Correlating the speed of sound with the Gibbs energy and estimating the speed of sound in fatty acid methyl ester and biodiesel























ABSTRACT
The relation between the speed of sound (u) in biodiesel and the change in Gibbs energy (G) has not been described in the literature. With the method of Gibbs energy additivity, the relation between u and G can be expressed as ln(u2) = G/RT + A, where R is the universal gas constant, T is the absolute temperature, and A is a constant. 
Further expansion of G into its enthalpy and entropy, and sub-dividing the molecule of a fatty acid methyl ester (FAME) into groups of atoms, the final model is good for estimating the speed of sound in both FAME and biodiesel at various temperatures. Only the numbers of double bonds and carbon atoms of the fatty acid are required for the calculation.
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1. Introduction
Biodiesel has become widely accepted for use in diesel engines. It is clean and renewable. Although biodiesel is defined as a fatty acid alkyl ester, most commercial biodiesels are fatty acid methyl esters (FAME), generally prepared by direct trans-methylation of vegetable oils. However, the fatty acids in biodiesels from different sources have different compositions. Consequently, the physical and fuel properties of biodiesels from different feedstocks can be different. Thus, standards for commercial biodiesel are necessary. The ASTM and European standards are widely adopted with or without modification as the national standard of many countries. However, only a few essential properties are specified in the standards. Many other physical properties, which affect the fuel combustion in the combustion cylinder, are not mentioned. The surface tension, bulk modulus, and the speed of sound are examples. These properties together with those of the fuel injector dictate the atomization of the fuel, which indirectly controls the combustion (Tat et al., 2000). Biodiesel is less compressible than petro-diesel and has a higher speed of sound. Both factors contribute to faster pressure development in the injection line and combustion cylinder. Consequently, the fuel should be injected sooner than petro-diesel (Cunha et al., 2013; Monyem et al., 2001; Payri et al., 2011; Tat et al., 2000). The advance of injection time leads to earlier combustion and could possibly increase the emission of NOx (Tat et al., 2000). Also, (Armas et al., 2016) report that the initial time lag between the signal of the electric pulse when the injector is energized and the beginning of the injection rate profile depend only on the type of injector without being influenced by the type of fuel or the operating conditions. On the other hand, Pogorevc et al. (2008)  reported that the maximal injection pressure for biodiesel was 55 bar higher than for diesel fuel and injection was advanced for biodiesel. These were the consequences of the fuel’s physical properties and the speed of sound in the fuel. Thus, the speed of sound is an important physical property, which directly characterizes the fuel injection system and the NOX emission (Pogorevc et al., 2008). In addition, the speed of sound can be used for the calculation of other important properties (Giuliano Albo et al., 2014), for example the isentropic compressibility (ks) (Douhéret et al., 2001) and the molecular compressibility (km) (Wada, 1949) of the liquid fuel via the relations,

											(1)

											(2)
where MW, ks, km, u and are the molecular weight, isentropic (adiabatic) compressibility, molecular compressibility, speed of sound and density, respectively. 
Direct measurements of the speed of sound require a sophisticated instrument and a skilled analyst to get accurate values. A good mathematical model would be convenient and reduce experimental time and cost. A simple correlation of the speed of sound in a liquid with its chemical constituents was proposed by (Rao, 1941) and (Gouw et al., 1964),

										(3)
where A is a constant and x is the number of CH2 groups.
The model fitted well for saturated FAME. The speed of sound in both saturated and unsaturated FAMEs at different temperatures and pressures can be estimated by Eq. (4) (Tat et al., 2003), but the correlated coefficients were specific to each individual FAME. Thus, the predictions were subject to severe limitations. 

							(4)
where t is the temperature in oC; P is the pressure (MPa); C1 – C5 are constants and specific to each individual FAME.
Auerbach’s equation (Auerbach, 1948), which correlates the surface tension of a liquid to the  speed of sound and density, was slightly modified by (Freitas, et al., 2013) and used for the estimation of the speed of sound in FAME and biodiesel with an average absolute deviation (AAD) of 1.64%. 

