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TABLE S1. Summary statistics provided by DI'YABC Random Forest v1.0 with
corresponding values computed from the pseudo-observed PoolSeq and IndSed SNP
datasets generated under the (admixed) scenario 3.

The two pseudo observed datasets were simulated under scenario 3 (see Figure 1) using the
following parameter values: N1=7,000, N,=2,000, N3=4,000, N4,=3,000, t;=200 r,=0.3, t,=300
and t3=500. The names of summary statistics are those given in the program DIYABC
Random Forest v1.0 (see also the associated manual report available at
https://diyabc.github.io/doc). The two pseudo observed SNP datasets were summarized using
a total of 130 statistics. ML1p, ML2p and ML3p: proportion of monomorphic loci computed
for each population and each pair or triplet of populations, respectively. Mean (cf. suffix m)
and variance (cf. suffix v) were computed over loci for all subsequent summary statistics.
HW: heterozygosity within each population. HB: heterozygosity for each pair of populations.
FST: Fst estimates for each population (FST1), for each pair (FST2), triplet (FST3), and
quadruplet (FST4) of populations. NEI: Nei’s (1972) distance for each pair of populations.
AML: Cornuet et al. (2014)’s coefficient of admixture for each triplet of populations. F:
allele-shared Patterson et al. (2012)’s f-statistics computed for each triplet (F3) and quadruplet
(F4) of populations. The population index(s) are indicated at the end of each statistics and
correspond to those in Figure 1. For instance ML1p_1 corresponds to the proportion of
monomorphic loci in population 1 and F3m_4.1.3 to the mean F3 statistics with population 4
as target and populations 1 and 3 as external populations. The feature vector was enriched
with one LDA axis or five LDA axes for scenario choice when comparing the two groups of
scenarios or individual scenarios, respectively, and by 4 to 24 PLS axes for parameter
estimation, depending on the estimated parameter and the analyzed training set. Five “noise
variables”, randomly drawn into uniform distributions bounded between 0 and 1, were also
added to the feature vector in order to evaluate which summary statistics were informative in
our different inferential settings, when conducting scenario choice or parameter estimation.

Statistics Population(s) Values for the PoolSeq Values for the IndSeq
pseudo-observed dataset pseudo-observed dataset
ML1p 123 0.1826 0.2678 0.2208 0.1664  0.1498 0.1746 0.1244
4 0.1102
ML2p 121314 0.0746 0.0624 0.0680 0.1440 0.0362 0.0262 0.0332
232434 0.0866 0.1010 0.0478 0.0318 0.0310
ML3p 123124134  0.0214 0.0180 0.0330 0.0592 0.0048 0.0048 0.0078
2.3.4 0.0104
HWm 12 0.20954404 0.19838350 0.28478421 0.28119158
34 0.20488395 0.21055354 0.28998420 0.29305474
HWv 12 0.03017888 0.03269557 0.03190730 0.03378459
34 0.03209324 0.03047639 0.02993610 0.02933304
HBm 1213 0.22103712 0.22007464 0.30713500 0.30632800
1423 0.21984261 0.21242519 0.30218300 0.30215000
2434 0.21683138 0.21476721 0.30505300 0.30241900
HBv 1213 0.03050988 0.02952776 0.02691466 0.02543388
1423 0.02889917 0.03152973 0.02534241 0.02699442
2434 0.03053319 0.02997418 0.02585686 0.02462178
FST1m 12 0.03656301 0.08787669 0.06386061 0.07567027
34 0.05798906 0.03192155 0.04676723 0.03667384
FST1v 12 0.63796837 0.69117010 0.34477777 0.36506305
34 0.67843706 0.64425761 0.32347805 0.31696137
FST2m 1213 0.07728727 0.05828701 0.07862049 0.06184152
1423 0.04442737 0.05080998 0.04389236 0.05481418
2434 0.05682634 0.03279332 0.05877615 0.03604114




FST2v 1213 0.00662912 0.00482556 0.01430816 0.01205242
1423 0.00347683 0.00415286 0.00947003 0.01095105
2434 0.00479387 0.00255583 0.01132813 0.00827309
NEIm 1213 0.02526759 0.01989388 0.04891985 0.04303372
1423 0.01634083 0.01766116 0.03607558 0.04038162
2434 0.01942893 0.01285703 0.04173982 0.03331893
NEIv 1213 0.00304633 0.00178349 0.00709198 0.00580780
1423 0.00123277 0.00156038 0.00414014 0.00527857
2434 0.00200541 0.00082593 0.00508674 0.00369040
AMLmM 123213 0.46204517 0.40770154 0.4613780 0.444626580
312124 0.44138604 0.41696963 0.48438619 0.42576090
214412 0.44406000 0.52419587 0.45916842 0.52907402
134314 0.43788739 0.40023811 0.45458238 0.43777103
413234 0.45678690 0.54884198 0.48674400 0.52262473.
3.244.2.3 0.47752730 0.42632776 0.46453923 0.44485723
AMLv 123213 0.20487761 0.19859487 0.20011036 0.20000220
312124 0.18815848 0.19462928 0.19081113 0.19336935
2144172 0.21034224 0.18424422 0.20604561 0.18747876
134314 0.20335850 0.19214446 0.20465516 0.19706727
413234 0.18189880 0.20830083 0.18931158 0.20938216
324423 0.19153337 0.18909750 0.19133678 0.19324775
FST3m 123124 0.06232238 0.05957347 0.06515089 0.06052300
134234 0.04527343 0.04681239 0.04732179 0.04990147
FST3v 123124 0.00338161 0.00320667 0.00855638 0.00803107
134234 0.00233752 0.00255658 0.00667524 0.00679905
FST4m 1234 0.05353053 0.05574299
FST4v 1.2.3.4 0.00222549 0.00587558
F3m 123213 0.00957127 0.00750209 0.01326439 0.01088271
312124 0.00328938 0.00725216 0.00567939 0.00974039
214412 0.00982119 0.00254166 0.01440671 0.00352313
134314 0.00780301 0.00505764 0.01065389 0.00828989
413234 0.00199082 0.00805293 0.00260963 0.01179621
324423 0.00273854 0.00430993 0.00476589 0.00613363
F3v 123213 0.00067502 0.00059355 0.00200864 0.00177915
312124 0.00038770 0.00054309 0.00150415 0.00152669
2144172 0.00074646 0.00033338 0.00206510 0.00117159
134314 0.00044435 0.00030498 0.00150024 0.00129820
413234 0.00022943 0.00052647 0.00098230 0.00170687
324423 0.00025187 0.00032306 0.00108649 0.00114095
F4m 12341324 -0.0023191 -0.00176826 0.00352400 -0.0026105
1.4.23 0.0005508 0.0009135
Fav 12341324 0.00031890 0.00036603 0.00110473 0.00131977
1.4.2.3 0.0002816 0.0010138




