168 

(Breiman, 2001). More details and in-depth explanations can be found in Pudlo et al. 169 

(2016), Fraimout et al. (2017), Estoup, Raynal, Verdu, & Marin (2018) and Marin, Pudlo, 170 

Estoup, & Robert (2018) for scenario choice, and Raynal et al. (2019) for parameter 171 

estimation. See also the Supplementary Material S3 of Chapuis et al. (2020) for a concise 172 

overview of the RF algorithms and statistical developments used in the present paper and 173 

implemented in the computer package DIYABC Random Forest v1.0. 174 
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 175 

2.2 | Simulation of the training set 176 

Before processing RF analyses, one needs to generate a training set. The datasets 177 

composing the training set can be simulated under different scenarios and sample 178 

configurations, using parameter values drawn from prior distributions. Each resulting 179 

dataset is summarized using a set of descriptive statistics. We formalized scenarios and 180 

prior distributions, and computed summary statistics using the “Training set simulation” 181 

module of DIYABC Random Forest v1.0, which essentially corresponds to an extended 182 

version of the population genetics simulator implemented in DIYABC v2.1.0 (Cornuet et 183 

al., 2014). As in the latter program, DIYABC Random Forest v1.0 allows considering 184 

complex population histories including any combination of population divergence events, 185 

symmetrical or asymmetrical admixture events (but not any continuous gene flow between 186 

populations) and changes in past population size, with population samples potentially 187 

collected at different times.  188 

DIYABC Random Forest v1.0 accepts various types of molecular data 189 

(microsatellites, DNA sequences, and SNPs) evolving under various mutation models and 190 

located on various chromosome types (autosomal, X or Y chromosomes, and 191 

mitochondrial DNA) for diploid or haploid individuals. Compared to other types of 192 

markers, SNP loci have low mutation rates, so that polymorphism at such loci is assumed 193 

to be caused by a single mutation that occurred along the whole population(s) gene tree, 194 

which results in biallelic genotypes. To simulate polymorphic datasets at a given SNP 195 

locus, we follow the algorithm proposed by Hudson (1993) – cf. –s 1 option in the program 196 

ms associated to Hudson (2002) – that consists in fixing one segregating site in the 197 

genealogy and thus leads to applying a default MAF (minimum allele frequency) criterion 198 

on the simulated dataset. As a matter of fact, each locus in both the observed and simulated 199 
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datasets will be characterized by the presence of at least one copy of the SNP alleles over 200 

all genes sampled from all studied populations (i.e. pooling all genes genotyped at the 201 

locus). In DIYABC Random Forest v1.0, it is possible to impose a different MAF criterion 202 

for each locus on the observed and simulated datasets. This MAF is computed pooling all 203 

genes genotyped over all studied population samples. For instance, the specification of a 204 

MAF equal to 5% will automatically select a subset of m loci characterized by a minimum 205 

allele frequency > 5% out of the l loci of the observed dataset. In agreement with this, only 206 

m loci with a MAF>5% will be retained in a simulated dataset. 207 

In addition to individual-sequencing SNP data (hereafter IndSeq data), DIYABC 208 

Random Forest v1.0 allows the simulation and analyses of pool-sequencing SNP data 209 

(hereafter PoolSeq data), which basically consist of whole-genome sequences of pools of 210 

tens to hundreds of individual DNAs (Gautier et al., 2013; Schlötterer et al., 2014). In 211 

practice, the simulation of PoolSeq data consists first in simulating individual SNP 212 

genotypes for all individuals in each population pool, and then generating pool read counts 213 

from a binomial distribution parameterized with the simulated allele counts (obtained from 214 

individual SNP genotypes) and the total pool read coverage (e.g., Hivert, Leblois, Petit, 215 

Gautier, & Vitalis, 2018). To account for variation of the total read coverage across SNPs 216 

as observed in the actual dataset, the coverages across the pools of a given SNP are 217 

randomly drawn from the vectors of SNP coverages composing the observed dataset. The 218 

“Synthetic data file generation” module of the program allows the simulation of various 219 

types of pseudo-observed ‘raw’ datasets (i.e. not summarized through statistics) without 220 

referring to any (actual) observed dataset. In the case of raw PoolSeq datasets, the total 221 

coverage within each pool of each SNP is sampled from a Poisson distribution with a mean 222 

corresponding to an arbitrary coverage value (e.g. 100X) fixed by the DIYABC Random 223 

Forest v1.0 user. 224 
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It is worth noting that, in contrast to any other types of markers considered by 225 

DIYABC Random Forest v1.0 (including IndSeq SNPs), PoolSeq SNP data are considered 226 

as located on autosomal chromosomes only. A criterion somewhat similar to the MAF was 227 

implemented for PoolSeq data: the minimum read count (MRC). The MRC is the number 228 

of sequence reads of the minor allele frequency allele when pooling the reads over all 229 

population samples. The specification of a MRC equal for instance to 5 will automatically 230 

select a subset of m PoolSeq loci characterized by more than five reads over all studied 231 

pools among the l loci of the observed dataset. In agreement with this, only m loci with 232 

more than five reads will be retained in a simulated dataset. 233 

   234 

2.3 | Components of the feature vector 235 

The feature vector includes a large number of statistics that summarizes genetic variation 236 

in the way that they allow capturing different aspects of gene genealogies and hence 237 

various features of molecular patterns generated by selectively neutral population histories 238 

(e.g. Beaumont 2010; Cornuet et al., 2014). For microsatellite and DNA sequence markers, 239 

DIYABC Random Forest v1.0 proposes by default the same set of summary statistics as 240 

DIYABC v2.1.0 (Cornuet et al., 2014). These summary statistics describe genetic variation 241 

within population (e.g. numbers of alleles), between pair (e.g., genetic distances), or per 242 

triplet (e.g., coefficients of admixture) of populations, averaged over loci; see details in the 243 

DIYABC Random Forest v1.0 user manual (https://diyabc.github.io).  244 

For both IndSeq and PoolSeq SNPs, we have implemented in DIYABC Random 245 

Forest v1.0 an extended set (when compared to DIYABC v2.1.0) of summary statistics. 246 

The proportion of monomorphic loci is computed for each population, as well as for each 247 

pair and triplet of populations. Mean and variance (over loci) values are computed for all 248 

subsequent summary statistics. Heterozygosity is computed for each population and for 249 

https://diyabc.github.io/
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each pair of populations as (1 - Q1) and (1 – Q2), where Q1 and Q2 are the probabilities of 250 

identity between pairs of genes described in the Supplementary File S1 of Hivert et al. 251 

(2018). FST-related statistics are computed for each population (i.e., population-specific 252 

FST as described in Weir & Goudet 2017), as well as for each pair, triplet, quadruplet and 253 

overall populations (when the dataset includes more than four populations), using the 254 

method-of-moments estimators described in Hivert et al. (2018). In addition, we compute 255 

Patterson’s f-statistics for each triplet (f3-statistics) and quadruplet (f4-statistics) of 256 

populations as described in Patterson et al. (2012), except for the f3-statistics for PoolSeq 257 

read count data which are computed using the unbiased estimator described in Leblois et 258 

al. (2018). Finally, Nei’s (1972) distance is computed for each pair of populations and the 259 

coefficient of admixture is computed for each triplet of populations as described in Cornuet 260 

et al. (2014). For additional details, see the user manual of DIYABC Random Forest v1.0 261 