								(5)
where c1 (0.987) was added by Freitas et al. (Freitas, et al., 2013) to improve the accuracy.
The modified SAFT-BACK EOS (Statistical Associating Fluid Theory, Boublik–Alder–Chen–Kreglewski, Equation of state) was used to predict the speed of sound in n-alkanes (C1- C10) by Maghari and Sadeghi (2007) with good accuracy. The AAD was 1.98%. For SAFT-BACK EOS, a molecule is divided into segments (m) corresponding to atoms and functional groups. Each segment of the same kind has the same volume and interaction energy parameters. The contribution of each segment to the Helmholtz free energy is determined this way. 
Queimada et al (Queimada et al., 2006) observed a linear increase in the molecular compressibility (km) with molecular weight, and the slopes of the plots for the fatty acid esters and n-alkanes were parallel. Thus, the ester group made a constant contribution to km and the group contribution concept, instead of SAFT, was applied to estimate km. The value of km of pure FAME was derived from the summation of four contribution groups plus a contribution due to the influence of the temperature,

						(6)
where km,i is the contribution of the group of type i, which occurs Ni  times in the given molecule, and  is a constant (0.034852) accounting for the influence of the temperature.

The speed of sound in FAME was subsequently related to km as follows,

								(7)
Very low AADs for the molecular compressibility and speed of sound in FAMEs were obtained. By combining Eqs. (6) and (7),  Eq. (8) was obtained and extended to estimate the speed of sound in several liquids, including FAMEs and biodiesels (Cunha et al., 2013). However, atomic contributions were used in the calculation for km and the constant  was changed from 0.034852 to 0.0191.

						(8)
Although Eq. (8) (Cunha et al., 2013) could be directly applied for the estimation of the speed of sound in FAMEs from their chemical structures, a knowledge of the density at the estimated temperature was required. Similarly, (Lopes et al., 2014) estimated the speed of sound in FAMEs and biodiesel by using Eq. (7), having obtained km by regression. They reported that the densities were critical for the accuracy of the estimation of the speed of sound. By using the density from Kay’s mixing rule, the overall AAD was 0.91%, whereas the overall AAD was reduced to 0.42% when densities from the group contribution for molecular volume were employed.

To our knowledge, there has been no report on the relation between the speed of sound and energy. Thus, in this study, the speed of sound in FAME is correlated with G in the form  which can be applied to estimate the speed of sound in FAME and biodiesel.

2. Hypothesis and basic principle
The logarithmic form of the Newton-Laplace equation (Eq. (1)) is

								(9)
According to (Phankosol, et al., 2014a) and (Krisanangkura, et al., 2018),

				 	(10)
which, after rearranging, becomes
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where is a reference density and C is a constant.
By Gibbs energy additivity (GEA), 

						         		(12)
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where  is the density (kgm-3), G is the change in the Gibbs energy associated with density (J), is the change in the Gibbs energy associated with the speed of sound,  is the change in the Gibbs energy associated with the isentropic compressibility, R is the gas constant (JK-1mol-1),  T is the temperature (K), and A = - (ln  + ln C).
Hence, with the GEA method, the speed of sound in a liquid is directly correlated with the change in the Gibbs energy associated with the speed of sound (Eq. (12)). 
            2.1. The GEA method for FAME

The molecule of methyl stearate, for example, can be divided into three different groups of atoms: one COOCH3, one CH3 and 16 CH2 groups. Thus, three different G are assigned to these groups and the total G of methyl stearate () is obtained by summation of all the contributed G,

						(14)

Eq. (14) can be arbitrarily reduced to two types of. Thus, the number of variables is minimized without affecting the accuracy of the calculation.  
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or	

		(16)

where 	.
The general form of Eq. (16) for all saturated fatty acid methyl esters (FAME) is

								(17)
where z is the number of carbon atoms of the fatty acid.




