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Abstract

The cell culture is the central piece of a biotechnological industrial process. It includes upstream

(e.g. media preparation, fixed costs, etc.) and downstream steps (e.g. product purification, waste

disposal, etc.). In the continuous mode of cell culture, a constant flow of fresh media replaces

culture fluid until the system reaches a steady state. This steady state is the standard operation

mode which, under very general conditions, is a function of the ratio between the cell density and

the dilution rate and depends on the media supplied to the culture. To optimize the production

process it is widely accepted that the concentration of the metabolites in this media should be

careful tuned. A poor media may not provide enough nutrients to the culture, while a media too

rich in nutrients may be a waste of resources because, either the cells do not use all of the available

nutrients, or worse, they over-consume them producing toxic byproducts. In this work we show

how an in-silico study of a genome scale metabolic network coupled to the dynamics of a chemo-

stat could guide the strategy to optimize the media to be used in a continuous process. Given a

known media we model the concentrations of the cells in a chemostat as a function of the dilution

rate. Then, we cast the problem of optimizing the production process within a linear programming

framework in which the goal is to minimize the cost of the media keeping fixed the cell concentration

for a given dilution rate in the chemostat. We evaluate our results in two metabolic models: first

a simplified model of mammalian cell metabolism, and then in a realistic genome-scale metabolic

networks of mammalian cells, the Chinese Hamster Ovary (CHO) cell line. We explore the later

in more detail given specific meaning to the predictions of the concentrations of several metabolites.

Keywords: metabolic networks, cell culture, chemostat
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Introduction

There are three dominant modes of cell culture operation for protein production: batch, fed-batch,

and continuous culture. The batch mode of operation is a closed system in which a fixed amount

of nutrients is added at the beginning of the culture until the cells starve. In fed-batch cell culture,

the nutrients are added at discrete time intervals. In the continuous mode, a constant flow of fresh

media replaces continuously the culture fluid keeping the bioreactor volume constant.

While at present, a large part of the biotechnological industry adopts batch or fed-batch pro-

cesses, the advantages of continuous processing are strongly defended in the literature (Griffiths,

1992; Werner et al., 1992). Indeed, several authors agree that the continuous mode will be used ex-

tensively in the near future (Fernandez-de-Cossío-Díaz et al., 2017; K. B. Konstantinov & Cooney,

2015; Werner et al., 1992).

Optimal performance of a perfusion filtration system requires efficient retention of cells, and

keeping this can be expensive and hard to model. However, there is a classic example of continuous

cell culture without cell retention, the chemostat, where the media is added at a constant flow

rate and the bioreactor content is removed at the same flow rate (Henry et al., 2008). A recent

study (Fernandez-de-Cossío-Díaz et al., 2017) showed that the steady-state cellular metabolism

is equivalent in the chemostat and in any perfusion system with a non-zero bleeding rate (φ),

indicating that the chemostat is an ideal experimental model of high density perfusion cell culture.

Commonly, in continuous cell cultures the same media composition is provided for different

dilution rates. However, depending on the cell density X and the dilution rate D at which the

culture is found, the cells will adopt different metabolic phenotypes and therefore may need different

nutrients and in different concentrations. Moreover, the amino acids supplied to the cell culture do

not have the same price. Some of them, such as glycine, are cheaper, while others, like glutamine, are

more expensive. It is not surprising that media design is an attractive alternative to significantly

modulate metabolic transitions and decrease the costs of the production process. Indeed, the

development of the biotechnology industry has boosted and encouraged efforts to improve cell

culture media to maximize product yields and reduce the cost of goods (Jerums & Yang, 2005).