TABLE S2. Results for scenario choice under the (non-admixed) scenario 6.

The six compared scenarios and the two groups of scenarios are detailed in Figure 1. Results are given for the two example pseudo-observed
datasets (PoolSeq and IndSeq) which were simulated under the scenario 6 using the following parameter values: N;=7,000, N,=2,000, N3=4,000,
N,=3000, t;=200, t,=300 and t;=500. RF analyses used a training set including feature vector values from 12,000 simulated datasets (2,000 per
scenario) and the number of trees was 1,000. Global (prior) and local (posterior) error rates were estimated using out-of-bag estimators from a
sample of 10,000 data randomly chosen in the training set. Standard deviations over the ten replicate analyses are given between brackets for
each metrics, in addition to the means. In the “RF with LDA” treatments, five LDA axes were added to the set of 130 summary statistics
composing the feature vector. ABC rejection or ABC mnlog: inference methods based on a simple rejection or a multinomial regression
algorithm (using the R package abc v2.1; Csilléry, Francgois, & Blum 2012). NC: not computable. Similar results were obtained for the pseudo-
observed datasets generated under the (non-admixed) scenario 6 than for those generated under the (admixed) scenario 3 (Table 2). The only
discrepancy is that, in contrast to pseudo-observed datasets generated under scenario 6, the posterior probabilities of the selected scenario were
higher (and hence local error rate higher) when excluding LDA axes. Note that the true/expected posterior probabilities value are unknown in
these case studies.

Type of  Type of treatment Global Local Vote Vote Vote Vote Vote Vote Posterior
dataset error rate errorrate  scen.1 scen.2 scen.6 scen.4 scen.5 scen.6  probability
PoolSeq  Groups of RF 0.176 0.224 218.2 781.8 0.776 [group 2]
scenarios: with  with LDA (0.005)  (0.022) (14.920) (14.920) (0.022)
v ":’)'(tth‘:gt RF 0187  0.172 244.0 756.0 0.828 [group 2]
admixtu without LDA  (0.004)  (0.008) (14.008) (14.008) (0.009)
ABC rejection 0.266 NC NC NC 0.524 [group 2]
ABC mnlog 0.202 NC NC NC 0.999 [group 2]
All scenarios RF 0.191 0.117 135.6 1.6 21.6 0.1 3.8 837.3 0.883 [scen. 6]
considered with LDA (0.004)  (0.009) (17.037) (1.265) (6.415) (0.316) (2.394) (20.844) (0.009)
separately RF 0216  0.112 1372 26 335 03 6.4 820.0  0.888 [scen. 6]
without LDA  (0.005)  (0.005) (8.456)  (1.506) (8.708) (0.675) (2.675) (11.832) (0.005)
ABC rejection  0.372 NC NC NC NC NC NC NC 0.441 [scen. 6]
ABC mnlog 0.261 NC NC NC NC NC NC NC 0.999 [scen. 6]
IndSeq Groups of RF 0.206 0.193 346.7 653.3 0.807 [group 2]
scenarios: with  with LDA (0.004) (0.016) (11.196) (11.196) (0.018)




vs. without RF 0.215 0.194 276.2 723.8 0.806 [group 2]

admixture without LDA  (0.002)  (0.016) (16.956) (16.956) (0.016)
ABC rejection  0.344 NC NC NC 0.455 [group 2]
ABC mnlog 0.261 NC NC NC 1.000 [scen. 6]
All scenarios ~ RF 0240  0.169 1805 3.1 1058 0.4 11.2 699 0.831 [scen. 6]
considered with LDA (0.005) (15515) (1.792) (L792) (7.757) (0.516) (2.658) (15.677) (0.023)
separately RF 0252  0.155 1657 15 56.1 0.1 115 765.1  0.845 [scen. 6]
without LDA  (0.001)  (0.0197)  (16.351) (1.179) (9.386) (0.316) (2.224) (20.311) (0.020)
ABC rejection 0473  NC NC NC NC NC NA NC 0.362 [scen. 6]
ABCmnlog 0332  NC NC NC NC NC NA NC 0.995 [scen. 6]




TABLE S3. Results for estimation of parameters of interest under the (non-admixed) scenario 6.

