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TABLE S1. Summary statistics provided by DIYABC Random Forest v1.0 with 

corresponding values computed from the pseudo-observed PoolSeq and IndSed SNP 

datasets generated under the (admixed) scenario 3. 

The two pseudo observed datasets were simulated under scenario 3 (see Figure 1) using the 

following parameter values: N1=7,000, N2=2,000, N3=4,000, N4=3,000, t1=200 ra=0.3, t2=300 

and t3=500. The names of summary statistics are those given in the program DIYABC 

Random Forest v1.0 (see also the associated manual report available at 

https://diyabc.github.io/doc). The two pseudo observed SNP datasets were summarized using 

a total of 130 statistics. ML1p, ML2p and ML3p: proportion of monomorphic loci computed 

for each population and each pair or triplet of populations, respectively. Mean (cf. suffix m) 

and variance (cf. suffix v) were computed over loci for all subsequent summary statistics. 

HW: heterozygosity within each population. HB: heterozygosity for each pair of populations. 

FST: FST estimates for each population (FST1), for each pair (FST2), triplet (FST3), and 

quadruplet (FST4) of populations. NEI: Nei’s (1972) distance for each pair of populations. 

AML: Cornuet et al. (2014)’s coefficient of admixture for each triplet of populations. F: 

allele-shared Patterson et al. (2012)’s f-statistics computed for each triplet (F3) and quadruplet 

(F4) of populations. The population index(s) are indicated at the end of each statistics and 

correspond to those in Figure 1. For instance ML1p_1 corresponds to the proportion of 

monomorphic loci in population 1 and F3m_4.1.3 to the mean F3 statistics with population 4 

as target and populations 1 and 3 as external populations. The feature vector was enriched 

with one LDA axis or five LDA axes for scenario choice when comparing the two groups of 

scenarios or individual scenarios, respectively, and by 4 to 24 PLS axes for parameter 

estimation, depending on the estimated parameter and the analyzed training set. Five “noise 

variables”, randomly drawn into uniform distributions bounded between 0 and 1, were also 

added to the feature vector in order to evaluate which summary statistics were informative in 

our different inferential settings, when conducting scenario choice or parameter estimation. 
 

Statistics Population(s) 

 

Values for the PoolSeq 

pseudo-observed dataset 

Values for the IndSeq  

pseudo-observed dataset 

ML1p 1 2 3  

4 

0.1826 0.2678 0.2208 0.1664 0.1498 0.1746 0.1244  

0.1102 

ML2p 1.2 1.3 1.4  

2.3 2.4 3.4 

0.0746 0.0624 0.0680 0.1440 

0.0866 0.1010 

0.0362 0.0262 0.0332  

0.0478 0.0318 0.0310 

ML3p 1.2.3 1.2.4 1.3.4 

2.3.4 

0.0214 0.0180 0.0330 0.0592 0.0048 0.0048 0.0078  

0.0104 

HWm 1 2  

3 4 

0.20954404 0.19838350 

0.20488395 0.21055354 

0.28478421 0.28119158  

0.28998420 0.29305474 

HWv 1 2  

3 4 

0.03017888 0.03269557 

0.03209324 0.03047639 

0.03190730 0.03378459  

0.02993610 0.02933304 

HBm 1.2 1.3  

1.4 2.3  

2.4 3.4 

0.22103712 0.22007464 

0.21984261 0.21242519 

0.21683138 0.21476721 

0.30713500 0.30632800  

0.30218300 0.30215000  

0.30505300 0.30241900 

HBv 1.2 1.3  

1.4 2.3 

2.4 3.4 

0.03050988 0.02952776 

0.02889917 0.03152973 

0.03053319 0.02997418 

0.02691466 0.02543388  

0.02534241 0.02699442  

0.02585686 0.02462178 

FST1m 1 2  

3 4 

0.03656301 0.08787669 

0.05798906 0.03192155 

0.06386061 0.07567027  

0.04676723 0.03667384 

FST1v 1 2  

3 4 

0.63796837 0.69117010 

0.67843706 0.64425761 

0.34477777 0.36506305  

0.32347805 0.31696137 

FST2m 1.2 1.3  

1.4 2.3  

2.4 3.4 

0.07728727 0.05828701 

0.04442737 0.05080998 

0.05682634 0.03279332 

0.07862049 0.06184152  

0.04389236 0.05481418  

0.05877615 0.03604114 
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FST2v 1.2 1.3  

1.4 2.3  

2.4 3.4 

0.00662912 0.00482556 

0.00347683 0.00415286 

0.00479387 0.00255583 

0.01430816 0.01205242  

0.00947003 0.01095105  

0.01132813 0.00827309 

NEIm 1.2 1.3  

1.4 2.3  

2.4 3.4 

0.02526759 0.01989388 

0.01634083 0.01766116 

0.01942893 0.01285703 

0.04891985 0.04303372  

0.03607558 0.04038162  

0.04173982 0.03331893 

NEIv 1.2 1.3  

1.4 2.3  

2.4 3.4 

0.00304633 0.00178349 

0.00123277 0.00156038 

0.00200541 0.00082593 

0.00709198 0.00580780  

0.00414014 0.00527857  

0.00508674 0.00369040 

AMLm 1.2.3 2.1.3  

3.1.2 1.2.4  

2.1.4 4.1.2  

1.3.4 3.1.4  

4.1.3 2.3.4  

3.2.4 4.2.3 

0.46204517 0.40770154 

0.44138604 0.41696963 

0.44406000 0.52419587 

0.43788739 0.40023811 

0.45678690 0.54884198 

0.47752730 0.42632776 

0.4613780 0.444626580  

0.48438619 0.42576090  

0.45916842 0.52907402  

0.45458238 0.43777103  

0.48674400 0.52262473. 