(https://diyabc.github.io). An illustration of the feature vector composed of all above 262 

summary statistics is given in Table S1 for the analysis of two example SNP pseudo-263 

observed datasets.  264 

 For scenario choice, the feature vector can be enriched by values of the d axes of a 265 

linear discriminant analysis (LDA) processed on the above summary statistics (with d 266 

equal to the number of scenarios minus 1; Pudlo et al., 2016). In the same spirit, for 267 

parameter estimation, the feature vector can be completed by values of a subset of the s 268 

axes of a Partial Least Squares Regression analysis (PLS) also processed on the above 269 

summary statistics (with s equal to the number of summary statistics). The number of PLS 270 

axes added to the feature vector is determined as the number of PLS axes providing a given 271 

fraction of the maximum amount of variance explained by all PLS axes (i.e., 95% by 272 

default, but this parameter can be adjusted). 273 

 274 
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2.4 | Prediction using Random Forest  275 

We used the “Random Forest analyses” module of the software DIYABC Random Forest 276 

v1.0 to process RF prediction applied to a given target dataset. For scenario choice, the 277 

outcome of the first step of RF computation is a classification vote for each scenario which 278 

represents the number of times a scenario is selected in a forest of n trees. The scenario 279 

with the highest classification vote corresponds to the scenario best suited to the target 280 

dataset among the set of compared scenarios. This first RF predictor is good enough to 281 

select the most likely scenario but not to derive directly the associated posterior 282 

probabilities. A second analytical step based on a second Random Forest in regression is 283 

necessary to provide an estimation of the posterior probability of the best supported 284 

scenario (Pudlo et al., 2016). For parameter estimation, Raynal et al. (2019) extended the 285 

RF approach developed in the context of (non-parametric) regression (Breiman, 2001), to 286 

estimate the posterior distributions of parameters of interest in a given scenario. The 287 

approach requires the derivation of a new Random Forest for each component of interest of 288 

the parameter vector. Quite often, practitioners of Bayesian inference report the posterior 289 

mean, posterior variance or posterior quantiles, rather than the full posterior distribution, 290 

since the former are easier to interpret than the latter. We implemented the methodologies 291 

detailed in Raynal et al. (2019) to provide estimations of the posterior mean, variance, 292 

median (i.e. 50% quantile) as well as 5% and 95% quantiles (and hence 90% credibility 293 

interval) of each parameter of interest. The posterior distribution of each parameter of 294 

interest is obtained using importance weights following Meinshausen (2006)’s work on 295 

quantile regression forests. 296 

 297 

2.5 | Assessing the quality of predictions 298 
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For scenario choice and parameter estimation, DIYABC Random Forest v1.0 allows 299 

evaluating the robustness of inferences. Because the level of errors on scenario choice and 300 

accuracy of parameter estimation may substantially differ depending on the location of an 301 

observed dataset in the prior data space, prior-based indicators are poorly relevant, aside 302 

from their use to select the best classification method and possibly a set of highly 303 

informative components of the feature vector. Therefore, in addition to global (i.e. prior) 304 

error/accuracy corresponding to prediction quality measures computed over the entire data 305 

space, it is crucial to compute local (i.e. posterior) error/accuracy conditionally on the 306 

observed dataset, corresponding to prediction quality exactly at the position of the 307 

observed dataset. For scenario choice, the global prior errors including the confusion 308 

matrix (i.e. the contingency table of the true and predicted classes for each example in the 309 

training set) and the mean misclassification error rate were computed using the out-of-bag 310 

(a.k.a. out-of-bootstrap) training data as free test dataset. The out-of-bag dataset 311 

corresponds to the data of the training set that were not selected when creating the different 312 

tree bootstrap samples (Breiman, 2001). For scenario choice, Chapuis et al. (2020) 313 

highlighted that the local (posterior) error can be computed as 1 minus the posterior 314 

probability of the selected scenario. For parameter estimation, we also relied on out-of-bag 315 

predictions to compute both global (i.e. prior) and local (i.e. posterior) accuracy measures, 316 

as detailed in the Supplementary Material S3 of Chapuis et al. 2020 (see also Raynal et al. 317 

2019). DIYABC Random Forest v1.0 includes the following accuracy measures: (i) both 318 

the global and local NMAE (i.e., the normalized mean absolute error which is the average 319 

absolute difference between the point estimate and the true simulated value divided by the 320 

true simulated value) with the mean or the median taken as point estimate; ii) both the 321 

global and local MSE and NMSE (i.e., the mean square error which is the average squared 322 

difference between the point estimate and the true simulated value for MSE, divided by the 323 
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true simulated value for NMSE), again with the mean or the median taken as point 324 

estimate; and iii) several confidence interval measures, computed only at the global scale, 325 

including the 90% coverage (i.e., the proportion of true simulated values located between 326 

the estimated 5% and 95% quantiles), and the mean or the median of the 90% amplitude 327 

and relative 90% amplitude (i.e., the mean or median of the difference between the 328 

estimated 5% and 95% quantiles for the 90% amplitude, divided by the true simulated 329 

value for the relative 90% amplitude). 330 

It is worth stressing that using the out-of-bag prediction method for estimating global 331 

and local error/accuracy measures is computationally efficient as this approach makes use 332 

of the datasets already present in the training set and hence avoids the computationally 333 

costly simulations (especially for large SNP datasets) of additional test datasets.  334 

 335 

2.6 | Implementation 336 

The package DIYABC Random Forest v1.0 is composed of three parts: the dataset 337 

simulator, the Random Forest inference engine and the graphical user interface. The whole 338 

is packaged as a standalone and user-friendly application available 339 

at https://diyabc.github.io. The different developer and user manuals for each component 340 

of the package are available on the same site. DIYABC Random Forest v1.0 is a 341 

multithreaded program which runs on three operating systems: GNU/Linux, Microsoft 342 

Windows and MacOS. Computational procedures of the simulator and the Random Forest 343 

inference engine are written in C++. The graphical user interface is written in R shiny 344 

(Chang, Cheng Allaire, Xie, & McPherson, 2019) and available as a standalone graphical 345 

application or as a R package implementing a web application that can be run locally or 346 

hosted as a web service.  347 

https://diyabc.github.io/
https://diyabc.github.io/
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For the Random Forest part of DIYABC Random Forest v1.0, we used our own 348 

version of the core RF (written in C++) from the package ranger (Wright & Ziegler 2017). 349 

In this new version, that we named abcranger, the Random Forest computations are 350 

optimized in order to grow a limited batch of trees in memory (but still computed in 351 

parallel to leverage multicore architectures) in sequential – i.e. batch-wise order. Tree 352 

growing and predictions are computed in a single pass, predictions are stored or 353 

accumulated and each tree is then discarded. Although we still need the entire training set 354 

at once, processing in this way avoids the in-memory storage of the whole forest at zero 355 

performance cost. The abcranger package hence opens new perspective to efficiently 356 

compute RF from training sets of (very) large size. For instance, a training set including > 357 