For unsaturated FAME, the value of  arising from the interaction of a double bond is denoted by  and the total change in  for unsaturated FAME () is

								(18)
where nd is the number of double bonds in the FAME.
Combining Eq. (17) and Eq. (18),

							(19a)
or 	

						(19b)



where can be  or  depending on nd.
Substituting Eq. (19b) into Eq. (12) and expanding  G into its enthalpy (H) and entropy forms (S),

	        (20a)
or,

  	       	          (20b)
and

					        	           		(21)






where  ; ; ;; ;.
2.2. The GEA for the mixture of FAME or biodiesel

For a mixture of FAME or biodiesel, the change in Gibbs energy of the whole mixture is obtained by summation of the G contributed from all the FAMEs: 

					    (22)
where x1…..xm are the mole (or mass) fractions of FAME1 ……FAMEm in the mixture, And Gmix, GFAME1 …… GFAMEm are the change in Gibbs energy contributed from the individual FAMEs.  
	The Gmix in Eq. (22) can be reduced to Eq. (19b) by replacing z and nd with zave (average z) and nd (ave) (average nd), respectively (Krisnangkura et al., 2016).


3. Verification
3.1. Numeric constants for Eq. (21)
The numeric constants for Eq. (21) can be found mathematically or statistically (multiple linear regression) as described by (Phankosol et al., 2014a).  Alternatively, they can be obtained by simple summation of the numeric constants of lnand ln(ks) as described in (Krisnangkura, 2016) and (Krisanangkura et al., 2019). The numeric constants for isentropic compressibility and density were reported by (Krisanangkura et al., 2018) and (Phankosol et al., 2014a) as shown in Eq. (28) and Eq. (29), respectively. However, the density reported by Phankosol et al. (2016) is in g-cm-3. Conversion to kg-m-3 can be done by adding ln (1000) (= 6.9078) to the right hand side,

	(23)

		(24)
Substituting Eq. (23) and Eq. (24) into Eq. (9), Eq. (25) yields

			(25)
  	Eq. (25) is the full expansion of Eq. (12) with all the numeric constants and can be used to verify the relation between the speed of sound in both FAME or biodiesel and G. Also, it can be used to predict the speed of sound in FAME and biodiesel. 

3.2. Statistical analysis. 
The relative deviation (RD), absolute deviation (AD), bias, and average absolute deviation (AAD) Eq. (26) were used for the statistical analysis:

						(26a)

						(26b)

					(26c)


					(26d)
where N is the number of data, while ui,lit and ui, cal are the speed of sound from the literature and the estimated values, respectively.

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]4. Results and Discussion
4.1. Validation of Eq. (12)
	As was mentioned earlier, Gu was simply derived by the sum of G and Gks but was not validated. Validation is carried out by expanding Gu into its enthalpy and entropy forms as follows,

								(27)
The plot of ln u against 1/T would be linear with the slope and intercept equal -HuRand (-SuRA)/2, respectively. Using the speed of sound in deep eutectic solvents at temperature  298.15K – 343.15K reported by Ijardar (Ijardar, 2020), a set of linear lines are obtained. Their intercepts, slopes, and R2 are summarized in Table 1. The R2 are between 0.9963 and 0.9988. Hence, the natural logarithm u varies directly with 1/T in the form of Eq. (12). 
 4.2. Validation of Eq. (21)

Eq. (21) is the expansion of Eq. (12) for FAME. The molecule of a FAME is arbitrarily divided into different groups of atoms and different G are assigned to these groups. The total G of a FAME () is obtained by summation of all the contributed G as described in Eq. (19b). Further expansion of each G to its enthalpy and entropy forms, Eq. (21) is obtained. Eq. (21) is not only correlates the speed of sound in FAME with its enthalpy and entropy, but the structural information of the FAME is also included. Both enthalpy and entropy are very characteristic for the compound and are constant. According to Eq. (21), the speed of sound in a FAME can be calculated from its chemical structure (number of double bonds and number of carbon atoms in its fatty acid). All the numeric constants are obtained by summation of Eq. (23) and Eq. (24) and are summarized in Eq. (25).
The calculated speeds of sound in both saturated and unsaturated FAMEs at 288.41-353.15 K by Eq. (25) and their relative differences (RD%) are summarized in Table 2. Comparing the estimated values with those reported by (Lopes et al., 2014),  the bias and AAD for the FAMEs (65 data points) are -0.02% and 0.23%, respectively. The low bias (0.02%) suggests that the deviation is not systematic error. The AAD was higher than that reported by Lopes et al. (0.08%), who estimated the speed of sound by the sum of a polynomial equation,