0.46453923 0.44485723 

AMLv 1.2.3 2.1.3  

3.1.2 1.2.4  

2.1.4 4.1.2  

1.3.4 3.1.4  

4.1.3 2.3.4  

3.2.4 4.2.3 

0.20487761 0.19859487 

0.18815848 0.19462928 

0.21034224 0.18424422 

0.20335850 0.19214446 

0.18189880 0.20830083 

0.19153337 0.18909750 

0.20011036 0.20000220  

0.19081113 0.19336935  

0.20604561 0.18747876  

0.20465516 0.19706727  

0.18931158 0.20938216  

0.19133678 0.19324775 

FST3m 1.2.3 1.2.4  

1.3.4 2.3.4 

0.06232238 0.05957347 

0.04527343 0.04681239 

0.06515089 0.06052300  

0.04732179 0.04990147 

FST3v 1.2.3 1.2.4  

1.3.4 2.3.4 

0.00338161 0.00320667 

0.00233752 0.00255658 

0.00855638 0.00803107  

0.00667524 0.00679905 

FST4m 1.2.3.4 0.05353053 0.05574299 

FST4v 1.2.3.4 0.00222549 0.00587558 

F3m 1.2.3 2.1.3  

3.1.2 1.2.4  

2.1.4 4.1.2  

1.3.4 3.1.4  

4.1.3 2.3.4  

3.2.4 4.2.3 

0.00957127 0.00750209 

0.00328938 0.00725216 

0.00982119 0.00254166 

0.00780301 0.00505764 

0.00199082 0.00805293 

0.00273854 0.00430993 

0.01326439 0.01088271  

0.00567939 0.00974039  

0.01440671 0.00352313  

0.01065389 0.00828989  

0.00260963 0.01179621  

0.00476589 0.00613363 

F3v 1.2.3 2.1.3  

3.1.2 1.2.4  

2.1.4 4.1.2  

1.3.4 3.1.4  

4.1.3 2.3.4  

3.2.4 4.2.3 

0.00067502 0.00059355 

0.00038770 0.00054309 

0.00074646 0.00033338 

0.00044435 0.00030498 

0.00022943 0.00052647 

0.00025187 0.00032306 

0.00200864 0.00177915  

0.00150415 0.00152669  

0.00206510 0.00117159  

0.00150024 0.00129820  

0.00098230 0.00170687  

0.00108649 0.00114095 

F4m 1.2.3.4 1.3.2.4 

1.4.2.3 

-0.0023191 -0.00176826 

0.0005508 

0.00352400 -0.0026105  

0.0009135 

F4v 1.2.3.4 1.3.2.4 

1.4.2.3 

0.00031890 0.00036603 

0.0002816 

0.00110473 0.00131977  

0.0010138 
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TABLE S2. Results for scenario choice under the (non-admixed) scenario 6. 

The six compared scenarios and the two groups of scenarios are detailed in Figure 1. Results are given for the two example pseudo-observed 

datasets (PoolSeq and IndSeq) which were simulated under the scenario 6 using the following parameter values: N1=7,000, N2=2,000, N3=4,000, 

N4=3000, t1=200, t2=300 and t3=500. RF analyses used a training set including feature vector values from 12,000 simulated datasets (2,000 per 

scenario) and the number of trees was 1,000. Global (prior) and local (posterior) error rates were estimated using out-of-bag estimators from a 

sample of 10,000 data randomly chosen in the training set. Standard deviations over the ten replicate analyses are given between brackets for 

each metrics, in addition to the means. In the “RF with LDA” treatments, five LDA axes were added to the set of 130 summary statistics 

composing the feature vector. ABC rejection or ABC mnlog: inference methods based on a simple rejection or a multinomial regression 

algorithm (using the R package abc v2.1; Csilléry, François, & Blum 2012). NC: not computable. Similar results were obtained for the pseudo-

observed datasets generated under the (non-admixed) scenario 6 than for those generated under the (admixed) scenario 3 (Table 2). The only 

discrepancy is that, in contrast to pseudo-observed datasets generated under scenario 6, the posterior probabilities of the selected scenario were 

higher (and hence local error rate higher) when excluding LDA axes. Note that the true/expected posterior probabilities value are unknown in 

these case studies. 
 

Type of  

dataset 

Type of treatment Global 

error rate 

Local 

error rate 

Vote 

scen. 1 

Vote 

scen. 2 

Vote 

scen. 6 

Vote 

scen. 4 

Vote 

scen. 5 

Vote 

scen. 6 

Posterior 

probability  

PoolSeq Groups of 

scenarios: with 

vs. without 

admixture 

RF  

with LDA 

0.176 

(0.005) 

0.224 

(0.022) 

218.2 

(14.920) 

781.8 

(14.920) 

0.776 [group 2] 

(0.022) 

RF  

without LDA 

0.187 

(0.004) 

0.172 

(0.008) 

244.0 

(14.008) 

756.0 

(14.008) 

0.828 [group 2] 

(0.009) 

 ABC rejection 0.266 NC NC NC 0.524 [group 2] 

 ABC mnlog 0.202 NC NC NC 0.999 [group 2] 

All scenarios 

considered  

separately 

RF  

with LDA 

0.191 

(0.004) 

0.117 

(0.009) 

135.6 

(17.037) 

1.6 

(1.265) 

21.6 

(6.415) 

0.1 

(0.316) 

3.8 

(2.394) 

837.3 

(20.844) 

0.883 [scen. 6] 

(0.009) 

RF  

without LDA 

0.216 

(0.005) 

0.112 

(0.005) 

137.2 

(8.456) 

2.6 

(1.506) 

33.5 

(8.708) 

0.3 

(0.675) 

6.4 

(2.675) 

820.0 

(11.832) 

0.888 [scen. 6] 

(0.005) 

  ABC rejection 0.372 NC NC NC NC NC NC NC 0.441 [scen. 6] 

  ABC mnlog 0.261 NC NC NC NC NC NC NC 0.999 [scen. 6] 

IndSeq Groups of 

scenarios: with 

RF  

with LDA 

0.206 

(0.004) 

0.193 

(0.016) 

346.7 

(11.196) 

653.3 

(11.196) 

0.807 [group 2] 

(0.018) 
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vs. without 

admixture 

RF  

without LDA 

0.215 

(0.002) 

0.194 

(0.016) 

276.2 

(16.956) 

723.8 

(16.956) 