100,000 particles of a feature vectors composed of > 10,000 summary statistics could be 358 

treated without any memory overflow (results not shown). It is worth stressing that 359 

abcranger is not limited to population genetics applications as the program can be used as 360 

an inference engine independently from the DIYABC simulator. However, for the moment, 361 

the binary standalone used by the DIYABC interface handles only outputs produced by the 362 

DIYABC simulator. A python wrapper (and example notebooks) is available at 363 

https://github.com/diyabc/abcranger and a R wrapper will be soon provided at the same 364 

site.  365 

 366 

2.7 | Interface and outputs 367 

DIYABC Random Forest v1.0 can be used through a modern and user-friendly graphical 368 

interface designed as an R shiny application (Chang et al., 2019). For a fluid and simplified 369 

user experience, this interface is available through a standalone application, which does not 370 

depend on R and hence can be used independently. The application is also implemented in 371 

a R package providing a standard shiny web application (with the same graphical interface) 372 
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that can be run locally as any shiny application, or hosted as a web service to provide a 373 

DIYABC Random Forest v1.0 server for multiple users. 374 

 The interface is divided into two modules corresponding to the two main phases of 375 

a statistical treatment based on DIYABC Random Forest v1.0: module 1 = “Training set 376 

simulation” and module 2 = “Random Forest analyses”. In module 1, users specify what 377 

type and how simulated data will be generated under the ABC framework to produce a 378 

training set. Module 2 guides users through scenario choice and parameter inference by 379 

providing a simple interface for the supervised learning framework based on Random 380 

Forest methodologies. An additional module named “Synthetic data file generation”  381 

(based on the DIYABC simulation engine) is also available in the application. It can be 382 

used to easily generate datafile(s) for various types of genetic markers corresponding to 383 

synthetic “ground truth” raw data (not summarized through statistics) under a given 384 

historical scenario and a set of fixed parameter values. The formats of the generated 385 

datafiles are similar to those of the observed input datafiles read by DIYABC Random 386 

Forest v1.0 (for details see user manual at https://diyabc.github.io). 387 

The integration of the various graphical outputs (historical scenario representation, 388 

error or accuracy indices, posterior curves, contribution to inferences of components of the 389 

feature vector, etc.) is managed with the ggplot2 R package (Wickham 2016), allowing 390 

user to create and export high-quality graphics related to the analyses. We encourage users 391 

to consult the user manual of the program available at https://diyabc.github.io for details 392 

regarding the various numerical and graphical outputs provided by DIYABC Random 393 

Forest v1.0. It is worth noting that a number of such outputs have been used in the present 394 

paper to illustrate the results obtained when analyzing two example SNP pseudo-observed 395 

datasets (see below). 396 

 397 
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2.8 | Illustration using two example pseudo-observed SNP datasets 398 

 399 

Compared scenarios and prior distributions 400 

We considered a case study where one wants to make inferences about the genetic origin 401 

of a population of interest (for example a recent invasive population) among a set of 402 

possible source populations (for which the topology is known; see Figure 1). The target 403 

population (pop 4) has three possible single population sources (pop1, pop2 or pop3) and 404 

three possible admixed pairwise population sources (i.e., admixture between pop1 & pop2, 405 

pop1 & pop3 and pop2 & pop3). We hence formalized six competing scenarios that 406 

constitute two groups of scenarios when referring to the presence or absence of an 407 

admixture event when founding the target population 4: group 1 includes three scenarios 408 

including an admixture event (scenarios 1, 2 and 3) and group 2 three scenarios without 409 

any admixture event (scenarios 4, 5 and 6) (Figure 1). Such grouping approach in scenario 410 

choice is relevant to disentangle in our analysis the level of confidence to make inferences 411 

about a given (or several) specific evolutionary event of interest, here the presence or 412 

absence of an admixed origin of population 4 (Estoup et al., 2018; Chapuis et al., 2020). 413 

Demographic and historical parameters include four effective population sizes N1, 414 

N2, N3 and N4 (for populations 1, 2, 3, and 4, respectively) and three divergence or 415 

admixture time events (t1, t2 and t3), with t1 the divergence or admixture time of pop4, t2 416 

the divergence time of pop3 from pop2, and t3 the divergence time of pop2 from pop1 417 

(Figure 1). For the three scenarios with admixture, the parameter ra corresponds to the 418 

proportion of genes of a given source population entering into the admixed population 4, as 419 

described in Figure 1. Prior values for time events (t1, t2, and t3) were drawn from uniform 420 

distributions bounded between 10 and 1,000 generations, with t3 > t2 > t1. We used 421 

uniform prior distributions bounded between 1x102 and 1x104 diploid individuals for each 422 
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effective population sizes N1, N2, N3 and N4. The admixture rate ra was drawn from a 423 

uniform prior distribution bounded between 0.05 and 0.95. 424 

 425 

Pseudo-observed datasets 426 

Our prediction targets correspond to two pseudo-observed datasets that were generated 427 

using the “Synthetic data file generation” module of DIYABC Random Forest v1.0 under 428 

the scenario 3 using the following parameter values: N1=7000, N2=2000, N3=4000, 429 

N4=3000, t1=200, ra=0.3, t2=300 and t3=500. The short divergence times and large 430 

effective population sizes values corresponds to a situation of low level of genetic 431 

differentiation among populations (cf. parwise FST values ranging from 3% to 7%) and 432 

hence to a difficult case study. The two pseudo-observed datasets correspond to a PoolSeq 433 

read count dataset and an IndSeq allele count dataset, each with 30,000 SNPs. They 434 

represent similar sequencing efforts: a 100X coverage for each population of the PoolSeq 435 

dataset (with 100 individuals per population pool) and 10 individuals sequenced per 436 

population for the IndSeq dataset with a 10X coverage for each sequenced individual (the 437 

latter parameter being not explicitly indicated in the program as individual SNP genotypes 438 

are considered to be inferred without errors). RF analyses were processed with DIYABC 439 

Random Forest v1.0 on a subset of 5,000 SNPs with a MRC = 5 for the PoolSeq dataset 440 

and a MAF = 5% for the IndSeq dataset. 441 

 442 

Scenario choice 443 

Following the new approach proposed by Estoup et al. (2018), we used DIYABC Random 444 

Forest v1.0 to process RF analyses grouping scenarios based on the presence or absence of 445 

an admixed origin of population 4, and then considered all six scenarios separately. The 446 

training set were generated using the “Training set simulation” module of DIYABC 447 
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Random Forest v1.0, drawing parameter values into the prior distributions described above 448 

and summarizing SNP data using 130 statistics (see Table S1 for details about such 449 

summary statistics) plus one LDA axis or five LDA axes (i.e., the number of scenarios 450 

minus 1; see Pudlo et al. 2016) computed when comparing the two groups of scenarios or 451 

individual scenarios, respectively. We then used the “Random Forest analyses” module of 452 

DIYABC Random Forest v1.0 to process RF treatments on the training sets which included 453 

a total of 12,000 simulated datasets (i.e., 2,000 per scenario). Following Pudlo et al. 454 