 									(28)
However, their model required a different set of constants (uo-2) for  each FAME. This limits the prediction to individual FAMEs. In addition, Eq. (25) can also be used for the estimation of the speed of sound in biodiesel as well. 
	4.3. Predicting the speed of sound in biodiesels
The estimated speeds of sound in 10 biodiesels at temperatures between 15 and 80 oC (120 data points) are summarized in Table 3. The estimated values were compared with the experimental speeds reported by Freitas (Freitas, et al., 2013). The AAD and bias are, respectively, 0.45% and 0.15%. The highest AD is 1.06% for palm and palm + rapeseed biodiesels at 15 oC. The high AD for palm biodiesels might possibly be due to the high saturated FAME in palm biodiesel and the measurement was carried out at low temperature. The overall ADD from different models for the estimation of the speed of sound in biodiesels compiled by (Lopes, et al., 2014) were between 0.27% and 0.91%. Though the AAD 0.45% was not the best, it was better than the combined group contribution method for determination of km and density employed in (Lopes, et al., 2014) (0.91%, MC1). Also, it was pointed out that the speed of sound determined by the combined group contribution method for the determination of km and density depended very much on the sources of the density data used for the calculation.  Using the density of FAMEs from the GCMOL method reduced the AAD to 0.42%.
Besides its accuracy, Eq. (25) provides one of the simplest methods for estimating the speed of sound in biodiesel. Only the number of carbon atoms (z) and the number of double bonds (nd) are required for the calculation. The temperature is in the model, which is convenient for estimation of the speed of sound in both FAME and in biodiesel at any temperature. For the speed of sound in biodiesel, z and nd are simply replaced by zave and nd(ave). Both values can be calculated as in (Krisanangkura et al., 2019). Thus, the knowledge of the speed of sound in the individual FAME is not necessary. The correlation between the experimental (literature) and the estimated values of the speeds of sound in biodiesels (120 data points) is linear (Figure 1) with the slope, intercept, and R2 being 1.05, -69.69 and 0.995, respectively. 






The accurate estimation of speed of sound in both FAMEs and biodiesels at different temperatures by Eq. (25), which is the expanded form of Eq. (12), provided a good validation for the relationship between u and G. The correlation is very simple with the aid of the GEA method. Moreover, the GEA method was very helpful in  establishing the relation between km and (the Gibbs energy associated with the molecular compressibility) (Krisanangkura et al., 2019); ks and  (the Gibbs energy associated with the isentropic compressibility) (Krisanangkura et al., 2018);  and  (the Gibbs energy associated with the dynamic viscosity) (Krisnangkura, 2016);  and  (the Gibbs energy associated with the kinematic viscosity) (Krisnangkura, 2016); and (the Gibbs energy associated with the density) (Phankosol et al., 2014a); surface tension and (and(the Gibbs energy associated with the surface tension) (Phankosol et al., 2014b). Therefore, all the above physical properties (km, ks, of FAMEs and biodiesel could be easily estimated fromnumber of double bonds and carbon atoms of the fatty acid. 
In addition, the G assigned to each divided group of atoms is very informative: it shows the intensity of the interaction of the group with the environment or the surrounding molecule (Pojjanapornpun et al., 2017; Sansa-ard et al., 2011).