0.806 [group 2] 

(0.016) 

 ABC rejection 0.344 NC NC NC 0.455 [group 2] 

 ABC mnlog 0.261 NC NC NC 1.000 [scen. 6] 

All scenarios 

considered  

separately 

RF 

with LDA 

0.240 

(0.005) 

0.169 

(15.515) 

180.5 

(1.792) 

3.1 

(1.792) 

105.8 

(7.757) 

0.4 

(0.516) 

11.2 

(2.658) 

699 

(15.677) 

0.831 [scen. 6] 

(0.023) 

RF 

without LDA 

0.252 

(0.001) 

0.155 

(0.0197) 

165.7 

(16.351) 

1.5 

(1.179) 

56.1 

(9.386) 

0.1 

(0.316) 

11.5 

(2.224) 

765.1 

(20.311) 

0.845 [scen. 6] 

(0.020) 

  ABC rejection 0.473 NC NC NC NC NC NA NC 0.362 [scen. 6] 

  ABC mnlog 0.332 NC NC NC NC NC NA NC 0.995 [scen. 6] 
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TABLE S3. Results for estimation of parameters of interest under the (non-admixed) scenario 6. 

Results are given for two example pseudo-observed datasets (PoolSeq and IndSeq) which were simulated under the scenario 6 using the 

following parameter values: t1 = 200, N4 = 3,000 and t1/N4 = 0.067. RF analyses used a training set including feature vector values from 10,000 

simulated datasets and the number of trees was 1,000. Global (prior) and local (posterior) NMAE values were estimated using out-of-bag 

estimators from a sample of 10,000 data randomly chosen in the training set. Standard deviations over the ten replicate analyses are given 

between brackets for each metrics, in addition to the means. In the “RF with PLS” treatments, the number of PLS axes which were added to the 

set of 130 summary statistics of the feature vector for the PoolSeq (IndSeq) datasets was equal to 13 (18), 17 (16), and 4 (4) for t1, N4 and t1/N4, 

respectively. CI: credibility interval. 90% coverage: proportion of test parameter values comprise between the estimated 5% and the 95% 

quantiles. ABC rejection or ABC logRidge: inference method based on a simple rejection or a regression with a Ridge regulation algorithm 

(using the R package abc v2.1; Csilléry, François, & Blum 2012). NC: not computable. Note the particularly narrow 90% coverage values 

obtained when using ABC logRidge. 
 

Type of 

dataset 

 

 Type of  

treatment 

Parameter 

 

Posterior point estimates of Global (prior) NMAE 

computed from 

Local (posterior) NMAE 

computed from 

90% 

Coverage 

  Mean Median 90% CI Mean Median Mean Median  

PoolSeq  RF  

with 

PLS 

t1 289.8 

(2.344) 

282.0 

(1.826) 

191.0 – 412.2 

(5.925) - (4.454) 

0.223 

(0.0002) 

0.211 

(0.0001) 

0.138 

(0.0045) 

0.137 

(0.0043) 

0.962 

(0.0007) 

  N4 5101 

(35.82) 

4914 

(64.71) 

2759  - 8190 

(79.22) - (52.60) 

0.283 

(0.0003) 

0.262 

(0.0003) 

0.258 

(0.0099) 

0.247 

(0.0090) 

0.943 

(0.0008) 

t1/N4 0.060 

(0.0001) 

0.060 

(0.0002) 

0.052 - 0.068 

(0.0001) (0.0005) 

0.114 

(0.0003) 

0.109 

(0.0002) 

0.053 

(0.0012) 

0.054 

(0.0012) 

0.969 

(0.0004) 

 RF  

without  

PLS 

t1 295.1 

(2.092) 

291.0 

(4.807) 

186.4 - 419.5 

(5.621) - (6.972) 

0.226 

(0.0003) 

0.215 

0.0002) 

0.140 

(0.0032) 

0.140 

(0.0037) 

0.962 

(0.0008) 

N4 5437 

(82.42) 

5320 

(108.82) 

2840 - 8408 

(59.46) (91.88) 

0.286 

(0.0003) 

0.267 

(0.0004) 

0.258 

(0.0107)) 

0.251 

(0.0096) 

0.942 

(0.0009) 

t1/N4 0.060 

(0.0004) 

0.060 

(0.0006) 

0.053 - 0.068 

(0.0008) (0.0006) 

0.115 

(0.0009) 

0.110 

(0.0003) 

0.053 

(0.0021) 

0.054 

(0.0017) 

0.969 

(0.0005) 

 ABC  t1 292.4 279.5 102.8- 534.3 0.848 0.707 NC NC 0.956 
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 rejection  N4 6166 6317 2038 - 9576 0.766 0.699 NC NC 0.939 

  t1/N4 0.051 0.049 0.019 - 0.093 0.959 0.717 NC NC 0.975 

 ABC  

logRidge 

t1 295.4 295.7 208.5 – 371.6 0.414 0.252 NC NC 0.686 

 N4 5127 5125 3816 - 6531 0.325 0.320 NC NC 0.659 

 t1/N4 0.065 0.065 0.062 - 0.068 0.121 0.119 NC NC 0.674 

IndSeq RF  

with 

PLS 

t1 370.8 

(3.219) 

384.7 

(3.093) 

215.7 – 491.2 

(5.805) (5.922) 

0.283 

(0.0003) 

0.266 

(0.0003) 

0.185 

(0.0076) 

0.184 

(0.0078) 

0.951 

(0.0006) 

N4 6835 

(64.87) 

6884 

(41.56) 

2258  -  9301 

(260.7) - (73.7) 

0.325 

(0.0004) 

0.307 

(0.0002) 

0.199 

(0.0077) 

0.201 

(0.0079) 

0.932 

(0.0013) 

t1/N4 0.062 

(0.0003) 

0.062 

(0.0003) 

0.052 - 0.070 

(0.0002) (0.0002) 

0.160 

(0.0002) 

0.152 

(0.0002) 

0.063 

(0.0014) 

0.0631 

(0.0015) 

0.946 

(0.0007) 

RF  

without 

PLS 

t1 383.0 

(2.702) 