Results are given for two example pseudo-observed datasets (PoolSeq and IndSeq) which were simulated under the scenario 6 using the
following parameter values: t; = 200, N4 = 3,000 and t;/N, = 0.067. RF analyses used a training set including feature vector values from 10,000
simulated datasets and the number of trees was 1,000. Global (prior) and local (posterior) NMAE values were estimated using out-of-bag
estimators from a sample of 10,000 data randomly chosen in the training set. Standard deviations over the ten replicate analyses are given
between brackets for each metrics, in addition to the means. In the “RF with PLS” treatments, the number of PLS axes which were added to the
set of 130 summary statistics of the feature vector for the PoolSeq (IndSeq) datasets was equal to 13 (18), 17 (16), and 4 (4) for t1, N4 and t1/Ng,
respectively. CI: credibility interval. 90% coverage: proportion of test parameter values comprise between the estimated 5% and the 95%
quantiles. ABC rejection or ABC logRidge: inference method based on a simple rejection or a regression with a Ridge regulation algorithm
(using the R package abc v2.1; Csilléry, Francois, & Blum 2012). NC: not computable. Note the particularly narrow 90% coverage values
obtained when using ABC logRidge.

Type of Type of Parameter Posterior point estimates of Global (prior) NMAE  Local (posterior) NMAE 90%
dataset treatment computed from computed from Coverage
Mean Median  90% CI Mean Median Mean Median
PoolSeq RF ty 289.8 282.0 191.0-412.2 0.223 0.211 0.138 0.137 0.962
with (2.344)  (1.826) (5.925) - (4.454) (0.0002) (0.0001)  (0.0045)  (0.0043) (0.0007)
PLS N, 5101 4914 2759 -8190 0283  0.262 0.258  0.247 0.943
(35.82) (64.71)  (79.22) - (52.60) (0.0003) (0.0003) (0.0099)  (0.0090) (0.0008)
t1/Ny 0.060 0.060 0.052 - 0.068 0.114 0.109 0.053 0.054 0.969
(0.0001)  (0.0002) (0.0001) (0.0005) (0.0003) (0.0002)  (0.0012)  (0.0012) (0.0004)
RF ty 295.1 291.0 186.4 - 419.5 0.226 0.215 0.140 0.140 0.962
without (2.092)  (4.807) (5.621)-(6.972) (0.0003) 0.0002) (0.0032)  (0.0037) (0.0008)
PLS N, 5437 5320  2840-8408 0286  0.267 0258  0.251 0.942
(82.42) (108.82) (59.46) (91.88)  (0.0003) (0.0004) (0.0107))  (0.0096) (0.0009)
t1/Ny 0.060 0.060 0.053 - 0.068 0.115 0.110 0.053 0.054 0.969
(0.0004)  (0.0006) (0.0008) (0.0006) (0.0009) (0.0003)  (0.0021)  (0.0017) (0.0005)
ABC t; 2924 279.5 102.8- 534.3 0.848 0.707 NC NC 0.956




rejection N, 6166 6317 2038 - 9576 0766  0.699 NC NC 0.939
t,/N, 0.051 0049  0019-0093 0959  0.717 NC NC 0.975
ABC t, 295.4 2957  2085-371.6 0414  0.252 NC NC 0.686
logRidge N, 5127 5125 3816 - 6531 0325  0.320 NC NC 0.659
t/N, 0.065 0065  0062-0068 0121  0.119 NC NC 0.674
IndSeq RF t, 370.8 3847  2157-4912 0283  0.266 0.185 0.184 0.951
with (3219)  (3.093) (5.805)(5.922) (0.0003) (0.0003)  (0.0076)  (0.0078)  (0.0006)
PLS N, 6835 6884 2258 - 9301 0325  0.307 0.199 0.201 0.932
(64.87)  (4156) (260.7)-(73.7) (0.0004) (0.0002)  (0.0077) (0.0079)  (0.0013)
t/N, 0.062 0062  0052-0070 0160  0.152 0.063 0.0631 0.946
(0.0003)  (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)  (0.0014)  (0.0015)  (0.0007)
RF t, 383.0 3946  223.9-5034 0285  0.269 0.179 0.179 0.950
without (2702)  (2.989) (4.677)-(9.919) (0.0002) (0.0003)  (0.0078)  (0.0081)  (0.0009)
PLS N, 6824 6881 2182 - 9318 0325  0.308 0.199 0.201 0.932
(64.87)  (4L56) (260.7)-(73.7) (0.0004) (0.0002)  (0.0077) (0.0079)  (0.0007)
t/N, 0.062 0063  0052- 0070 0161  0.153 0.063 0.063 0.946
(0.0002)  (0.0004) (0.0003) (0.0002) (0.0002) (0.0001)  (0.0017)  (0.0016)  (0.0007)
ABC t, 3215 3020  1029-6101 1016  0.851 NC NC 0.932
rejection N, 6208 6274 2417 - 9550 0.874  0.782 NC NC 0.891
t,/N, 0.055 0053  0021-0094 1128  0.863 NC NC 0.964
ABC t, 295.3 2954  234-3486 0356  0.356 NC NC 0.673
logRidge N, 5147 5297 2287 - 7256 0467  0.467 NC NC 0.684
t,/N, 0.064 0064  0058-0071 0199  0.199 NC NC 0.700