5. Conclusion

The relation between the speed of sound and Gu () was accomplished by the GEA method. The value of Gu was then correlated with the chemical structure of the FAME or biodiesel. Consequently, the speed of sound in FAME or in biodiesel was directly correlated with the chemical structure of the FAME or biodiesel. According to Eq. (13), Gu was the sum of GandGks. In this regard, all the numeric constants for Gand Gks were imported and summed. Hence, the GEA method provided a convenient method for deriving the relation between the speed of sound and the Gibbs energy, as shown in Eq. (12). 
Eq. (12) and its expanded form with numeric constants (Eq. (25)) provided two additional advantages: 1) the speed of sound in biodiesel could be estimated without a prior knowledge of the speed of sound in the individual FAMEs, and 2) all the numeric values were well defined (enthalpy and entropy). This would allow further refinement of the numeric values. 
The AADs for the FAMEs (65 data points) and biodiesels (120 data points) were 0.23% and 0.45%, respectively. The correlation between the reported experimental (literature) and estimated values for the speeds of sound in biodiesel was linear with the slope, intercept, R2 and standard error, being 1.052, -69.693, 0.995 and 4.684, respectively.
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Figure captions
Fig. 1. Correlation of the estimated speed of sounds (ucal) in biodiesels by Eq. (25) with the experimental (literature) values (uexp) at 15−80 °C.









Figure 1. Correlation of the estimated speed of sound (ucal) in biodiesel by Eq. (25) to the experimental (literature) values (uexp) at 15−80 °C.




Table 1. Relation between ln u and 1/T of deep eutectic solvents (DES) (Ijardar, 2020)
	1/T
	DES1a
	DES2
	DES3
	DES4
	DES5
	DES6

	0.00335
	7.4028
	7.3747
	7.4150
	7.3816
	7.4282
	7.3894

	0.00330
	7.3930
	7.3652
	7.4057
	7.3727
	7.4176
	7.3790

	0.00325
	7.3840
	7.3557
	7.3977
	7.3615
	7.4077
	7.3687

	0.00319
	7.3745
	7.3462
	7.3873
	7.3514
	7.3973
	7.3584

	0.00314
	7.3655
	7.3368
	7.3789
	7.3416
	7.3879
	7.3481

	0.00309
	7.3565
	7.3274
	7.3688
	7.3319
	7.3779
	7.3378

	0.00305
	7.3475
	7.3153
	7.3592
	7.3216
	7.3676
	7.3275

	0.00300
	7.3384
	7.3058
	7.3503
	7.3115
	7.3573
	7.3171

	0.00296
	7.3293
	7.2963
	7.3404
	7.3007
	7.3473
	7.3067

	0.00291
	7.3202
	7.2867
	7.3295
	7.2919
	7.3374
	7.2962

	intercept
	6.777
	6.701
	6.770
	6.693
	6.739
	6.682

	slope
	187.0
	201.6
	193.0
	205.8
	205.9
	211.6

	RSQ
	0.9988
	0.9970
	0.9963
	0.9983
	0.9984
	0.9983


a For detailed composition of DES1-6 see (Ijardar, 2020).



Table 2. Estimated speed of sound (ms-1) of FAMEs at 25−80 °C by Eq. (25). The relative 
deviations (RD%) are calculated against the experimental speed of sound reported in (Lopes et al., 2014).
	FAME
	T (K)
	u(cal)
	a
	RD (%)