394.6 

(2.989) 

223.9 – 503.4 

(4.677) - (9.919) 

0.285 

(0.0002) 

0.269 

(0.0003) 

0.179 

(0.0078) 

0.179 

(0.0081) 

0.950 

(0.0009) 

N4 6824 

(64.87) 

6881 

(41.56) 

2182  -  9318 

(260.7) - (73.7) 

0.325 

(0.0004) 

0.308 

(0.0002) 

0.199 

(0.0077) 

0.201 

(0.0079) 

0.932 

(0.0007) 

t1/N4 0.062 

(0.0002) 

0.063 

(0.0004) 

0.052 -  0.070 

(0.0003) (0.0002) 

0.161 

(0.0002) 

0.153 

(0.0001) 

0.063 

(0.0017) 

0.063 

(0.0016) 

0.946 

(0.0007) 

ABC  

rejection 

t1 321.5 302.0 102.9 – 610.1 1.016 0.851 NC NC 0.932 

N4 6208 6274 2417 - 9550 0.874 0.782 NC NC 0.891 

t1/N4 0.055 0.053 0.021 – 0.094 1.128 0.863 NC NC 0.964 

ABC 

logRidge 

t1 295.3 295.4 234 – 348.6 0.356 0.356 NC NC 0.673 

N4 5147 5297 2287 - 7256 0.467 0.467 NC NC 0.684 

t1/N4 0.064 0.064 0.058 – 0.071 0.199 0.199 NC NC 0.700 
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TABLE S4. Results for scenario choice: ABC Random Forest (RF) versus traditional ABC methods 
The six compared scenarios and the two groups of scenarios are detailed in Figure 1. Results are given for the two example pseudo-observed datasets 

(PoolSeq and IndSeq) which were simulated under the (admixed) scenario 3 using the following parameter values: N1=7,000, N2=2,000, N3=4,000, 

N4=3000, t1=200, ra=0.3, t2=300 and t3=500. In the “RF with LDA” treatments, five LDA axes were added to the set of 130 summary statistics 

composing the feature vector. Standard deviations over the ten replicate analyses are given between brackets for each metrics, in addition to the means. 

Traditional ABC methods are ABC rejection or ABC mnlog and correspond to inference based on a simple rejection or a multinomial regression 

algorithm (using the R package abc v2.1; Csilléry, François, & Blum 2012). NC: not computable. The global error rate of the selected admixture group 

of scenarios was notably high (and the posterior probabilities low) with the ABC rejection method. For the ABC multinomial logistic method, global 

prior error rates were higher than for ABC Random Forest and the posterior probabilities of the best scenario were always equal to 1.000 for the 

pseudo-observed datasets. 
 

Type of  

dataset 

Type of treatment Global 

error rate 

Local 

error rate 

Posterior 

probability  

PoolSeq Groups of 

scenarios: with 

vs. without 

admixture 

RF  

with LDA 

0.172 

(0.001) 

0.085 

(0.009) 

0.915 [group 1] 

(0.009) 

 ABC rejection 0.342 NC 0.616 [group 1] 

 ABC mnlog 0.212 NC 1.000 [group 1] 

 All scenarios 

considered  

separately 

RF  

with LDA 

0.196 

(0.0008) 

0.135 

(0.011) 

0.865 [scen. 3] 

(0.011) 

 ABC rejection 0.457 NC 0.333 [scen 3] 

 ABC mnlog 0.271 NC 1.000 [scen 3] 

IndSeq Groups of 

scenarios: with 

vs. without 

admixture 

RF  

with LDA 

0.212 

(0.001) 

0.177 

(0.016) 

0.823 [group 1] 

(0.016) 

ABC rejection 0.351 NC 0.633 [group 1] 

ABC mnlog 0.263 NC 1.000 [group 1] 

All scenarios 

considered  

separately 

RF 

with LDA 

0.248 

(0.001) 

0.268 

(0.018) 

0.732 [scen. 3] 

(0 .018) 

 ABC rejection 0.473 NC 0.371 [scen 3] 

 ABC mnlog 0.330 NC 1.000 [scen 3] 
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TABLE S5. Results for estimation of parameters of interest: ABC Random Forest (RF) versus traditional ABC methods 

Results are given for the two example pseudo-observed datasets (PoolSeq and IndSeq) which were simulated under the (admixed) scenario 3 

using the following parameter values: ra = 0.3, t1 = 200, N4 = 3,000 and t1/N4 = 0.067. In the “RF with PLS” treatments, the number of PLS 

axes which were added to the set of 130 summary statistics of the feature vector for the PoolSeq (IndSeq) datasets was equal to 12 (12), 18 

(21), 23 (24), and 4 (4) for ra, t1, N4 and t1/N4, respectively. 90% coverage: proportion of test parameter values comprise between the estimated 

5% and the 95% quantile. CI: credibility interval. Standard deviations over the ten replicate analyses are given between brackets for each 

metrics, in addition to the means. Traditional ABC methods are ABC rejection or ABC mnlog and correspond to inference based on a simple 

rejection or a regression with a Ridge regulation algorithm (using the R package abc v2.1; Csilléry, François, & Blum 2012). NC: not 

computable. NMAE values with the ABC logRidge method were low (i.e. similar to those for Random Forest), but ABC logRidge was 

characterized by particularly narrow 90% coverage values (i.e. around 0.70), indicating that confidence intervals are prejudicially too narrow 

(i.e. the true parameter values is often outside the limits of the confidence interval) with this method, a feature previously noted by Raynal et 

al. 2019. 
 