Currently the optimization of culture media is mainly based on empirical methods. Component

titration is a standard approach to improve a medium. This method involves a series of experiments

to determine the “dose response”of a cell line to various components of the medium by adding
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each one in varying amounts to individual cultures. Media combination is another method, which

quickly generates many new media simply by combining existing formulations, such that process

developers can quickly focus on the best combination. Another widely used method is the analysis

of spent media, which can provide important information through chemical analysis to measure

how a medium changes during the culture process. By analyzing spent media, process developers

can make calculations that describe both nutrient depletion and metabolite accumulation (Jerums

& Yang, 2005). However, despite the large number of results and findings, more specific work is

required, specially for mammalian cell cultures (Brühlmann et al., 2015). In this work we hope to

contribute to this task showing that, starting from an in-silico perspective it is possible to guide

experimentalists on the selection process for the metabolites and their concentrations and at the

same time to decrease the waste of material resources. We argue that it is possible to exploit the

information available on genome scale metabolic networks to optimize a cell culture.

Various methodologies have been created to predict the cellular metabolism based on the sto-

chiometry of metabolic networks. For example, Flux Balance Analysis (FBA) provides a solution

space that contains all the possible steady-state flux distributions that satisfy the applied con-

straints. Within this space FBA selects, using Linear Programming, the one that maximizes an

objective function, typically cell growth or biomass synthesis (Varma & Palsson, 1994).

Although FBA is a powerful tool to predict cell metabolism in the growth phase (Feist & Palsson,

2010; Ibarra et al., 2002,?; Sheikh et al., 2005; Shlomi et al., 2011) it fails to predict the existence

of metabolic transitions that have been observed in several experiments (Vazquez & Oltvai, 2016).

These transitions are very relevant in cell cultures, because they affect the consumption or secretion

of metabolites and the set of nutrients that limit growth (Fernandez-de-Cossío-Díaz et al., 2017).

An extension of FBA considers molecular crowding (FBAwMC) assuming that enzymes have a

maximum turnover number. This molecular crowding naturally results in a constraint on the total

metabolic flux through the network (Hoek & Merks, 2012). In practice, it means that the total flux

through the metabolic network is limited (Beg et al., 2007). This extension predicts transitions to

less efficient metabolic pathways from the viewpoint of energy units generated per unit of substrates

consumed and reflects a more realistic behaviour of cellular metabolism.

In this work, we use FBAwMC to model the internal metabolism of cells in a continuous culture

and couple this metabolism with the macroscopic variables that characterize a chemostat. Within
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this framework we optimize, in the sense of producing a media of minimum cost, the metabolic

concentrations that must be supplied to the cell culture at a fixed rate of biomass synthesis. We test

our approach for two genome-scale metabolic networks and for a simplified network of mammalian

cell metabolism, but the methodology is easily extensible to other cell lines. We obtained qualitative

similar results in the three systems studied and our predictions suggest novel strategies to decrease

the costs of continuous bio-manufacturing.

Materials and Methods

Dynamical model of continuous cell culture

We study an homogeneous culture of cells growing inside a well-mixed bioreactor, where fresh media

continuously replaces culture fluid (Fig 1). The fundamental dynamical equations describing this

system are:

dX

dt
= (µ− φD)X (1)

dsi

dt
= −uiX − (si − ci)D (2)

where X denotes the density of cells in the bioreactor (units: gDW/L), µ the effective cell growth

rate (units: 1/h), and the bleeding coefficient, φ (unit-less), which in perfusion systems characterizes

the fraction of cells that escape from the culture through a cell-retention device. The term ui

denotes the specific uptake of metabolite i (units: mmol/gDW/h), and si the concentration of

metabolite i in the culture (units: mM). The external parameters controlling the culture are the

media concentration of metabolite i, ci (units: mM) and the dilution rate, D (units: 1/h).

Equation (1) describes the dynamics of cell density as a balance between cell growth and

dilution, while equation (2) describes the dynamics of metabolite concentrations in the culture as a

balance between cell consumption (or excretion if ui < 0) and dilution (Fernandez-de-Cossío-Díaz

et al., 2017).

Under quite general conditions, it can be shown that for a system of the form (Eq. 1-2), the

steady state is a function of the ratio ξ = X/D, which is therefore and ideal control parameter of
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the system. In particular, this implies that the steady states of a perfusion system (with 0 < φ

< 1) map to those of a chemostat through a simple rule (Fernandez-de-Cossío-Díaz et al., 2017).