	C12:0
	298.25
	1337.4
	-5.13
	-0.38

	 
	303.17
	1316.0
	-2.47
	-0.19

	 
	308.26
	1294.8
	-1.34
	-0.10

	 
	313.15
	1275.5
	2.31
	0.18

	 
	318.15
	1256.6
	1.60
	0.13

	 
	323.15
	1238.6
	5.03
	0.40

	 
	328.15
	1221.3
	3.17
	0.26

	 
	333.15
	1204.8
	2.76
	0.23

	 
	338.15
	1189.0
	-1.55
	-0.13

	 
	343.15
	1173.9
	-2.72
	-0.23

	 
	348.15
	1159.4
	-3.30
	-0.29

	 
	353.15
	1145.5
	-7.47
	-0.66

	C14:0
	298.15
	1356.8
	-5.92
	-0.44

	 
	303.15
	1335.0
	-3.48
	-0.26

	 
	308.15
	1314.2
	-1.39
	-0.11

	 
	313.15
	1294.4
	2.23
	0.17

	 
	318.15
	1275.5
	0.95
	0.07

	 
	323.15
	1257.4
	-2.09
	-0.17

	 
	328.15
	1240.1
	3.08
	0.25

	 
	333.15
	1223.6
	4.60
	0.37

	 
	338.15
	1207.8
	4.33
	0.36

	 
	343.15
	1192.6
	0.09
	0.01

	 
	348.15
	1178.1
	0.34
	0.03

	 
	353.15
	1164.1
	-1.69
	-0.15

	C16:0
	313.42
	1312.5
	4.52
	0.34

	 
	318.15
	1294.6
	2.41
	0.19

	 
	323.17
	1276.4
	5.67
	0.44

	 
	328.15
	1259.2
	4.20
	0.33

	 
	333.15
	1242.6
	4.49
	0.36

	 
	338.15
	1226.8
	4.41
	0.36

	 
	343.15
	1211.6
	0.31
	0.03

	 
	348.15
	1197.0
	-3.71
	-0.31

	 
	353.15
	1183.0
	-3.91
	0.86

	C18:0
	323.15
	1295.9
	1.40
	0.11

	
	328.15
	1278.6
	3.12
	0.24

	
	333.15
	1262.0
	1.10
	0.09

	
	338.15
	1246.1
	2.29
	0.18

	
	343.15
	1230.9
	-0.78
	-0.06

	
	348.15
	1216.3
	-0.67
	-0.05

	
	353.15
	1202.2
	-2.13
	-0.18


a = u(exp) - u(cal).







Table 2 Continued
	FAME
	T (K)
	u(cal)
	
	RD (%)

	C18:1
	298.25
	1397.40
	-7.50
	-0.54

	 
	303.79
	1373.61
	-8.31
	-0.61

	 
	308.15
	1355.76
	-2.46
	-0.18

	 
	313.15
	1336.17
	-0.17
	-0.01

	 
	318.15
	1317.47
	0.73
	0.06

	 
	323.15
	1299.60
	1.40
	0.11

	 
	328.15
	1282.51
	0.09
	0.01

	 
	333.15
	1266.14
	0.36
	0.03

	 
	338.15
	1250.46
	-1.26
	-0.10

	 
	343.15
	1235.42
	-2.02
	-0.16

	 
	348.15
	1220.98
	-5.38
	-0.44

	
	353.15
	1207.12
	-7.12
	-0.59

	 C18:2
	288.41
	1444.68
	-10.18
	-0.71

	 
	293.33
	1421.65
	-7.15
	-0.51

	 
	298.15
	1400.17
	-1.87
	-0.13

	 
	303.2
	1378.73
	-0.23
	-0.02

	 
	308.15
	1358.70
	1.60
	0.12

	 
	313.15
	1339.39
	4.31
	0.32

	 
	318.15
	1320.95
	6.65
	0.50

	 
	323.15
	1303.32
	4.98
	0.38

	 
	328.15
	1286.45
	2.35
	0.18

	 
	333.15
	1270.30
	2.20
	0.17

	
	338.15
	1254.82
	1.08
	0.09

	
	343.15
	1239.97
	-0.97
	-0.08

	
	348.15
	1225.72
	-0.62
	-0.05

	Bias (%)
	-0.02
	AAD(%)
	0.23
	

	
	
	
	
	


		




Table 3. Estimated speed of sound (ms-1) in biodiesels at 25−80 °C by Eq. (25). The relative deviations are calculated against the experimental speed of sound reported in (Freitas et al., 2013).
	Biodiesel
	T(K)
	  ucal 
	a
	RD (%)