Type of 

dataset 

Type of 

treatment 

Parameter 

 

Posterior point estimates of Global (prior) NMAE 

computed from 

Local (posterior) NMAE 

computed from 

90% 

Coverage 

Mean Median 90% CI Mean Median Mean Median  

PoolSeq RF  

with 

PLS 

ra 

 

0.346 

(0.0018) 

0.352 

(0.0030) 

0.248 - 0.422 

(0.0041) (0.0040) 

0.133 

(0.0002) 

0.123 

(0.0002) 

0.089 

(0.0028) 

0.089 

(0.0024) 

0.974 

(0.0008) 

t1 291.4 

(3.366) 

300.5 

(2.273) 

147.6 - 441.0 

(3.777) - (3.887) 

0.312 

(0.0003) 

0.290 

(0.0003) 

0.202 

(0.0047) 

0.200 

(0.0045) 

0.960 

(0.0009) 

N4 4040 

(37.16) 

3658 

(58.55) 

1861 - 7399 

(90.42) - (161.6) 

0.416 

(0.0005) 

0.380 

(0.0006) 

0.317 

(0.0094) 

0.285 

(0.0093) 

0.939 

(0.0007) 

t1/N4 0.067 

(0.0004) 

0.068 

(0.0005) 

0.049 - 0.084 

(0.0010) (0.0006) 

0.217 

(0.0008) 

0.178 

(0.0002) 

0.079 

(0.0020) 

0.077 

(0.0016) 

0.979 

(0.0004) 

 ABC  

rejection 

ra 0.449 0.439 0.130 - 0.822 0.572 0.524 NC NC 0.947 

 t1 304.3 290.0 111.9 – 543.0 1.102 0.918 NC NC 0.934 

 N4 5940 6100 1805 - 9701 0.890 0.793 NC NC 0.907 

 t1/N4 0.058 0.055 0.051 – 0.104 1.450 0.994 NC NC 0.961 



10 
 

 ABC  

logRidge 

ra 0.269 0.269 0.265 - 0.273 0.163 0.159 NC NC 0.676 

 t1 298.1 299.4 250.6 – 334.2 0.294 0.273 NC NC 0.670 

 N4 4612 4703 3155 - 5726 0.383 0.383 NC NC 0.694 

 t1/N4 0.073 0.073 0.069 – 0.075 0.203 0.205 NC NC 0.702 

IndSeq RF  

with  

PLS 

ra 0.402 

(0.0041) 

0.391 

(0.0040) 

0.275 - 0.611  

(0.0041) (0.0096 

0.172 

(0.0003) 

0.154 

(0.0003) 

0.161 

(0.0021) 

0.150 

(0.0020) 

0.963 

(0.0011) 

 t1 400.5 

(3.133) 

395.6 

(2.875) 

231.5 - 574.1 

(4.478) (11.083) 

0.398 

(0.0006) 

0.357 

(0.0006) 

0.179 

(0.0056) 

0.179 

(0.0051) 

0.957 

(0.0008) 

 N4 6608 

(53.15) 

6796 

(55.61) 

2861 - 9513 

(111.6)  (148.7) 

0.476 

(0.0006) 

0.442 

(0.0007) 

0.249 

(0.0117) 

0.249 

(0.0105) 

0.927 

(0.0008) 

 t1/N4 0.061 

(0.0004) 

0.061 

(0.0004) 

0.044 - 0.077 

(0.0006) (0.0009) 

0.262 

(0.0009) 

0.220 

(0.0006) 

0.091 

(0.0025) 

0.090 

(0.0025) 

0.975 

(0.0007) 

 ABC 

rejection 

ra 0.450 0.442 0.126 - 0.802 0.513 0.472 NC NC 0.932 

 t1 321.7 303.0 96.90 - 625.0 1.148 0.968 NC NC 0.942 

 N4 6175 6459 2138 - 9587 0.929 0.856 NC NC 0.907 

 t1/N4 0.0555 0.051 0.022 - 0.097 1.319 0.993 NC NC 0.962 

 ABC  

logRidge 

ra 0.374 0.345 0.071 - 0.884 0.190 0.184 NC NC 0.690 

 t1 336.6 334.1 247.5 - 424.2 0.428 0.425 NC NC 0.656 

 N4 5283 5276 4105 - 6509 0.464 0.462 NC NC 0.703 

 t1/N4 0.067 0.067 0.061 - 0.074 0.241 0.238 NC NC 0.697 
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FIGURE S1. Evolution of prediction power relatively to the number of trees in the forest when 

analyzing PoolSeq data. 

Prediction power was evaluated by computing the global (prior) error rate for scenario choice and the global 

(prior) mean squared error with the mean taken as point estimate, for parameter estimation. The feature 

vectors included LDA or PLS axes, and five noise variables. For the presented analyses (and all others), the 

gain of increasing the number of trees becomes limited for a number of trees > 900; hence our final choice 

of building forests from 1,000 trees. Similar results were obtained for analyses of the IndSeq dataset (results 

not shown). 
 

 

  
Groups of scenarios Individual scenarios 

Parameter ra Parameter t1 

Parameter N4 Parameter t1/N4 
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FIGURE S2. Contributions for the PoolSeq data analyses of the 30 most informative statistics of the 

feature vector to the Random Forest when choosing among the two groups of scenarios and when 

estimating the parameters ra, t1 and N4 under scenario 3. 

The variable importance of each statistics is computed as the mean decrease of impurity across the trees, 

where the impurity measure is the Gini index, and the residual sum of squares for scenario choice and 

parameter inference, respectively. It was computed for each of the 130 summary statistics provided by 

DIYABC, plus the LDA axes for scenario choice (denoted LD) or the PLS axes for parameter estimation 

(denoted Comp.) that were added to the feature vector. The higher the variable importance the more 

informative is the statistic. Population index(s) are indicated at the end of each statistics and correspond to 

those in Figure 1. More details about summary statistics can be found in Table S1. See Figure 3 for an 

illustration of the contributions of the most informative statistics when choosing among the scenarios 

separately and when estimating the parameter t1/N4. 
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Appendix S1: Supplementary information about the main technical features of the package DIYABC 

Random Forest v1.0 

 

Implementation 

 

The package DIYABC Random Forest v1.0 is composed of three parts: the dataset simulator, the Random 

Forest inference engine and the graphical user interface. The whole is packaged as a standalone and user-

friendly application available at https://diyabc.github.io. The different developer and user manuals for each 

component of the package are available on the same site. DIYABC Random Forest v1.0 is a multithreaded 

program which runs on three operating systems: GNU/Linux, Microsoft Windows and MacOS. 