Since our results are qualitatively invariant to changes in φ, we set φ = 1 in what follows.

If Sik denotes the stoichiometric coefficient of metabolite i in reaction k (Sik > 0 if metabolite

i is produced in the reaction, Sik < 0 if it is consumed), and rk is the flux of reaction k, then the

metabolic network produces a net output flux of metabolite i at a rate
∑

k Sikrk , where Sik = 0

if metabolite i does not participate in reaction k. This output flux must balance the cellular

demands for metabolite i. In particular we consider a constant maintenance demand at rate ei

which is independent of growth, as well as the requirements of each metabolite for the synthesis

of biomass components. If yi units of metabolite i are needed per unit of biomass produced,

and biomass is synthesized at a rate Z, we obtain the following overall balance equation for each

metabolite i (Fernandez-de-Cossío-Díaz et al., 2017):

∑
k

Sikrk + ui = ei + yiZ ∀i (3)

In Eq.(3), we are assuming that metabolites inside the cell attain quasi-steady state concentra-

tions (Edwards et al., 2002), so that fluxes of intra-cellular metabolic reactions balance at each

metabolite.

As in FBAwMC, we consider that cells have a limited enzyme budget (Noor et al., 2016).

The synthesis of new enzymes, needed to catalyze many intracellular reactions, consumes limited

resources, including amino acids, energy, cytosolic or membrane space (for enzymes located on

membranes), ribosomes, all of which can be modeled as generic enzyme costs (Molenaar et al.,

2009; Vazquez & Oltvai, 2011). We split reversible reaction fluxes into negative and positive parts,

rk = r+
k − r−k , with r±k ≥ 0, and quantify the total cost of a flux distribution in the simplest

(approximate) linear form (Fernandez-de-Cossío-Díaz et al., 2017):

α =
∑

k

α+
k r

+
k + α−k r

−
k ≤ C (4)

where α+
k and α−k are constant flux costs. The limited budget of the cell to support enzymatic

reactions is modeled as a constraint α ≤ C, where C is a constant maximum cost, according to T.

Shlomi et al. (Shlomi et al., 2011). Thermodynamics places additional reversibility constrains on
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the flux directions of some intra-cellular reactions, which can be written as:

lbk 6 rk 6 ubk (5)

In addition, the specific uptake of each metabolite ui is also bounded. To take this into account we

follow the analysis of Fernandez-de-Cossio-Diaz et al. (Fernandez-de-Cossío-Díaz et al., 2017). For

low cell density, nutrients will be in excess and uptakes are only bounded by the maximum uptake

rates of each metabolite determined by molecular details of the transport process (Vi). For high

cell density, the concentrations of limiting substrates reach very low levels, a new regime appears

where cells compete for resources. As the concentrations of the substrates in the culture are always

positive (si ≥ 0), the mass balance equation (Eq.(3) in steady state) implies that ui ≤ ci/ξ. Besides,

for metabolites that cannot be secreted, the lower bound of ui is Li = 0, and Li = ∞ otherwise.

Then,

−Li ≤ ui ≤ Min(Vi, ci/ξ) (6)

Moreover, the waste secreted by product of fermentation on mammalian cells affect the growth rate

µ, and this effect is present in our model. The two toxic byproducts most commonly studied in

mammalian cell cultures are ammonia and lactate. Parameters describing these effects quantita-

tively vary over an order of magnitude depending on culture conditions and cell-line. In our model

we incorporate these effects through the factor K and the death rate σ (Fernandez-de-Cossío-Díaz

et al., 2017),

µ = Z ×K(si)− σ(si) (7)

where, si indicate the concentrations of toxic metabolites for culture, and 0 ≤ 1 −K(si) ≤ 1 rep-

resents a fraction of biomass that must be expended on non-growth related activities, for example,

due to increased maintenance demands on account of environmental toxicity. Knowing the value of

biomass production Z, we obtain the effective cell growth rate µ depending on the concentrations

of toxic metabolites in the culture, such as lactate and ammonia (Eq.(7)). In the chemostat, for

each stationary state of the Eq.(1), (µ − φD)X = 0, µ = D because φ = 1. In short, the biomass

synthesis rate Z is maximized within the constraints given by equations, (3), (4), (5) and (6).
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Media Optimization

Above, we described a model(Fernandez-de-Cossío-Díaz et al., 2017) that couples the metabolism

of the cells with the external parameters of the chemostat. With this model we can predict, given a

reference medium, the concentrations of the culture X as a function of ξ = X/D. Here we explain

how this can be exploited to optimize the media provided to the cells.