(2016), we checked that 12,000 datasets in the training set was sufficient by evaluating the 455 

stability of prior error rates and posterior probabilities estimations of the best scenario on 456 

subsets of 10,000, 11,000 and 12,000 data of the training set (results not shown). The 457 

number of trees in the constructed Random Forest was fixed to 1,000, as this number 458 

turned out to be large enough to ensure a stable estimation of the global error rate (Figure 459 

S1). We predicted the best scenario and estimated its posterior probability, as well as the 460 

global and local error rates, over ten replicate RF analyses based on the same training set. 461 

 462 

Parameter estimation 463 

Following Raynal et al. 2019, we conducted independent RF treatments for each parameter 464 

of interest. For the sake of concision, we focused our estimations on four parameters 465 

involved in the admixture event in scenario 3 (i.e. the selected scenario after processing 466 

scenario choice): the founding/admixture time for the target population 4 (t1), the 467 

admixture rate (ra corresponding to the proportion of genes originating from population 1), 468 

the effective population size of population 4 (N4), and the compound parameter 469 

corresponding to the ratio t1/N4. As a matter of fact, considering ratios (or products) of 470 

parameters - here the admixture time scaled by the effective population size as drift 471 

parameter - allows reducing parameter identifiability issues of some scenarios (e.g., 472 
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Beaumont 2010). The training sets included 10,000 datasets simulated under scenario 3 473 

and summarized using the same 130 statistics (Table S1) plus 4 to 24 PLS axes depending 474 

on the parameter estimated and the training set analyzed. For each parameter, we inferred 475 

point estimates and computed global and local accuracy indices corresponding to global 476 

and local NMAE using out-of-bag estimators from a sample of 10,000 data randomly 477 

chosen in the training set, with the mean and the median as point estimates). We checked 478 

that 10,000 datasets in the training set were sufficient by evaluating the stability of the 479 

global accuracy indices (i.e., NMAE using the mean as point estimates) on subsets of 480 

8,000, 9,000 and 10,000 data of the training set (results not shown). The number of trees in 481 

the constructed Random Forest was fixed to 1,000, as this number turned out to be large 482 

enough to ensure a stable estimation of the global accuracy metrics (Figure S1). For each 483 

parameter, we conducted ten replicate RF analyses based on the same training set. 484 

 485 

Computing time and memory space 486 

All analyses on the example pseudo-observed datasets were processed on a 16 cores Intel 487 

Xeon E5-2650 computer (Linux Debian platform, 64 bits system), with a maximum of 26 488 

Gb and 1.8 Gb of RAM used for the heaviest treatments regarding the simulation of the 489 

training set (with a loop-size of 50 datasets corresponding to the number of simulated 490 

datasets distributed over all computer threads) and RF analyses, respectively. Optimizing 491 

computer code procedures to efficiently compute summary statistics is important especially 492 

in the case of high-dimensional analyses which may include several thousand summary 493 

statistics. Substantial efforts in this direction on DIYABC Random Forest v1.0 allowed to 494 

considerably reduce (compared to the simulation module of DIYABC v2.1.0) both the 495 

fraction of the running time and the memory space devoted to the computation of summary 496 

statistics. Such optimizations open new perspectives for the analysis of (very) high-497 
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dimensional datasets in population genetics. The production of a training set including 498 

10,000 simulated datasets took 13 min (respectively 26 h) with only 4% (respectively 10%) 499 

of the running time devoted to the computation of the 130 summary statistics for the 500 

IndSeq (respectively PoolSeq) data. Note that the computation time difference between 501 

IndSeq and PoolSeq reflects the ten time larger number of individuals included in the 502 

PoolSeq simulation setting. RF treatments following the generation of the training set took 503 

less than 30 sec for scenario choice and 1 min for each parameter estimation (with 37% of 504 

the time used to compute local NMAE accuracy measures estimated using out-of-bag 505 

estimators from a sample of 10,000 data randomly chosen in the training set). 506 

 507 

3 | RESULTS 508 

 509 

For both scenario choice and parameter estimation, we illustrate the inferential power and 510 

functionalities of DIYABC Random Forest v1.0 through the analysis of two example 511 

pseudo-observed SNP datasets corresponding to PoolSeq and IndSeq data. We first 512 

processed RF analyses grouping scenarios based on the presence or absence of an admixed 513 

origin of the target population 4, and then considered all six compared scenarios 514 

separately. We then estimated parameters of interests under the selected (best) scenario. 515 

We contrasted our inferential results with and without adding LDA axes (for scenario 516 

choice) or PLS axes (for parameter estimation) to the RF feature vector initially composed 517 

of 130 summary statistics (Table S1). 518 

 519 

3.1 | Scenario choice 520 

The projection of the datasets of the training set on a single (when analyzing the two 521 

groups of scenarios) or on the first two LDA axes (when analyzing the six scenarios 522 
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considered separately) provides a first visual indication about our capacity to discriminate 523 

among the compared scenarios (Figure 2). Simulations under the two groups of scenarios 524 

moderately overlapped suggesting a substantial power to discriminate among them. When 525 

considering the six scenarios individually, the projected points overlapped in a more 526 

marked way, at least for some of the scenarios, suggesting an overall lower power to 527 

discriminate among scenarios considered separately than when considering the two groups 528 

of scenarios. As a first inferential clue, the location of the observed dataset (indicated by a 529 

vertical line and a star symbol in Figure 2A and 2B, respectively) suggests, albeit without 530 

any formal quantification, a marked association with the scenario group 1 and with the 531 

scenario 3. 532 

 The classification votes and posterior probabilities estimated for both example 533 

pseudo-observed datasets (with or without adding LDA axes to the feature vector) were the 534 

highest for the scenario group 1, which includes an admixture event (Table 1). When 535 

considering the six scenarios separately, the highest classification votes and posterior 536 

probabilities were for scenario 3, which congruently includes a genetic admixture event 537 

between the population 1 and 3 as sources of the target population 4. The posterior 538 

probabilities of scenario group 1 and scenario 3 were relatively high (from 0.657 to 0.891 539 

depending on the analysis), which is satisfactory when considering the difficulty of the 540 

example case study (cf. low level of genetic differentiation among populations). We found 541 

that including LDA axes in the RF vector feature substantially improved scenario choice 542 

predictions. Global (prior) error rates were 3% to 12% lower when including LDA axes. 543 

Regarding our two pseudo-observed datasets, classification votes for the best group were 544 

4% to 8% higher when including LDA axes and posterior probabilities of the selected 545 

scenario 3 (which is equal to 1 minus the local error rate) were 8% to 12% higher when 546 

including LDA axes. The levels of errors were substantially different at the global and 547 
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local scales, with lower levels at the local scale for analyses of the PoolSeq dataset, and a 548 

trend for higher levels at the local scale for analyses of the IndSeq dataset.  549 

Finally, we obtained better prediction levels (with or without LDA axes) for the 550 

PoolSeq dataset than the IndSeq dataset. Global (prior) error rates were 14% to 27% lower 551 

for the PoolSeq dataset. Regarding our two pseudo-observed datasets, classification votes 552 

for the best group were 8% to 11% higher for the PoolSeq dataset and posterior 553 

probabilities of the selected scenario 3 were 11% to 21% higher for the PoolSeq dataset. 554 