Computational procedures of the simulator and the Random Forest inference engine are written in C++.  

For the Random Forest part of the package, we used our own version of the core RF (written in C++) 

from the package ranger (Wright & Ziegler 2017). In this new version, that we named abcranger, the 

Random Forest computations are optimized in order to grow a limited batch of trees in memory (but still 

computed in parallel to leverage multicore architectures) in sequential – i.e. batch-wise order. Tree growing 

and predictions are computed in a single pass, predictions are stored or accumulated and each tree is then 

discarded. Although we still need the entire training set at once, processing in this way avoids the in-

memory storage of the whole forest at zero performance cost. The abcranger package hence opens new 

perspective to efficiently compute RF from training sets of (very) large size. For instance, a training set 

including > 100,000 particles of a feature vectors composed of > 10,000 summary statistics could be treated 

without any memory overflow (results not shown). It is worth stressing that abcranger is not limited to 

population genetics applications as the program can be used as an inference engine independently from the 

DIYABC simulator. However, for the moment, the binary standalone used by the DIYABC interface 

handles only outputs produced by the DIYABC simulator. A python wrapper (and example notebooks) is 

available at https://github.com/diyabc/abcranger and an R wrapper will be soon provided at the same site.  

 

Interface 

 

DIYABC Random Forest v1.0 can be used through a modern and user-friendly graphical interface designed 

as an R shiny application (Chang, Cheng Allaire, Xie, & McPherson, 2019). For a fluid and simplified user 

experience, this interface is available through a standalone application, which does not require installing R 

or any dependencies and hence can be used independently. The application is also implemented in an R 

package providing a standard shiny web application (with the same graphical interface) that can be run 

locally as any shiny application, or hosted as a web service to provide a DIYABC Random Forest v1.0 

server for multiple users. 

 The main pipeline of the interface is divided into two modules corresponding to the two phases of a 

statistical treatment based on DIYABC Random Forest v1.0: module 1 = “Training set simulation” and 

module 2 = “Random Forest analyses”. In module 1, users specify what type and how simulated data will be 

generated under the ABC framework to produce a training set. Module 2 guides users through scenario 

choice and parameter inference by providing a simple interface for the supervised learning framework based 

on Random Forest methodologies. An additional module named “Synthetic data file generation” (based on 

the DIYABC simulation engine) is also available in the application. It can be used to easily generate 

datafile(s) for various types of genetic markers corresponding to synthetic “ground truth” raw data (not 

summarized through statistics) under a given historical scenario and a set of fixed parameter values. The 

formats of the generated datafiles are similar to those of the observed input datafiles read by DIYABC 

Random Forest v1.0 (for details see user manual at https://diyabc.github.io/doc/). 

 

Outputs 

 

The integration of various graphical outputs (historical scenario representation, error or accuracy metrics, 

posterior curves, contribution to inferences of components of the feature vector, etc.) is managed with the 

ggplot2 R package (Wickham 2016), allowing users to create and export high-quality graphics related to the 

analyses. We encourage users to consult the user manual of the program available at 

https://diyabc.github.io/
https://diyabc.github.io/
https://diyabc.github.io/doc/
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https://diyabc.github.io/doc/ for details regarding the various numerical and graphical outputs provided by 

DIYABC Random Forest v1.0. It is worth noting that a number of such outputs have been used in the 

present paper to illustrate the results obtained when analyzing SNP pseudo-observed or real datasets. 

 

Memory space and computing time 

 

All analyses carried out in the present paper were processed on a 16 cores Intel Xeon E5-2650 computer 

(Linux Debian platform, 64 bits system), with a maximum of 26 Gb and 1.8 Gb of RAM used for the 

heaviest treatments regarding the simulation of the training set (with a loop-size of 50 datasets 

corresponding to the number of simulated datasets distributed over all computer threads) as well as for RF 

analyses. Optimizing computer code procedures to efficiently compute summary statistics is important 

especially in the case of high-dimensional analyses which may include several thousand summary statistics. 

Substantial efforts in this direction on DIYABC Random Forest v1.0 allowed to considerably reduce 

(compared to the simulation module of DIYABC v2.1.0) both the fraction of the running time and the 

memory space devoted to the computation of summary statistics. Such optimizations open new perspectives 

for the analysis of (very) high-dimensional datasets in population genetics. Regarding the pseudo-observed 

datasets used as illustration, the production of a training set including 10,000 simulated datasets took 13 min 

(respectively 26 h) with only 4% (respectively 10%) of the running time devoted to the computation of the 

130 summary statistics for the IndSeq (respectively PoolSeq) data. Note that the computation time 

difference between IndSeq and PoolSeq reflects the ten time larger number of individuals included in the 

PoolSeq simulation setting. RF treatments following the generation of the training set took less than 30 sec 

for scenario choice and 1 min for each parameter estimation, with 37% of the time used to compute local 

NMAE accuracy measures estimated using out-of-bag estimators from a sample of 10,000 data randomly 

chosen in the training set. 
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Appendix S2: Supplementary information about the illustration using a real IndSeq SNP dataset of 

Human populations 

 

Motivation and background 

 

We analyzed an IndSeq SNP dataset obtained from individuals originating from four Human populations (30 

unrelated individuals per population) using the freely accessible public 1000 Genome databases (i.e. the vcf 

format files including variant calls available at http://www.1000genomes.org/data; The 1000 Genome 

Project Consortium, 2012). The goal of the 1000 Genomes Project is to find most genetic variants that have 

frequencies of at least 1% in the populations studied by sequencing many individuals lightly (i.e. at a 4X 

coverage). A major interest of using SNP data from this source is that they do not suffer from any 

ascertainment bias (i.e. the deviations from expected theoretical results due to the SNP discovery process in 

which a small number of individuals from selected populations are used as discovery panel), which is a 

prerequisite when using the population genetic simulator implemented in DIYABC Random Forest v1.0. 