	Soy B(S)
	288.15
	1443.51
	-13.28
	-0.93

	zave  =17.83, nd(ave) = 1.52
	293.15
	1419.88
	-7.49
	-0.53

	 
	298.15
	1397.41
	-2.87
	-0.21

	 
	303.15
	1376.03
	0.83
	0.06

	 
	308.15
	1355.65
	3.55
	0.26

	 
	313.15
	1336.21
	5.59
	0.42

	 
	318.15
	1317.64
	6.91
	0.52

	 
	323.15
	1299.90
	7.47
	0.57

	 
	328.15
	1282.92
	7.43
	0.58

	 
	333.15
	1266.67
	6.76
	0.53

	 
	338.15
	1251.09
	5.60
	0.45

	 
	343.15
	1236.15
	3.87
	0.31

	Rapeseed (R)
	288.15
	1444.33
	-13.54
	-0.95

	zave =17.96, nd(ave) = 1.27
	293.15
	1420.61
	-8.35
	-0.59

	 
	298.15
	1398.06
	-3.95
	-0.28

	 
	303.15
	1376.60
	-0.38
	-0.03

	 
	308.15
	1356.15
	2.25
	0.17

	 
	313.15
	1336.64
	4.24
	0.32

	 
	318.15
	1318.01
	5.54
	0.42

	 
	323.15
	1300.20
	6.11
	0.47

	 
	328.15
	1283.17
	6.09
	0.47

	 
	333.15
	1266.86
	5.44
	0.43

	 
	338.15
	1251.23
	4.36
	0.35

	 
	343.15
	1236.24
	2.81
	0.23

	Palm (P)
	288.15
	1435.16
	-15.12
	-1.06

	zave =17.13, nd(ave) = 0.62
	293.15
	1411.22
	-9.36
	-0.67

	 
	298.15
	1388.45
	-4.57
	-0.33

	 
	303.15
	1366.79
	-0.71
	-0.05

	 
	308.15
	1346.15
	2.23
	0.17

	 
	313.15
	1326.47
	4.67
	0.35

	 
	318.15
	1307.68
	6.20
	0.47

	 
	323.15
	1289.72
	6.97
	0.54

	 
	328.15
	1272.55
	7.17
	0.56

	 
	333.15
	1256.11
	6.83
	0.54

	 
	338.15
	1240.36
	5.82
	0.47

	 
	343.15
	1225.26
	4.40
	0.36

	Soy B+ Rapeseed (SR)
	288.15
	1443.54
	-12.88
	-0.90

	zave =17.86, nd(ave)  = 1.39
	293.15
	1419.87
	-7.10
	-0.50

	 
	298.15
	1397.36
	-2.41
	-0.17

	 
	303.15
	1375.94
	1.33
	0.10

	 
	308.15
	1355.52
	4.24
	0.31

	 
	313.15
	1336.04
	6.33
	0.47

	 
	318.15
	1317.44
	7.72
	0.58

	 
	323.15
	1299.67
	8.40
	0.64

	 
	328.15
	1282.66
	8.49
	0.66

	 
	333.15
	1266.38
	7.93
	0.62

	 
	338.15
	1250.78
	6.83
	0.54

	 
	343.15
	1235.81
	5.28
	0.43







Table 3 Continued
	Biodiesel
	T(K)
	  ucal 
	
	RD (%)