This indicates that, for a similar sequencing effort, a PoolSeq strategy is preferable to an 555 

IndSeq strategy, at least when a substantially large number of individual samples are 556 

available. This result, which might basically stem from a more accurate estimation of allele 557 

frequency when using PoolSeq data, echoes theoretical results in the comparative study by 558 

Gautier et al. (2013). 559 

 560 

3.2 | Parameter estimation 561 

Table 2 shows point estimates with 90% credibility intervals of posterior distributions as 562 

well as NMAE accuracy measures for the four parameters of interest ra, t1, N4 and t1/N4. 563 

NMAE values show that estimations were accurate both at the global and local scales for 564 

the admixture rate ra and the composite parameter t1/N4 (cf. the low NMAE values for 565 

these parameters). In contrast to the composite parameter t1/N4, estimations of the original 566 

parameters t1 and N4 were much less accurate (cf. higher NMAE values). This result is 567 

also illustrated for the two pseudo-observed datasets by point estimates close to the true 568 

values and narrow 90% CI for ra and t1/N4. The low bias observed for ra and t1/N4 569 

estimates is satisfying considering that the training set only includes 10,000 datasets. 570 

NMAE values computed from median point estimates were systematically smaller (albeit 571 

sometimes only to a small extent) than those computed from mean point estimates, 572 
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indicating that the median is globally a better point estimate of the parameter than the 573 

mean. As expected when considering point estimates for the two pseudo-observed datasets, 574 

this trend did not translate for all parameters (e.g., the mean is slightly closer to the true 575 

value than the median for ra).  576 

 We found that including PLS axes in the RF feature vector improved parameter 577 

estimation in a heterogeneous way. The accuracy gain of including PLS axes ranged from 578 

negligible (e.g. IndSeq global NMAE for t1/N4 based on median of 0.220 and 0.221 with 579 

and without PLS, respectively) to substantial (e.g. PoolSeq global NMAE for N4 based on 580 

median of 0.380 and 0.421 with and without PLS, respectively). The accuracy levels were 581 

always lower at the global than local scales, sometimes to a large extent (e.g. PoolSeq 582 

NMAE for t1/N4 based on mean of 0.217 and 0.077 at the global and local scales, 583 

respectively).This illustrates how the accuracy estimation of at least some parameters can 584 

substantially differ depending on the location of an observed dataset in the prior data 585 

space. In the present case study, the pseudo-observed datasets are located in a favorable 586 

part of the prior space. Finally, like scenario choice analyses, we obtained considerably 587 

higher accuracy (i.e. lower NMAE values and this with or without PLS axes) for the 588 

PoolSeq dataset than the IndSeq dataset. This result is also illustrated by point estimates of 589 

the two pseudo-observed datasets closer to the true values and narrower ranges of 90% CI 590 

for PoolSeq than IndSeq for all parameters. This reinforces our previous conclusion that, 591 

for a similar sequencing effort, it is preferable to use a PoolSeq strategy than an IndSeq 592 

strategy when a large number of individual samples are available. 593 

 594 

3.3 | Contribution to inferences of components of the feature vector  595 

Learning more about how various summary statistics relate to scenarios or parameters 596 

would be useful for population genetics going forward. In the realm of standard ABC 597 
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methods, it is not clear which summary statistics are responsible for a signal. By contrast, 598 

many SML methods including RF allow direct measurement of the contribution of each 599 

component included in the feature vector. RF hence offer direct ways to assess which 600 

features of the input are driving inferences, information which can yield insights about the 601 

underlying processes (Breiman, 2001). ABC-RF therefore addresses some of the criticisms 602 

against the “black box” aspect of classical ABC methods. Figure 3 illustrates how RFs 603 

automatically rank the components of the feature vector (i.e., the various summary 604 

statistics plus the LDA or PLS axes when the latter metrics are added to the feature vector) 605 

according to their level of information when building trees of the forest. Figure 3 and 606 

Figure S2 show that informative statistics are different depending on the comparisons 607 

(individual scenarios or groups of scenarios) and the analyzed parameter under a given 608 

scenario. Four-sample and three-sample f-statistics, as well as the related three-sample 609 

coefficients of admixture (i.e. AML statistics), were among the most informative to 610 

discriminate scenarios (Figure 3A). In agreement with this, such statistics are by 611 

construction highly sensitive to the topology connecting populations including or not an 612 

admixture event (Patterson et al., 2012; Estoup et al., 2018). A typical feature of scenario 613 

choice RF analysis is that one or several LDA axes always correspond to the best 614 

informative statistics. 615 

For parameter estimation, the most informative summary statistics were different 616 

depending on the parameter of interest (Figure 3B and Figure S2). Figure 3B shows that 617 

for the (well estimated) composite parameter t1/N4, the most informative statistics included 618 

three-sample f-statistics and AML statistics with the population 4 as target, the population-619 

specific FST, ML1p (proportion of monomorphic loci) and heterozygosity - all for 620 

population 4 -, and pairwise-population statistics (FST and Nei’s distance) that included 621 

population 4. For other parameter values, the set of informative statistics differed among 622 
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parameters, but always included a large number of four-sample and three-sample f-623 

statistics, as well as three-sample AML statistics (Figure S3). In contrast to LDA axes 624 

(used for scenario choice), only a subset of PLS components were ranked among the 30 625 

most informative statistics and they were never ranked at first position. 626 

We added five noise variables (corresponding to values randomly drawn into 627 

uniform distributions bounded between 0 and 1) to the feature vector processed by RF in 628 

order to evaluate the threshold of variable importance metrics below which components of 629 

the vector were not informative anymore. We found that for both scenario choice and 630 

parameter estimation, a substantial proportion of summary statistics was not informative. 631 

For scenario choice, we found that only 28% to 38% of the summary statistics were 632 

informative. For parameter estimation, 20% to 65% of the summary statistics were 633 

informative. Non-informative statistics were different when considering scenarios by 634 

groups or separately, and depending on the parameter of interest (results not shown). It is 635 

worth stressing that such non-informative components of the feature vector are simply not 636 

or seldom chosen when constructing each individual trees of the forest, and hence do not 637 

alter RF inferences (Breiman, 2001; Marin et al., 2018; Raynal et al., 2019). In agreement 638 

with this, removing noise variables from the feature vector did not impact the levels of 639 

errors in scenario choice and of accuracy in parameter estimation in the present case study 640 

(results not shown). 641 

 642 

4 | DISCUSSION 643 

 644 

Population genetics is now poised for an explosion in the use of SML approaches (Schrider 645 

& Kern, 2018). In this context, any effort to create self-contained, efficient, and user-646 

friendly software packages capable of performing the entire workflow associated to SML 647 
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methods would streamline such methods and make them more accessible to researchers, 648 

especially for non-specialist users. For this purpose, we developed the package DIYABC 649 

Random Forest v1.0 which integrates – within a user-friendly interface – a set of methods 650 

to simulate training sets for various types of molecular data under custom evolutionary 651 

scenarios, encode both the simulated and real data as large size feature vectors (summary 652 

statistics), train RF algorithms, apply them on observed data point(s), and assess their 653 

performance in term of prediction (using various metrics to evaluate error and accuracy). 654 