The four Human populations included the Yoruba population (Nigeria) as representative of Africa (encoded 

YRI in the 1000 genome database), the Han Chinese population (China) as representative of the East Asia 

(encoded CHB), the British population (England and Scotland) as representative of Europe (encoded GBR), 

and the population composed of Americans of African Ancestry in SW-USA (encoded ASW). The SNP loci 

were selected from the 22 autosomal chromosomes using the following criteria: (i) all 30x4 analyzed 

individuals have a genotype characterized by a quality score (GQ)>10 (on a PHRED scale), (ii) 

polymorphism is present in at least one of the 30x4 individuals in order to fit the SNP simulation algorithm 

used in DIYABC Random Forest v1.0, (iii) the minimum distance between two consecutive SNPs is 1 kb in 

order to minimize linkage disequilibrium between SNP, and (iv) SNP loci showing significant deviation 

from Hardy-Weinberg equilibrium at a 1% threshold (Wigginton, Cutler & Abecasis 2005) in at least one of 

the four populations has been removed (35 SNP loci concerned). After applying the above criteria, we 

obtained a dataset including 51,250 SNP loci scattered over the 22 autosomes (with a median distance 

between two consecutive SNPs equal to 7 kb) among which a subset of 5,000 SNP loci with a MAF > 1% 

were randomly chosen for applying our ABC random forest algorithms. 

 In this application, we compared six scenarios (i.e. models) of evolution of the four Human 

populations which differ from each other by one ancient and one recent historical event: (i) A single out-of-

Africa colonization event giving an ancestral out-of-Africa population which secondarily split into one 

European and one East Asian populational lineage, versus two independent out-of-Africa colonization 

events, one giving the European lineage and the other one giving the East Asian lineage. The possibility of a 

second ancient (i.e. >100,000 years) out of Africa colonization event through the Arabian peninsula toward 

Southern Asia has been suggested by archaeological studies (e.g. Rose et al. 2011). (ii) The possibility (or 

not) of a recent genetic admixture of the Americans of African Ancestry in SW-USA between their 

African ancestors and individuals of European or East Asia origins. 
The six different scenarios as well as the prior distributions of the time event and effective population 

size parameters used to simulate SNP datasets using the software DIYABC Random Forest v1.0 are detailed 

in Figure S3. We stress here that our intention is not to bring new insights into Human population history, 

which has been and is still studied in greater details in a number of studies using genetic data, but to 

illustrate the potential of DIYABC Random Forest v1.0 for the statistical processing of a real IndSeq SNP 

dataset in the context of a complex evolutionary histories.  

 

Scenario choice 

 

Following the new approach proposed by Estoup et al. (2018), we used DIYABC Random Forest v1.0 to 

process RF analyses grouping scenarios based on the presence or absence of an admixed origin of the ASW 

population, and then considered all six scenarios separately. The training sets were generated using the 

“Training set simulation” module of DIYABC Random Forest v1.0, drawing parameter values into the prior 

distributions described in the legend of Figure S3 and summarizing SNP data using the same 130 statistics as 

those used for the pseudo-observed dataset examples in the main text (see Table S1) plus one LDA axis or 

five LDA axes (i.e., the number of scenarios minus 1; see Pudlo et al. 2016) computed when comparing the 

http://www.1000genomes.org/data
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two groups of scenarios or individual scenarios, respectively. We then used the “Random Forest analyses” 

module of DIYABC Random Forest v1.0 to process RF treatments on the training set which included a total 

of 12,000 simulated datasets (i.e., 2,000 per scenario). The number of trees in the constructed Random 

Forest was fixed to 1,000, as this number turned out to be large enough to ensure a stable estimation of the 

global error rate (Figure S4). We predicted the best scenario and estimated its posterior probability, as well 

as the global and local error rates, over ten replicate RF analyses based on the same training set. 

 For comparative purposes, we used the R package abc v2.1 to process scenario choice inferences on 

the same datasets using two standard ABC methods: the ABC rejection method and the ABC mnlog method 

based on a simple rejection and a multinomial regression algorithm, respectively (Csilléry, François, & 

Blum 2012; Blum 2018). For all analyses, we used a tolerance rate of 5% and hence the 600 simulated 

datasets closest to the observed dataset. The leave-one-out cross-validation method implemented in abc v2.1 

was used to compute global error rates from a sample of 10,000 datasets. 

 

Parameter estimation 

 

We focused our estimations on the admixture rate associated to American individuals of African ancestry 

(i.e. the parameter ra). The training set included 10,000 datasets simulated under scenario 2 (i.e. the selected 

scenario after processing scenario choice with DIYABC Random Forest v1.0) and summarized using the 

same 130 statistics plus 2 PLS axes. We inferred point estimates and computed global and local accuracy 

indices corresponding to global and local NMAE (with the mean and the median as point estimates), as well 

as the 90% coverage, using out-of-bag estimators from a sample of 10,000 data randomly chosen in the 

training set (Raynal et al., 2019; Chapuis et al., 2020). The number of trees in the constructed Random 

Forest was fixed to 1,000, as this number turned out to be large enough to ensure a stable estimation of the 

global accuracy metrics (Figure S4). For each parameter, we conducted ten replicate RF analyses based on 

the same training set. 

 For comparative purposes, we used the R package abc v2.1 to process parameter estimation inference 

on the same datasets using the ABC rejection method and the ABC logRidge method based on a simple 

rejection and a regression with a Ridge regulation algorithm, respectively (Csilléry, François, & Blum 2012; 

Blum 2018). For all analyses, we used a tolerance rate of 5% and hence the 500 simulated datasets closest to 

the observed dataset. We used an independent test dataset including 1,000 datasets obtained from prior 

distributions to compute the global NMAE (with the mean and the median as point estimate) and the 90% 

coverage as accuracy indices. 
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FIGURE S3. Six scenarios of evolution of four Human populations.  