	Palm + Rapeseed (PR) 
	288.15
	1439.64
	-15.12
	-1.06

	zave =17.54, nd(ave)  = 0.94
	293.15
	1415.80
	-9.25
	-0.66

	 
	298.15
	1393.15
	-4.50
	-0.32

	 
	303.15
	1371.58
	-0.69
	-0.05

	 
	308.15
	1351.03
	2.31
	0.17

	 
	313.15
	1331.44
	4.47
	0.33

	 
	318.15
	1312.72
	5.88
	0.45

	 
	323.15
	1294.84
	6.64
	0.51

	 
	328.15
	1277.74
	6.75
	0.53

	 
	333.15
	1261.36
	6.26
	0.49

	 
	338.15
	1245.68
	5.17
	0.42

	 
	343.15
	1230.63
	3.65
	0.30

	Soy B + Palm  (SP) 
	288.15
	1439.92
	-15.00
	-1.05

	zave =17.54, nd(ave) = 1.08
	293.15
	1416.13
	-9.27
	-0.66

	 
	298.15
	1393.52
	-4.58
	-0.33

	 
	303.15
	1372.00
	-0.83
	-0.06

	 
	308.15
	1351.49
	2.12
	0.16

	 
	313.15
	1331.93
	4.24
	0.32

	 
	318.15
	1313.25
	5.61
	0.42

	 
	323.15
	1295.41
	6.32
	0.49

	 
	328.15
	1278.33
	6.41
	0.50

	 
	333.15
	1261.99
	5.87
	0.46

	 
	338.15
	1246.33
	4.76
	0.38

	 
	343.15
	1231.31
	3.20
	0.26

	Soy B +Rapeseed+ Palm  (SRP) 
	288.15
	1440.88
	-13.98
	-0.98

	zave  =17.63, nd(ave) = 1.14
	293.15
	1417.12
	-8.15
	-0.58

	 
	298.15
	1394.53
	-3.42
	-0.25

	 
	303.15
	1373.03
	0.33
	0.02

	 
	308.15
	1352.54
	3.26
	0.24

	 
	313.15
	1332.99
	5.38
	0.40

	 
	318.15
	1314.33
	6.78
	0.51

	 
	323.15
	1296.50
	7.47
	0.57

	 
	328.15
	1279.44
	7.56
	0.59

	 
	333.15
	1263.10
	7.03
	0.55

	 
	338.15
	1247.45
	5.95
	0.47

	 
	343.15
	1232.44
	4.40
	0.36

	Sunflower  (SF) 
	288.15
	1444.20
	-11.86
	-0.83

	zave  =17.90, nd(ave) = 1.53
	293.15
	1420.58
	-6.02
	-0.43

	 
	298.15
	1398.12
	-1.59
	-0.11

	 
	303.15
	1376.74
	1.80
	0.13

	 
	308.15
	1356.36
	4.38
	0.32

	 
	313.15
	1336.92
	6.12
	0.46

	 
	318.15
	1318.36
	7.44
	0.56

	 
	323.15
	1300.62
	8.01
	0.61

	 
	328.15
	1283.65
	7.88
	0.61

	 
	333.15
	1267.39
	7.21
	0.57

	 
	338.15
	1251.82
	5.94
	0.47

	 
	343.15
	1236.88
	4.17
	0.34







Table 3 Continued
	Biodiesel
	T(K)
	  ucal 
	
	RD (%)

	Soybean + Rapeseed (GP)
	288.15
	1443.16
	-14.28
	-1.00

	zave  =17.82, nd(ave) = 1.37
	293.15
	1419.48
	-8.51
	-0.60

	 
	298.15
	1396.97
	-3.87
	-0.28

	 
	303.15
	1375.53
	-0.14
	-0.01

	 
	308.15
	1355.11
	2.75
	0.20

	 
	313.15
	1335.63
	4.84
	0.36

	 
	318.15
	1317.02
	6.19
	0.47

	 
	323.15
	1299.24
	6.83
	0.52

	 
	328.15
	1282.23
	6.89
	0.53

	 
	333.15
	1265.95
	6.31
	0.50

	 
	338.15
	1250.34
	5.18
	0.41

	 
	343.15
	1235.37
	3.62
	0.29

	Soy A 
	288.15
	1441.42
	-12.89
	-0.90

	zave  =17.66, nd(ave)  = 1.30
	293.15
	1417.72
	-6.99
	-0.50

	 
	298.15
	1395.18
	-2.28
	-0.16

	 
	303.15
	1373.73
	1.44
	0.11

	 
	308.15
	1353.28
	4.35
	0.32

	 
	313.15
	1333.78
	6.38
	0.48

	 
	318.15
	1315.16
	7.74
	0.59

	 
	323.15
	1297.36
	8.39
	0.64

	 
	328.15
	1280.34
	8.45
	0.66

	 
	333.15
	1264.04
	7.87
	0.62

	 
	338.15
	1248.42
	6.75
	0.54

	 
	343.15
	1233.44
	5.09
	0.41

	Bias (%)
	0.15    
	AAD
	0.45        
	


a  = u(exp) - u(cal).
















y = 1.052x - 69.693
R² = 0.995
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