TABLE S4. Results for scenario choice: ABC Random Forest (RF) versus traditional ABC methods

The six compared scenarios and the two groups of scenarios are detailed in Figure 1. Results are given for the two example pseudo-observed datasets
(PoolSeq and IndSeq) which were simulated under the (admixed) scenario 3 using the following parameter values: N;=7,000, N,=2,000, N3=4,000,
N,=3000, t;=200, r,=0.3, t,=300 and t3=500. In the “RF with LDA” treatments, five LDA axes were added to the set of 130 summary statistics
composing the feature vector. Standard deviations over the ten replicate analyses are given between brackets for each metrics, in addition to the means.
Traditional ABC methods are ABC rejection or ABC mnlog and correspond to inference based on a simple rejection or a multinomial regression
algorithm (using the R package abc v2.1; Csilléry, Frangois, & Blum 2012). NC: not computable. The global error rate of the selected admixture group
of scenarios was notably high (and the posterior probabilities low) with the ABC rejection method. For the ABC multinomial logistic method, global
prior error rates were higher than for ABC Random Forest and the posterior probabilities of the best scenario were always equal to 1.000 for the
pseudo-observed datasets.

Type of  Type of treatment Global Local Posterior
dataset error rate error rate probability
PoolSeq  Groups of RF 0.172 0.085 0.915 [group 1]
scenarios: with  with LDA (0.001) (0.009) (0.009)
vs. without A
admixture ABC rejection 0.342 NC 0.616 [group 1]
ABC mnlog 0.212 NC 1.000 [group 1]
All scenarios RF 0.196 0.135 0.865 [scen. 3]
considered with LDA (0.0008) (0.011) (0.011)
separately ABC rejection 0457  NC 0.333 [scen 3]
ABC mnlog 0.271 NC 1.000 [scen 3]
IndSeq Groups of RF 0.212 0.177 0.823 [group 1]
scenarios: with  with LDA (0.001) (0.016) (0.016)
vs. without A
admixture ABC rejection 0.351 NC 0.633 [group 1]
ABC mnlog  0.263 NC 1.000 [group 1]
All scenarios RF 0.248 0.268 0.732 [scen. 3]
considered with LDA (0.001) (0.018) (0.018)
separately ABC rejection 0.473  NC 0.371 [scen 3]
ABC mnlog  0.330 NC 1.000 [scen 3]
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TABLE S5. Results for estimation of parameters of interest: ABC Random Forest (RF) versus traditional ABC methods

Results are given for the two example pseudo-observed datasets (PoolSeq and IndSeq) which were simulated under the (admixed) scenario 3
using the following parameter values: r, = 0.3, t; = 200, N4 = 3,000 and t;/N4= 0.067. In the “RF with PLS” treatments, the number of PLS
axes which were added to the set of 130 summary statistics of the feature vector for the PoolSeq (IndSeq) datasets was equal to 12 (12), 18
(21), 23 (24), and 4 (4) for ry, t1, N4 and t1/Ng4, respectively. 90% coverage: proportion of test parameter values comprise between the estimated
5% and the 95% quantile. CI: credibility interval. Standard deviations over the ten replicate analyses are given between brackets for each
metrics, in addition to the means. Traditional ABC methods are ABC rejection or ABC mnlog and correspond to inference based on a simple
rejection or a regression with a Ridge regulation algorithm (using the R package abc v2.1; Csilléry, Francois, & Blum 2012). NC: not
computable. NMAE values with the ABC logRidge method were low (i.e. similar to those for Random Forest), but ABC logRidge was
characterized by particularly narrow 90% coverage values (i.e. around 0.70), indicating that confidence intervals are prejudicially too narrow
(i.e. the true parameter values is often outside the limits of the confidence interval) with this method, a feature previously noted by Raynal et
al. 20109.

Type of Typeof Parameter  Posterior point estimates of Global (prior) NMAE Local (posterior) NMAE 90%
dataset  treatment computed from computed from Coverage
Mean Median 90% CI Mean Median Mean Median
PoolSeq RF ra 0.346 0.352 0.248 - 0.422 0.133 0.123 0.089 0.089 0.974
with (0.0018) (0.0030) (0.0041) (0.0040) (0.0002) (0.0002) (0.0028) (0.0024) (0.0008)
PLS t, 2014 3005  147.6-4410 0312  0.290 0.202  0.200 0.960
(3.366) (2.273)  (3.777) - (3.887) (0.0003) (0.0003) (0.0047) (0.0045) (0.0009)
N, 4040 3658 1861 - 7399 0.416 0.380 0.317 0.285 0.939
(37.16)  (58.55)  (90.42) - (161.6) (0.0005) (0.0006)  (0.0094) (0.0093) (0.0007)
t1/N, 0.067 0.068 0.049 - 0.084 0.217 0.178 0.079  0.077 0.979
(0.0004) (0.0005) (0.0010) (0.0006) (0.0008) (0.0002) (0.0020) (0.0016) (0.0004)
ABC la 0.449 0.439 0.130-0.822 0.572 0.524 NC NC 0.947
rejection 3043  290.0  111.9-543.0 1102  0.918 NC NC 0.934
N, 5940 6100 1805 - 9701 0.890 0.793 NC NC 0.907
t1/Ny 0.058 0.055 0.051-0.104 1.450 0.994 NC NC 0.961