We illustrated the main potentialities and functionalities of DIYABC Random Forest v1.0 655 

through the treatments of two example SNP pseudo-observed datasets. Our results indicate 656 

that SML methods such as RF show great promise in demographic estimation and scenario 657 

selection using genetic data and we argue that they may soon be the preferred choice over 658 

alternative methods based on classical ABC.  659 

 The first advantage of RF is that, given a pool of different metrics available (here 660 

various non-independent summary statistics and their linear combinations), this SML 661 

method extracts the maximum of information from the entire set of the proposed 662 

component of the feature vector. This avoids the arbitrary choice of a subset of 663 

components, which is often applied in ABC analyses, and also minimizes the curse of 664 

dimensionality whereby accuracy and stability of inferences decrease as the number of 665 

summary statistics grows (Beaumont et al., 2010; Blum et al., 2013). As a matter of fact, 666 

SML methods such as RF can handle many statistics, even if they are strongly correlated 667 

and/or unnecessary (i.e., virtually non-informative), with a limited impact on the 668 

performance of the method (Marin et al., 2018; Raynal et al., 2019). In practice, and in 669 

contrast to standard ABC methods, SML methods perform better when the input data have 670 

a large number of features, in what is commonly called the ‘blessing of dimensionality’ 671 

(e.g., Anderson et al., 2014; Breiman, 2001). In agreement with this, inputs that consist of 672 
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thousands of variables have been used with great success; e.g., Amit & Geman, 1997; 673 

Chen et al., 2013; and unpublished results obtained using feature vectors of > 10,000 674 

summary statistics to treat SNP datasets under complex evolutionary scenarios with 675 

DIYABC Random Forest v1.0). 676 

Regarding the composition of the feature vector, defining informative statistics to 677 

be included in this vector remains an important issue of any SML method. We have 678 

implemented a new set of summary statistics to better extract the genetic information 679 

contained in the selectively neutral and independent SNP markers simulated in DIYABC 680 

Random Forest v1.0. For both scenario choice and parameter estimation, our results show, 681 

at least in the evolutionary contexts we explored, the high level of information content of 682 

four-populations and three-populations f-statistics (Patterson 2012), - as well as the related 683 

three-sample AML statistics (Cornuet et al., 2014). We found that inferences were more 684 

accurate with this new set of SNP summary statistics than with the one previously 685 

proposed in DYABC v2.1.0 (Cornuet et al., 2014). For instance, comparative treatments 686 

based on the IndSeq example dataset, show that error levels were substantially lower and 687 

accuracy higher with the new set of SNP summary statistics. More specifically, global 688 

error rates were 13% and 5% lower when considering scenarios separately or by groups, 689 

respectively, and global NMAE values – computed from the median – were 9% to 21% 690 

lower depending on the estimated parameter (results not shown). The addition into the 691 

feature vector of linear combinations of statistics (LDA and PLS axes for scenario choice 692 

and parameter estimation, respectively) also globally improved our statistical inferences. 693 

While the inferential gain was systematic and substantial for LDA axes, we found that 694 

including PLS axes in the RF vector feature improved parameter estimation in a 695 

heterogeneous way, with a negligible gain in some cases. 696 
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The second advantage of SML methods such as RF is that they naturally use all of 697 

the simulations to learn the mapping of data to scenarios and/or parameters. This contrasts 698 

to the rejection step of ABC which precludes an optimal use of the datasets that are not 699 

retained. This advantage remains although work has been done to retain more of the 700 

simulations in ABC, for instance by weighing their influence on parameter estimation 701 

according to their similarity to the observed data (e.g., Blum & Francois, 2010). 702 

Consequently, the computing effort is considerably reduced for RF, as the method requires 703 

a substantially smaller training set compared to ABC methods (e.g., a few thousands of 704 

simulated datasets versus hundreds of thousands of simulations per scenario for most ABC 705 

approaches; Blum & François, 2010; Fraimout et al., 2017; Pudlo et al., 2016; Raynal et 706 

al., 2019). Given the ever-increasing dimensionality of modern genetic data generated 707 

using NGS technologies, this is a particularly appealing property of SML methods. 708 

Moreover, it is worth noting that DIYABC Random Forest v1.0 relies on out-of-bag 709 

prediction to evaluate the error and accuracy of inferences, so that no additional potentially 710 

costly simulations of test datasets are necessary for this purpose. 711 

RF is often considered as a “tuning-free” method in the sense that it does not 712 

require meticulous calibrations. This represents an important advantage of this method, 713 

especially for non-expert users. On the opposite, ABC methods require calibration to 714 

optimize their use, such calibration being time consuming when different levels of 715 

tolerance are tested and/or used. In practice, we nevertheless advise users to consider 716 

several checking points, thereafter formalized as questions, before finalizing inferential 717 

treatments using DIYABC Random Forest v1.0. 718 

Are my scenarios and/or associated priors compatible with the observed dataset? 719 

This question is of prime interest and applies to ABC Random Forest as well as to any 720 

alternative ABC treatments. This issue is particularly crucial, given that complex scenarios 721 



30 
 

and high dimensional datasets (i.e., large and hence very informative datasets) are 722 

becoming the norm in population genomics. Basically, if none of the proposed scenario / 723 

prior combinations produces some simulated datasets in a reasonable vicinity of the 724 

observed dataset, this is a signal of incompatibility and it is not recommended to attempt 725 

any inferences. In such situations, we strongly advise reformulating the compared 726 

scenarios and/or the associated prior distributions in order to achieve some compatibility in 727 

the above sense. DIYABC Random Forest v1.0 proposes a visual way to address this issue 728 

through the simultaneous projection of datasets of the training set and of the observed 729 

dataset on the first LDA axes (e.g., Figure 2); see also other dedicated diagnostic tools in 730 

the notice of the program. In the LDA projection, the observed dataset has to be reasonably 731 

located within the clouds of simulated datasets.  732 

Did I simulate enough datasets for my training set? A rule of thumb is, for scenario 733 

choice to simulate between 2,000 and 20,000 datasets per scenario among those compared 734 

(Pudlo et al., 2016; Estoup et al., 2018), and for parameter estimation to simulate between 735 

10,000 and 100,000 datasets under a given scenario (Raynal et al., 2019; Chapuis et al., 736 

2020). To evaluate whether or not this number is sufficient for RF analysis, we recommend 737 

to compute error/accuracy metrics such as those proposed by DIYABC Random Forest 738 

v1.0 from both the entire training set and a subset of the latter (for instance from a subset 739 

of 80,000 simulated datasets if the training set includes a total of 100,000 simulated 740 

datasets). If error (accuracy) metrics from the subset are similar, or only slightly higher 741 

(lower) than the value obtained from the entire database, one can consider that the training 742 

set contains enough simulated datasets. If a substantial difference is observed between both 743 

values, then we recommend increasing the number of simulated datasets in the training set. 744 

Did my forest grow enough trees? According to our experience, a forest made of 745 