Our goal is to find a medium, of minimum cost, that is able to maintain the steady state of the

chemostat predicted using a reference medium, Z. In mathematical terms we want to find the set

of ci such that:

C = Min
∑

i

wici (8)

is minimum. Where ci is the concentration of each nutrient supplied and wi its cost in the market.

In other words, instead of maximizing Z, as usual in the FBA and FBAwMC frameworks, we

minimize the cost of the medium, C, under linear constraints, fixing Z at the value expected by

the reference medium. This is done respecting the coupling between the internal metabolism of the

cells and the chemostat, as discussed in the previous section.

Economic analysis of the continuous process

According to the literature, the development of economically competitive perfusion processes for the

production of stable proteins depends on our ability to reduce the dilution rate while maintaining

high cell density. That is, to have processes that operate at low specific perfusion rates (1/ξ). This

strategy is known as “push-to-low”1/ξ and was introduced by Konstantinov et al.(K. Konstantinov

et al., 2006). However, we argue that care must be taken when considering this technique. As the

dilution rate decreases, a limit is reached below which the yield decreases due to low cell growth

and viability, specific productivity or product instability.

Moreover, in addition to the cost of the media we consider the cost of the production process

as a whole, to understand how the steady state of the culture, as a function of ξ, determines

the optimal mode of operation of the system. We exploit public data obtained from an economic

evaluation realized in the Center of Molecular Immunlogy (CIM) (Torriente, 2014).

To evaluate the production cost in a continuous culture, we consider three components. First,
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for a chemostat of volume V working at the dilution rate D the cost of the media supplied at

a flow rate V D is V D
∑

iwici. Second, the cost of storage and purification that together with

any and other cost growing proportionally with the scale of production (for example: bioreactor

maintenance, workers, etc.) is given by: αV D. Finally we consider also a fixed cost per unit time

independent of the scale of production, β. In this way, the total cost per unit of time is:

cost/time = (
∑

i

wici)V D + αV D + β (9)

Moreover, for each V D unit of volume that is supplied to the culture per unit of time, we have

V Dsp units of product, where sp is the concentration of product in the culture. In addition, we

know that Dsp = qpX, where qp is the cell specific productivity which is defined in units of product

obtained per unit of time per cell (Meleady et al., 2011) such that.

product/time = V qpX (10)

Then, the cost of the whole process per unit of product is

Ω = cost/time
product/time = 1

qpX

(
D
∑

i

wici +Dα+ β

V

)
(11)

Note that Eq.(11) depends on X and D, but since 1/ξ = D/X we may write Ω as a function

of ξ and X,

Ω(ξ,X) = 1
qp

(∑
iwici + α

ξ
+ β/V

X

)
(12)

Metabolic networks

Simplified metabolic network

We analyse first a simplified metabolic network. The goal is to apply our optimization model to a

network where it is possible to observe and understand the possible steady states of the metabolism

and their implications in the production process of the continuous culture. The simplest network

that can be built must use a minimum of two nutrients, because otherwise the optimization of the

medium is trivial.

We adapted a simplified metabolic model from (Fernandez-de-Cossío-Díaz & Vazquez, 2017),
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which studies the metabolic requirements of growing mammalian cells for two important nutrients,

namely glucose and glutamine. The model also considers exchanges of lactate and explains a

metabolic transition to fermentation (Warburg effect) as well as the elevated consumption glutamine

in spite of it being a non-essential amino acid. Figure 2 presents a detailed diagram of the metabolic

processes considered.