ABC 1, 0260 0269  0265-0.273 0163  0.159 NC  NC 0.676
logRidge 2081 2094  2506-3342 0294 0273 NC  NC 0.670
N, 4612 4703  3155-5726 0383  0.383 NC  NC 0.694
t/N, 0073 0073  0069-0075 0203  0.205 NC  NC 0.702
IndSeq  RF r 0402 0391  0275-0.611 0172  0.54 0.61  0.150 0.963
with (0.0041) (0.0040) (0.0041) (0.0096 (0.0003) (0.0003)  (0.0021) (0.0020) (0.0011)
PLS t, 4005 3956  2315-5741 0398  0.357 0179  0.179 0.957
(3.133) (2.875) (4.478) (11.083) (0.0006) (0.0006)  (0.0056) (0.0051) (0.0008)
N, 6608 6796  2861-9513 0476  0.442 0.249  0.249 0.927
(53.15) (55.61) (111.6) (148.7) (0.0006) (0.0007)  (0.0117) (0.0105) (0.0008)
t/N, 0061 0061  0044-0077 0262  0.220 0091  0.090 0.975
(0.0004) (0.0004) (0.0006) (0.0009) (0.0009) (0.0006)  (0.0025) (0.0025) (0.0007)
ABC 1, 0450 0442  0126-0.802 0513 0472 NC  NC 0.932
rejection 3217 3030  96.90 - 625.0 1.148  0.968 NC NC 0.942
N, 6175 6450 2138 -9587 0929  0.856 NC  NC 0.907
t/N, 0.0555 0051  0022-0.097 1319  0.993 NC  NC 0.962
ABC 1, 0374 0345  0071-0884 0190  0.184 NC  NC 0.690
logRidge 3366 3341  247.5-4242 0428 0425 NC  NC 0.656
N, 5283 5276  4105- 6509 0464 0462 NC  NC 0.703
t/N, 0.067 0067  0061-0.074 0241 0238 NC  NC 0.697
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FIGURE S1. Evolution of prediction power relatively to the number of trees in the forest when
analyzing PoolSeq data.
Prediction power was evaluated by computing the global (prior) error rate for scenario choice and the global
(prior) mean squared error with the mean taken as point estimate, for parameter estimation. The feature
vectors included LDA or PLS axes, and five noise variables. For the presented analyses (and all others), the
gain of increasing the number of trees becomes limited for a number of trees > 900; hence our final choice

of building forests from 1,000 trees. Similar results were obtained for analyses of the IndSeq dataset (results
not shown).
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FIGURE S2. Contributions for the PoolSeq data analyses of the 30 most informative statistics of the
feature vector to the Random Forest when choosing among the two groups of scenarios and when
estimating the parameters ry, t; and N4 under scenario 3.

The variable importance of each statistics is computed as the mean decrease of impurity across the trees,
where the impurity measure is the Gini index, and the residual sum of squares for scenario choice and
parameter inference, respectively. It was computed for each of the 130 summary statistics provided by
DIYABC, plus the LDA axes for scenario choice (denoted LD) or the PLS axes for parameter estimation
(denoted Comp.) that were added to the feature vector. The higher the variable importance the more
informative is the statistic. Population index(s) are indicated at the end of each statistics and correspond to
those in Figure 1. More details about summary statistics can be found in Table S1. See Figure 3 for an
illustration of the contributions of the most informative statistics when choosing among the scenarios
separately and when estimating the parameter t;/N.
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Appendix S1: Supplementary information about the main technical features of the package DIYABC
Random Forest v1.0

Implementation

The package DIYABC Random Forest v1.0 is composed of three parts: the dataset simulator, the Random
Forest inference engine and the graphical user interface. The whole is packaged as a standalone and user-
friendly application available at https://diyabc.github.io. The different developer and user manuals for each
component of the package are available on the same site. DIYABC Random Forest v1.0 is a multithreaded
program which runs on three operating systems: GNU/Linux, Microsoft Windows and MacOS.
Computational procedures of the simulator and the Random Forest inference engine are written in C++.

For the Random Forest part of the package, we used our own version of the core RF (written in C++)
from the package ranger (Wright & Ziegler 2017). In this new version, that we named abcranger, the
Random Forest computations are optimized in order to grow a limited batch of trees in memory (but still
computed in parallel to leverage multicore architectures) in sequential — i.e. batch-wise order. Tree growing
and predictions are computed in a single pass, predictions are stored or accumulated and each tree is then
discarded. Although we still need the entire training set at once, processing in this way avoids the in-
memory storage of the whole forest at zero performance cost. The abcranger package hence opens new
perspective to efficiently compute RF from training sets of (very) large size. For instance, a training set
including > 100,000 particles of a feature vectors composed of > 10,000 summary statistics could be treated
without any memory overflow (results not shown). It is worth stressing that abcranger is not limited to
population genetics applications as the program can be used as an inference engine independently from the
DIYABC simulator. However, for the moment, the binary standalone used by the DIYABC interface
handles only outputs produced by the DI'YABC simulator. A python wrapper (and example notebooks) is
available at https://github.com/diyabc/abcranger and an R wrapper will be soon provided at the same site.