500 to 2,000 trees often constitutes an interesting trade-off between computation efficiency 746 
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and statistical precision (Breiman, 2001; Chapuis et al., 2020; Pudlo et al., 2016, Raynal et 747 

al., 2019). To evaluate whether or not this number is sufficient, we recommend plotting 748 

error/accuracy metrics as a function of the number of trees in the forest. The shapes of the 749 

curves provide a visual diagnostic of whether such key metrics stabilize when the number 750 

of trees tends to a given value. DIYABC Random Forest v1.0 provides such a plot-figure 751 

as output (e.g. Figure S1). 752 

Various SML methods have been recently developed (e.g. Schrider & Kern, 2018). 753 

In particular, neural networks are machine learning methods which are used increasingly in 754 

population genetic, often under the term “deep learning” (Sheehan & Song, 2016), and 755 

sometimes using an ABC framework (Mondal, Bertranpetit, & Lao, 2019). Deep learning, 756 

with its incredibly flexible input and output structure, is expected to be an important area 757 

of future research in many different fields including population genetics (e.g. 758 

Angermueller et al., 2016; Schrider & Kern, 2018). For instance, rather than learning on 759 

standard population genetic summary statistics calculated from SNP frequencies or 760 

multiple sequence alignments, one can instead treat raw data such as the pixels of an image 761 

of the sequence alignment itself as the input (Flagel, Brandvain, & Schrider, 2018). One of 762 

the earliest application of deep learning, using a set of 345 traditional statistics describing 763 

the SNP spectrum as input and considering a simple one-population scenario, has already 764 

yielded the crucial ability to jointly infer demographic history and selection, a central goal 765 

of population genetics analysis (Sheehan & Song, 2016). It is worth stressing, however, 766 

that in contrast to RF, deep learning methods are not tuning-free and often require 767 

meticulous calibrations, including the specification of the number of layers composing the 768 

neural network, as well as thorough investigation of the regularization parameter of the 769 

cost function. Moreover, deep learning methods require datasets of larger size and 770 

substantially larger computing resources than RF. We hence believe that RF remains one 771 
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of the most competitive SML methods when no tuning of parameters is desired. The RF 772 

method remains particularly attractive for non-expert machine-learning users, especially 773 

when it is embedded in an integrative user-friendly interfaced program such as DIYABC 774 

Random Forest 1.0. 775 

In conclusion, although SML approaches are revolutionizing many fields, their use 776 

in population genetics inference is still in its infancy (Schrider & Kern 2018). However, 777 

the recent successes of SML approaches in the latter scientific field demonstrate that they 778 

have the potential to revolutionize the practice of population genetic data analysis. In 779 

particular, SML methods such as RF may soon be the preferred choice over ABC method 780 

in scenario selection and demographic estimation, especially when analyzing multiple 781 

complex scenarios and large-size datasets. In this context, DIYABC Random Forest v1.0 782 

provides an integrative operational solution streamlining the entire workflow to applying 783 

RF methods to various types of population genetic data. We believe that, because of the 784 

general properties of the implemented RF methods and the large set of summary statistics 785 

available for SNP data, DIYABC Random Forest v1.0 represents a useful resource to make 786 

efficient inferences about population genetic history from high dimensional genetic 787 

dataset, as typically obtained from NGS technologies. More generally, the RF 788 

methodologies we propose should appeal to all scientific fields in which big datasets are 789 

generated under complex scenarios using simulation-based methods and summarized under 790 

a large-size feature vector. 791 
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TABLE 1. Results for scenario choice. 
The six compared scenarios and the two groups of scenarios are detailed in Figure 1. The parameter values for the two example pseudo-observed 
datasets are: N1=7,000, N2=2,000, N3=4,000, N4=3000, t1=200, ra=0.3, t2=300 and t3=500. RF analyses used a training set including feature 
vector values from 12,000 simulated datasets (2,000 per scenario) and the number of trees was 1,000. Global (prior) and local (posterior) error 
rates were estimated using out-of-bag estimators from a sample of 10,000 data randomly chosen in the training set. Standard deviations over the 
ten replicate analyses are given between brackets for each metrics, in addition to the means. In the “With LDA” treatments, five LDA axes were 
added to the set of 130 summary statistics composing the feature vector. 
 
 
Type of  
dataset 

Type of treatment Global 
error rate 

Local 
error rate 

Vote 
scen. 1 

Vote 
scen. 2 

Vote 
scen. 3 

Vote 
scen. 4 

Vote 
scen. 5 

Vote 
scen. 6 

Posterior 
probability  

PoolSeq Groups of scenarios: 
with vs. without 
admixture 

With 
LDA 

0.172 
(0.001) 

0.085 
(0.009) 

925.1 
(10.754) 

74.9 
(10.754) 

0.915 [group 1] 
(0.009) 

Without 
LDA 

0.192 
(0.001) 

0.162 
(0.015) 

891.9 
(13.585) 

108.1 
(13.585) 

0.838 [group 1] 
(0.015) 

All scenarios 
considered  
separately 

With 
LDA 

0.196 
(0.0008) 

0.135 
(0.011) 

4.1 
(1.297) 

65.3 
(7.364) 

897.0 
(8.056) 

8.5 
(2.121) 

15.7 
(4.808) 

9.4 
(2.011) 

0.865 [scen. 3] 
(0.011) 

Without 
LDA 

0.220 
(0.0009) 

0.202 
(0.013) 

9.3 
(3.020) 

98.5 
(17.264) 

829.4 
(20.304) 

8.3 
(2.669) 

32.9 
(3.381) 

21.6 
(4.671) 

0.798 [scen. 3] 
(0.013) 

IndSeq Groups of scenarios: 
with vs. without 
admixture 

With 
LDA 

0.212 
(0.001) 

0.177 
(0.016) 

840.6 
(12.816) 

159.4 
(12.816) 

0.823 [group 1] 
(0.016) 

Without 
LDA 

0.220 
(0.002) 

0.270 
(0.016) 

805.5 
(18.940) 

194.5 
(18.940) 

0.730 [group 1] 
(0.016) 

All scenarios 
considered  
separately 

With 
LDA 

0.248 
(0.001) 

0.268 
(0.018) 

6.9 
(3.107) 

105.9 
(10.692) 

817.0 
(13.021) 

12.7 
(3.057) 

41.2 
(5.159) 

16.3 
(3.653) 

0.732 [scen. 3] 
(0 .018) 

Without 
LDA 

0.262 
(0.001) 

0.343 
(0.0197) 

9.0 
(2.981) 

123.5 
(7.322) 

769.6 
(12.366) 

15.8 
(4.049) 

60.7 
(8.982) 

21.4 
(4.274) 

0.657 [scen. 3] 
(0.020) 
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TABLE 2. Results for estimation of parameters of interest under scenario 3. 
True values of parameters of interest for the two example pseudo-observed datasets are ra = 0.3, t1 = 200, N4 = 3,000 and t1/N4 = 0.067. RF 
analyses used a training set including feature vector values from 10,000 simulated datasets and the number of trees was 1,000. Global (prior) and 
local (posterior) NMAE values were estimated using out-of-bag estimators from a sample of 10,000 data randomly chosen in the training set. 
Standard deviations over the ten replicate analyses are given between brackets for each metrics, in addition to the means. In the “With PLS” 
treatments, the number of PLS axes which were added to the set of 130 summary statistics of the feature vector for the PoolSeq (IndSeq) datasets 
was equal to 12 (12), 18 (21), 23 (24), and 4 (4) for ra, t1, N4 and t1/N4, respectively. CI: credibility interval. 
 