The genotyped populations are YRI = Yoruba (Nigeria, Africa), CHB = Han (China, East Asia), GBR = 

British (England and Scotland, Europe), and ASW = Americans of African Ancestry (SW USA). The six 

scenarios differ from each other by one ancient and one recent historical event: (i) a single out-of-Africa 

colonization event giving an ancestral out-of-Africa population which secondarily split into one European 

and one East Asian population lineage (scenarios 1, 2 and 3), versus two independent out-of-Africa 

colonization events, one giving the European lineage and the other one giving the East Asian lineage 

(scenarios 4, 5 and 6). (ii) The possibility (or not; scenarios 1 and 4) of a recent genetic admixture of ASW 

individuals with their African ancestors and individuals of European (scenarios 2 and 5) or East Asia 

(scenarios 3 and 6) origins. The prior distributions of the parameters used to simulate SNP datasets are as 

followed: Uniform[100; 10000] for the split times t2 and t3 (in number of generations), Uniform[1; 30] for 

the admixture (or split) time t1, Uniform[0.05; 0.95] for the admixture rate ra (proportion of genes with a 

non-African origin; only for scenarios with admixture), Uniform[1000; 100000] for the stable effective 

population sizes N1, N2, N4, N4 and N34 (in number of diploid individuals), Uniform[5; 500] for the 

bottleneck effective population sizes Nbn3, Nbn4, and Nbn34, Uniform[5; 500] for the bottleneck durations 

d3, d4, and d34, Uniform[100; 10000] for both the ancestral effective population size Na and the time of 

change to Na. Conditions on time events were t4>t3>t2 for scenarios 1, 2 and 3, and t4>t3 and t4>t2 for 

scenarios 4, 5 and 6. 
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FIGURE S4. Evolution of prediction power relatively to the number of trees in the forest when 

analyzing the Human population IndSeq dataset. 

Prediction power was evaluated by computing the global (prior) error rate for scenario choice and the global 

(prior) mean squared error with the mean taken as point estimate, for estimation of the parameter ra. The 

feature vectors included five LDA (for scenario choice) or two PLS (for parameter estimation) axes, and five 

noise variables. Groups of scenarios = with (scenarios 2, 3, 5 and 6) and without (scenarios 1 and 4) a recent 

genetic admixture of ASW individuals. 
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FIGURE S5. Projection of the real Human population IndSeq datasets from the training set 

on a single LDA axis when analyzing two groups of scenarios  (A) or on the first two LDA 

axes when analyzing the six scenarios of figure S3 separately (B). 

The location of the Human population IndSeq observed dataset in the LDA projection is indicated by a 

vertical line and a star symbol in panels A and B, respectively. Scenario group 1 = with a recent genetic 

admixture of ASW individuals. Scenario group 2 = without a recent genetic admixture of ASW individuals. 
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FIGURE S6. Contributions for the real Human population IndSeq dataset analyses of the 30 most 

informative statistics of the feature vector to the Random Forest when choosing among two groups of 

scenarios (with and without a recent genetic admixture of ASW individuals), among the six scenarios 

separately, and when estimating the admixture parameter ra under the scenario 2 of figure S3. 
The variable importance of each statistics is computed as the mean decrease of impurity across the trees, 

where the impurity measure is the Gini index, and the residual sum of squares for scenario choice and 

parameter inference, respectively. It was computed for each of the 130 summary statistics provided by 

DIYABC, plus the LDA axes for scenario choice (denoted LD) or the PLS axes for parameter estimation 

(denoted Comp.) that were added to the feature vector. The higher the variable importance the more 

informative is the statistic. Population index(s) are 1, 2, 3 and 4 for populations ASW, YRI, CHB and GBR, 

respectively (see figure S3). 
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Appendix S3: Checking points - thereafter formalized as questions - before finalizing inferential 

treatments using DIYABC Random Forest v1.0. 
 

1/ Are my scenarios and/or associated priors compatible with the observed dataset?  

 

This question is of prime interest and applies to ABC Random Forest as well as to any alternative ABC 

treatments. This issue is particularly crucial, given that complex scenarios and high dimensional datasets 

(i.e., large and hence very informative datasets) are becoming the norm in population genomics. Basically, if 

none of the proposed scenario / prior combinations produces some simulated datasets in a reasonable 

vicinity of the observed dataset, this is a signal of incompatibility and it is not recommended to attempt any 

inferences. In such situations, we strongly advise reformulating the compared scenarios and/or the 

associated prior distributions in order to achieve some compatibility in the above sense. DIYABC Random 

Forest v1.0 proposes a visual way to address this issue through the simultaneous projection of datasets of the 

training set and of the observed dataset on the first LDA axes (e.g., Figure 2 of main text and Figure S5); see 

also other dedicated diagnostic tools in the notice of the software. In the LDA projection, the observed 

dataset has to be reasonably located within the clouds of simulated datasets.  

 

2/ Did I simulate enough datasets for my training set?  

 

A rule of thumb is, for scenario choice to simulate between 2,000 and 20,000 datasets per scenario among 

those compared (Pudlo et al., 2016; Estoup et al., 2018), and for parameter estimation to simulate between 

10,000 and 100,000 datasets under a given scenario (Raynal et al., 2019; Chapuis et al., 2020). To evaluate 

whether or not this number is sufficient for RF analysis, we recommend to compute error/accuracy metrics 

such as those proposed by DIYABC Random Forest v1.0 from both the entire training set and a subset of the 

latter (for instance from a subset of 80,000 simulated datasets if the training set includes a total of 100,000 

simulated datasets). If error (accuracy) metrics from the subset are similar, or only slightly higher (lower) 

than the value obtained from the entire database, one can consider that the training set contains enough 

simulated datasets. If a substantial difference is observed between both values, then we recommend 

increasing the number of simulated datasets in the training set. 

 

3/ Did my forest grow enough trees?  

 

According to our experience, a forest made of 500 to 2,000 trees often constitutes an interesting trade-off 

between computation efficiency and statistical precision (Breiman, 2001; Chapuis et al., 2020; Pudlo et al., 

2016, Raynal et al., 2019). To evaluate whether or not this number is sufficient, we recommend plotting 

error/accuracy metrics as a function of the number of trees in the forest. The shapes of the curves provide a 

visual diagnostic of whether such key metrics stabilize when the number of trees tends to a given value. 

DIYABC Random Forest v1.0 provides such a plot-figure as output (e.g. Figures S1 and S4). 
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