Interface

DIYABC Random Forest v1.0 can be used through a modern and user-friendly graphical interface designed
as an R shiny application (Chang, Cheng Allaire, Xie, & McPherson, 2019). For a fluid and simplified user
experience, this interface is available through a standalone application, which does not require installing R
or any dependencies and hence can be used independently. The application is also implemented in an R
package providing a standard shiny web application (with the same graphical interface) that can be run
locally as any shiny application, or hosted as a web service to provide a DIYABC Random Forest v1.0
server for multiple users.

The main pipeline of the interface is divided into two modules corresponding to the two phases of a
statistical treatment based on DIYABC Random Forest v1.0: module 1 = “Training set simulation” and
module 2 = “Random Forest analyses”. In module 1, users specify what type and how simulated data will be
generated under the ABC framework to produce a training set. Module 2 guides users through scenario
choice and parameter inference by providing a simple interface for the supervised learning framework based
on Random Forest methodologies. An additional module named “Synthetic data file generation” (based on
the DI'YABC simulation engine) is also available in the application. It can be used to easily generate
datafile(s) for various types of genetic markers corresponding to synthetic “ground truth” raw data (not
summarized through statistics) under a given historical scenario and a set of fixed parameter values. The
formats of the generated datafiles are similar to those of the observed input datafiles read by DIYABC
Random Forest v1.0 (for details see user manual at https://diyabc.github.io/doc/).

Outputs

The integration of various graphical outputs (historical scenario representation, error or accuracy metrics,
posterior curves, contribution to inferences of components of the feature vector, etc.) is managed with the
ggplot2 R package (Wickham 2016), allowing users to create and export high-quality graphics related to the
analyses. We encourage users to consult the user manual of the program available at
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https://diyabc.github.io/doc/ for details regarding the various numerical and graphical outputs provided by
DIYABC Random Forest v1.0. It is worth noting that a number of such outputs have been used in the
present paper to illustrate the results obtained when analyzing SNP pseudo-observed or real datasets.

Memory space and computing time

All analyses carried out in the present paper were processed on a 16 cores Intel Xeon E5-2650 computer
(Linux Debian platform, 64 bits system), with a maximum of 26 Gb and 1.8 Gb of RAM used for the
heaviest treatments regarding the simulation of the training set (with a loop-size of 50 datasets
corresponding to the number of simulated datasets distributed over all computer threads) as well as for RF
analyses. Optimizing computer code procedures to efficiently compute summary statistics is important
especially in the case of high-dimensional analyses which may include several thousand summary statistics.
Substantial efforts in this direction on DIYABC Random Forest v1.0 allowed to considerably reduce
(compared to the simulation module of DIYABC v2.1.0) both the fraction of the running time and the
memory space devoted to the computation of summary statistics. Such optimizations open new perspectives
for the analysis of (very) high-dimensional datasets in population genetics. Regarding the pseudo-observed
datasets used as illustration, the production of a training set including 10,000 simulated datasets took 13 min
(respectively 26 h) with only 4% (respectively 10%) of the running time devoted to the computation of the
130 summary statistics for the IndSeq (respectively PoolSeq) data. Note that the computation time
difference between IndSeq and PoolSeq reflects the ten time larger number of individuals included in the
PoolSeq simulation setting. RF treatments following the generation of the training set took less than 30 sec
for scenario choice and 1 min for each parameter estimation, with 37% of the time used to compute local
NMAE accuracy measures estimated using out-of-bag estimators from a sample of 10,000 data randomly
chosen in the training set.
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Appendix S2: Supplementary information about the illustration using a real IndSeq SNP dataset of
Human populations

Motivation and background

We analyzed an IndSeq SNP dataset obtained from individuals originating from four Human populations (30
unrelated individuals per population) using the freely accessible public 1000 Genome databases (i.e. the vcf
format files including variant calls available at http://www.1000genomes.org/data; The 1000 Genome
Project Consortium, 2012). The goal of the 1000 Genomes Project is to find most genetic variants that have
frequencies of at least 1% in the populations studied by sequencing many individuals lightly (i.e. at a 4X
coverage). A major interest of using SNP data from this source is that they do not suffer from any
ascertainment bias (i.e. the deviations from expected theoretical results due to the SNP discovery process in
which a small number of individuals from selected populations are used as discovery panel), which is a
prerequisite when using the population genetic simulator implemented in DIYABC Random Forest v1.0.
The four Human populations included the Yoruba population (Nigeria) as representative of Africa (encoded
YRI in the 1000 genome database), the Han Chinese population (China) as representative of the East Asia
(encoded CHB), the British population (England and Scotland) as representative of Europe (encoded GBR),
and the population composed of Americans of African Ancestry in SW-USA (encoded ASW). The SNP loci
were selected from the 22 autosomal chromosomes using the following criteria: (i) all 30x4 analyzed
individuals have a genotype characterized by a quality score (GQ)>10 (on a PHRED scale), (ii)
polymorphism is present in at least one of the 30x4 individuals in order to fit the SNP simulation algorithm
used in DIYABC Random Forest v1.0, (iii) the minimum distance between two consecutive SNPs is 1 kb in
order to minimize linkage disequilibrium between SNP, and (iv) SNP loci showing significant deviation
from Hardy-Weinberg equilibrium at a 1% threshold (Wigginton, Cutler & Abecasis 2005) in at least one of
the four populations has been removed (35 SNP loci concerned). After applying the above criteria, we
obtained a dataset including 51,250 SNP loci scattered over the 22 autosomes (with a median distance
between two consecutive SNPs equal to 7 kb) among which a subset of 5,000 SNP loci with a MAF > 1%
were randomly chosen for applying our ABC random forest algorithms.