Type of dataset Type of 

treatment 
Parameter 
 

Posterior point estimates of Global (prior) NMAE 
computed from 

Local (posterior) NMAE 
computed from 

Mean Median 90% CI Mean Median Mean Median 

PoolSeq With  
PLS 

ra 
 

0.346 
(0.0018) 

0.352 
(0.0030) 

0.248 - 0.422 
(0.0041) (0.0040) 

0.133 
(0.0002) 

0.123 
(0.0002) 

0.0890 
(0.0028) 

0.0887 
(0.0024) 

t1 291.4 
(3.366) 

300.5 
(2.273) 

147.6 - 441.0 
(3.777)  (3.887) 

0.312 
(0.0003) 

0.290 
(0.0003) 

0.2022 
(0.0047) 

0.1999 
(0.0045) 

N4 4040 
(37.16) 

3658 
(58.55) 

1861  - 7399 
(90.42)  (161.6) 

0.416 
(0.0005) 

0.380 
(0.0006) 

0.3169 
(0.0094) 

0.2848 
(0.0093) 

t1/N4 0.067 
(0.0004) 

0.068 
(0.0005) 

0.049 - 0.084 
(0.0010) (0.0006) 

0.217 
(0.0008) 

0.178 
(0.0002) 

0.0786 
(0.0020) 

0.0773 
(0.0016) 

Without  
PLS 

ra 0.364 
(0.0028) 

0.368 
(0.0032) 

0.245 - 0.483 
(0.0072) (0.0055) 

0.143 
(0.00026) 

0.130 
(0.00028) 

0.0996 
(0.0032) 

0.0979 
(0.0025) 

t1 288.2 
(3.752) 

301.7 
(2.540) 

134.4 -  443.0 
(8.044)  (4.546) 

0.322 
0.00042) 

0.301 
0.00046) 

0.2354 
(0.0095) 

0.2311 
(0.0091) 

N4 5517 
39.60 

5539 
94.16 

2319  - 8662 
104.3 133.8 

0.456 
0.0006  

0.421 
0.0006 

0.3243 
(0.0116) 

0.2972 
(0.0091) 

t1/N4 0.068 
(0.0004) 

0.068 
(0.0006) 

0.050 - 0.085 
(0.0008) (0.0006) 

0.218 
(0.0009) 

0.179 
(0.0003) 

0.0789 
(0.0021) 

0.0781 
(0.0017) 

IndSeq With  
PLS 

ra 0.402 
(0.0041) 

0.391 
(0.0040) 

0.275 - 0.611  
(0.0041) (0.0096 

0.172 
(0.0003) 

0.154 
(0.0003) 

0.1605 
(0.0021) 

0.1504 
(0.0020) 

t1 400.5 
(3.133) 

395.6 
(2.875) 

231.5 - 574.1 
(4.478) (11.083) 

0.398 
(0.0006) 

0.357 
(0.0006) 

0.1793 
(0.0056) 

0.1791 
(0.0051) 

N4 6608 
(53.15) 

6796 
(55.61) 

2861  - 9513 
(111.6)  (148.7) 

0.476 
(0.0006) 

0.442 
(0.0007) 

0.2494 
(0.0117) 

0.2485 
(0.0105) 
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t1/N4 0.061 
(0.0004) 

0.061 
(0.0004) 

0.044 - 0.077 
(0.0006) (0.0009) 

0.262 
(0.0009) 

0.220 
(0.0006) 

0.0910 
(0.0025) 

0.0901 
(0.0025) 

Without 
PLS 

ra 0.417 
(0.0052 

0.410 
(0.0041 

0.284 - 0.612 
(0.0050) (0.0143 

0.173 
(0.0003 

0.155 
(0.0003) 

0.1624 
(0.0055 

0.1526 
(0.0048 

t1 399.0 
(3.184) 

395.2 
(3.370) 

227.9 - 591.9 
(4.653)  (4.758) 

0.407 
(0.0005) 

0.366 
(0.0005) 

0.1910 
(0.0042) 

0.1899 
(0.0041) 

N4 5837 
(50.70) 

5978 
(93.02) 

2524  -  9210 
(134.6)  (166.8) 

0.499 
(0.0006) 

0.467 
(0.0006) 

0.2952 
(0.0053) 

0.2917 
(0.0051) 

t1/N4 0.061 
(0.0003) 

0.061 
(0.0003) 

0.045 -  0.078  
(0.0005) (0.0008) 

0.263 
(0.0008) 

0.221 
(0.0005) 

0.0921 
(0.0025) 

0.0915 
(0.0024) 
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FIGURE 1. Evolutionary scenarios compared. 
The target population (pop 4) has three possible single (i.e., non-admixed) population sources (pop 1, pop 2 or pop 3) composing a group of three 
scenarios without admixture (group 2 in the figure) and three possible admixed pairwise population sources (i.e., admixture between pop1& 
pop2, pop 1& pop3 and pop 2 & pop3) composing a group of three scenarios without admixture (group 1 in the figure). Demographic and 
historical parameters include four effective population sizes N1, N2, N3 and N4 (for populations 1, 2, 3, and 4, respectively) and three divergence 
or admixture time events (t1, t2 and t3), For the scenarios with admixture, the parameter ra corresponds to the proportion of genes of a given 
source population entering into the admixed population 4. See text for details about prior distribution of parameters. 
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FIGURE 2. Projection of the PoolSeq datasets from the training set on a single LDA axis when analyzing the two groups of 
scenarios (A) or on the first two LDA axes when analyzing the six scenarios separately (B). 
The location of the pseudo-observed dataset in the LDA projection is indicated by a vertical line and a star symbol in panels A and B, 
respectively. 
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FIGURE 3. Contributions for the PoolSeq data analyses of the 30 most informative statistics to the Random Forest when choosing 
among scenarios considered separately (A) and when estimating the parameter t1/N4 under scenario 3 (B). 
The variable importance of each statistics is computed as the mean decrease of impurity across the trees, where the impurity measure is the Gini 
index, and the residual sum of squares for scenario choice and parameter inference, respectively. For each variable, the sum of the impurity 
decrease across every tree of the forest is accumulated every time that variable is chosen to split a node. The sum is divided by the number of 
trees in the forest to give an average. The scale is irrelevant: only the relative values matter. The variable importance was computed for each of 
the 130 summary statistics provided by DIYABC Random Forest, plus the LDA axes for scenario choice (denoted LD) or the PLS axes for 
parameter estimation (denoted Comp.) that were added to the feature vector. The higher the variable importance the more informative is the 
statistic. Population index(s) are indicated at the end of each statistics and correspond to those in Figure 1. More details about summary statistics 
can be found in Table S1. See Figure S3 for an illustration of the contributions of the most informative statistics when choosing among the two 
groups of scenarios and when estimating the parameters ra, t1 and N4. 
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