In this application, we compared six scenarios (i.e. models) of evolution of the four Human
populations which differ from each other by one ancient and one recent historical event: (i) A single out-of-
Africa colonization event giving an ancestral out-of-Africa population which secondarily split into one
European and one East Asian populational lineage, versus two independent out-of-Africa colonization
events, one giving the European lineage and the other one giving the East Asian lineage. The possibility of a
second ancient (i.e. >100,000 years) out of Africa colonization event through the Arabian peninsula toward
Southern Asia has been suggested by archaeological studies (e.g. Rose et al. 2011). (i1) The possibility (or
not) of a recent genetic admixture of the Americans of African Ancestry in SW-USA between their
African ancestors and individuals of European or East Asia origins.

The six different scenarios as well as the prior distributions of the time event and effective population
size parameters used to simulate SNP datasets using the software DIYABC Random Forest v1.0 are detailed
in Figure S3. We stress here that our intention is not to bring new insights into Human population history,
which has been and is still studied in greater details in a number of studies using genetic data, but to
illustrate the potential of DIYABC Random Forest v1.0 for the statistical processing of a real IndSeq SNP
dataset in the context of a complex evolutionary histories.

Scenario choice

Following the new approach proposed by Estoup et al. (2018), we used DIYABC Random Forest v1.0 to
process RF analyses grouping scenarios based on the presence or absence of an admixed origin of the ASW
population, and then considered all six scenarios separately. The training sets were generated using the
“Training set simulation” module of DIYABC Random Forest v1.0, drawing parameter values into the prior
distributions described in the legend of Figure S3 and summarizing SNP data using the same 130 statistics as
those used for the pseudo-observed dataset examples in the main text (see Table S1) plus one LDA axis or
five LDA axes (i.e., the number of scenarios minus 1; see Pudlo et al. 2016) computed when comparing the
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two groups of scenarios or individual scenarios, respectively. We then used the “Random Forest analyses”
module of DIYABC Random Forest v1.0 to process RF treatments on the training set which included a total
of 12,000 simulated datasets (i.e., 2,000 per scenario). The number of trees in the constructed Random
Forest was fixed to 1,000, as this number turned out to be large enough to ensure a stable estimation of the
global error rate (Figure S4). We predicted the best scenario and estimated its posterior probability, as well
as the global and local error rates, over ten replicate RF analyses based on the same training set.

For comparative purposes, we used the R package abc v2.1 to process scenario choice inferences on
the same datasets using two standard ABC methods: the ABC rejection method and the ABC mnlog method
based on a simple rejection and a multinomial regression algorithm, respectively (Csilléry, Frangois, &
Blum 2012; Blum 2018). For all analyses, we used a tolerance rate of 5% and hence the 600 simulated
datasets closest to the observed dataset. The leave-one-out cross-validation method implemented in abc v2.1
was used to compute global error rates from a sample of 10,000 datasets.

Parameter estimation

We focused our estimations on the admixture rate associated to American individuals of African ancestry
(i.e. the parameter ra). The training set included 10,000 datasets simulated under scenario 2 (i.e. the selected
scenario after processing scenario choice with DIYABC Random Forest v1.0) and summarized using the
same 130 statistics plus 2 PLS axes. We inferred point estimates and computed global and local accuracy
indices corresponding to global and local NMAE (with the mean and the median as point estimates), as well
as the 90% coverage, using out-of-bag estimators from a sample of 10,000 data randomly chosen in the
training set (Raynal et al., 2019; Chapuis et al., 2020). The number of trees in the constructed Random
Forest was fixed to 1,000, as this number turned out to be large enough to ensure a stable estimation of the
global accuracy metrics (Figure S4). For each parameter, we conducted ten replicate RF analyses based on
the same training set.

For comparative purposes, we used the R package abc v2.1 to process parameter estimation inference
on the same datasets using the ABC rejection method and the ABC logRidge method based on a simple
rejection and a regression with a Ridge regulation algorithm, respectively (Csilléry, Frangois, & Blum 2012;
Blum 2018). For all analyses, we used a tolerance rate of 5% and hence the 500 simulated datasets closest to
the observed dataset. We used an independent test dataset including 1,000 datasets obtained from prior
distributions to compute the global NMAE (with the mean and the median as point estimate) and the 90%
coverage as accuracy indices.
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FIGURE S3. Six scenarios of evolution of four Human populations.

The genotyped populations are YRI = Yoruba (Nigeria, Africa), CHB = Han (China, East Asia), GBR =
British (England and Scotland, Europe), and ASW = Americans of African Ancestry (SW USA). The six
scenarios differ from each other by one ancient and one recent historical event: (i) a single out-of-Africa
colonization event giving an ancestral out-of-Africa population which secondarily split into one European
and one East Asian population lineage (scenarios 1, 2 and 3), versus two independent out-of-Africa
colonization events, one giving the European lineage and the other one giving the East Asian lineage
(scenarios 4, 5 and 6). (ii) The possibility (or not; scenarios 1 and 4) of a recent genetic admixture of ASW
individuals with their African ancestors and individuals of European (scenarios 2 and 5) or East Asia
(scenarios 3 and 6) origins. The prior distributions of the parameters used to simulate SNP datasets are as
followed: Uniform[100; 10000] for the split times t2 and t3 (in number of generations), Uniform[1; 30] for
the admixture (or split) time t1, Uniform[0.05; 0.95] for the admixture rate ra (proportion of genes with a
non-African origin; only for scenarios with admixture), Uniform[1000; 100000] for the stable effective
population sizes N1, N2, N4, N4 and N34 (in number of diploid individuals), Uniform[5; 500] for the
bottleneck effective population sizes Nbn3, Nbn4, and Nbn34, Uniform[5; 500] for the bottleneck durations
d3, d4, and d34, Uniform[100; 10000] for both the ancestral effective population size Na and the time of
change to Na. Conditions on time events were t4>t3>t2 for scenarios 1, 2 and 3, and t4>t3 and t4>t2 for
scenarios 4, 5 and 6.
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FIGURE S4. Evolution of prediction power relatively to the number of trees in the forest when
analyzing the Human population IndSeq dataset.

Prediction power was evaluated by computing the global (prior) error rate for scenario choice and the global
(prior) mean squared error with the mean taken as point estimate, for estimation of the parameter ra. The
feature vectors included five LDA (for scenario choice) or two PLS (for parameter estimation) axes, and five
noise variables. Groups of scenarios = with (scenarios 2, 3, 5 and 6) and without (scenarios 1 and 4) a recent
genetic admixture of ASW individuals.
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FIGURE S5. Projection of the real Human population IndSeq datasets from the training set
on a single LDA axis when analyzing two groups of scenarios (A) or on the first two LDA
axes when analyzing the six scenarios of figure S3 separately (B).

The location of the Human population IndSeq observed dataset in the LDA projection is indicated by a
vertical line and a star symbol in panels A and B, respectively. Scenario group 1 = with a recent genetic
admixture of ASW individuals. Scenario group 2 = without a recent genetic admixture of ASW individuals.
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FIGURE S6. Contributions for the real Human population IndSeq dataset analyses of the 30 most
informative statistics of the feature vector to the Random Forest when choosing among two groups of
scenarios (with and without a recent genetic admixture of ASW individuals), among the six scenarios
separately, and when estimating the admixture parameter ra under the scenario 2 of figure S3.

The variable importance of each statistics is computed as the mean decrease of impurity across the trees,
where the impurity measure is the Gini index, and the residual sum of squares for scenario choice and
parameter inference, respectively. It was computed for each of the 130 summary statistics provided by
DIYABC, plus the LDA axes for scenario choice (denoted LD) or the PLS axes for parameter estimation
(denoted Comp.) that were added to the feature vector. The higher the variable importance the more
informative is the statistic. Population index(s) are 1, 2, 3 and 4 for populations ASW, YRI, CHB and GBR,
respectively (see figure S3).
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Appendix S3: Checking points - thereafter formalized as questions - before finalizing inferential
treatments using DIYABC Random Forest v1.0.

1/ Are my scenarios and/or associated priors compatible with the observed dataset?

This question is of prime interest and applies to ABC Random Forest as well as to any alternative ABC
treatments. This issue is particularly crucial, given that complex scenarios and high dimensional datasets
(i.e., large and hence very informative datasets) are becoming the norm in population genomics. Basically, if
none of the proposed scenario / prior combinations produces some simulated datasets in a reasonable
vicinity of the observed dataset, this is a signal of incompatibility and it is not recommended to attempt any
inferences. In such situations, we strongly advise reformulating the compared scenarios and/or the
associated prior distributions in order to achieve some compatibility in the above sense. DIYABC Random
Forest v1.0 proposes a visual way to address this issue through the simultaneous projection of datasets of the
training set and of the observed dataset on the first LDA axes (e.g., Figure 2 of main text and Figure S5); see
also other dedicated diagnostic tools in the notice of the software. In the LDA projection, the observed
dataset has to be reasonably located within the clouds of simulated datasets.

2/ Did | simulate enough datasets for my training set?

A rule of thumb is, for scenario choice to simulate between 2,000 and 20,000 datasets per scenario among
those compared (Pudlo et al., 2016; Estoup et al., 2018), and for parameter estimation to simulate between
10,000 and 100,000 datasets under a given scenario (Raynal et al., 2019; Chapuis et al., 2020). To evaluate
whether or not this number is sufficient for RF analysis, we recommend to compute error/accuracy metrics
such as those proposed by DI'YABC Random Forest v1.0 from both the entire training set and a subset of the
latter (for instance from a subset of 80,000 simulated datasets if the training set includes a total of 100,000
simulated datasets). If error (accuracy) metrics from the subset are similar, or only slightly higher (lower)
than the value obtained from the entire database, one can consider that the training set contains enough
simulated datasets. If a substantial difference is observed between both values, then we recommend
increasing the number of simulated datasets in the training set.

3/ Did my forest grow enough trees?

According to our experience, a forest made of 500 to 2,000 trees often constitutes an interesting trade-off
between computation efficiency and statistical precision (Breiman, 2001; Chapuis et al., 2020; Pudlo et al.,
2016, Raynal et al., 2019). To evaluate whether or not this number is sufficient, we recommend plotting
error/accuracy metrics as a function of the number of trees in the forest. The shapes of the curves provide a
visual diagnostic of whether such key metrics stabilize when the number of trees tends to a given value.
DIYABC Random Forest v1.0 provides such a plot-figure as output (e.g. Figures S1 and S4).
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