The model includes the synthesis of precursors required for biomass production, especifically

amino acids, lipids and polysaccharides. It is known that mammalian cells exhibit high rates of

glucose fermentation to lactate even when growing in aerobic conditions (Warburg effect). This

effect is accompanied by increased glutamine utilization (DeBerardinis et al., 2007) and reductive

carboxylation of glutamine to the lipid precursor AcCoA (Mullen et al., 2012). By considering the

limits of aerobic metabolism (i.e., the mitocondrial capacity for oxidative phosphorylation), in the

context of the energetic requirements of the cell and the NAD/NADH balance, the model explains

the glutamine requirements of growing cells as well as the obligatory transition to fermentation

(Fernandez-de-Cossío-Díaz & Vazquez, 2017). The simultaneous use of glucose and glutamine as

carbon and energy sources, made them an ideal system to study the optimization of a simplified

media.

Glucose input is measured in units of ATP produced by glycolysis (one mole glucose = 1/2

mole of ATP). In the aerobic mode, the pathways emerging from glucose and leading to the major

biomass precursors (non-essential amino acids, AcCoA, glucose, and nucleotides), result in a net

production of NADH from NAD+, which must be balanced by the oxidation of NADH in the

mitochondria (Fernandez-de-Cossío-Díaz & Vazquez, 2017). We consider that the mitochondria

oxidise NADH with an ATP yield of approximately 2.5 ATP/NADH.

The oxidation of pyruvate, which takes place in the innermost compartment of the mitochon-

dria (in eukaryote cells), converts pyruvate (three-carbon molecule) into acetyl-CoA (two-carbon

molecule bound to coenzyme A) producing a NADH molecule. The addition of CoA helps to acti-

vate the acetyl group and prepares it to experience the necessary reactions to enter the citric acid

cycle or Krebs cycle. The latter which consists in a series of redox reactions catalysed by enzymes

that serve to harness the energy remaining in the acetyl group and is represented in Fig.2 by the

letter K.

For the mass balance in ATP synthesis (denoted A in Fig. 2), we consider a maintenance
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demand independent of the cell proliferation rate Amant(molATP/gDW/h) and take into account

the polymerization of precursors Apol (molATP/gDW) per unit of biomass that is synthesized at

rate Z. The polymerization process is the formation of complicated macromolecules (proteins)

from simpler precursors (amino acids). When considering energy demand and polymerization, we

get the following expression for the synthesis of ATP,

A = ApolZ +Amant (13)

Adding up the contributions to transamination (T), dehydrogenation (N), isocitrate dehydro-

genase flux (E′) and phosphorilation (A), shown in Fig. 2, we arrive at:

T = (c+ g + s+ a+ n+ d+ r)Z

N = (a+ c+ g + s+ n+ d+ x)Z + 2E′ + 2K + (c+ g + s+ x)Z + E′

+K + 2K + E′ +K − T − E′ + (−2p− r)Z

N = (a1)Z + 6K +−3Q

E′ = (q + r + e+ p)Z −Q

A = A1 +A2 = ApolZ +Amant

A1 = L+K −Q+ (a2)Z − q′Z

A2 = 2.5N

where Z (h−1) represents the biomass synthesis rate; K the flux through the Krebs cycle; G and

Q are the uptakes of glucose and glutamine and L the secretion of lactate; Apol(molATP/gDW )

is the energy demand corresponding to the polymerization process; and Amant(molATP/gDW/h)

is the flux of energy maintenance demand. Lower case letters denote amino-acids in the usual

nomenclature, x denotes AcCoa (which we use as the lipid unit), and z denotes glucose. The

constants a1 and a2 were defined as

a1 = 3(q + e) + p+ r + c+ g + s+ 2x (14)

a2 = a+ q + e+ x− n (15)
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Next, balancing the inflow and outflow of the glc metabolite, we obtain the following equation,

for the biomass synthesis rate

G+ 2Q− L− 2K = a3Z (16)

where a3 = z + a+ c+ g + s+ n+ d+ x+ 2(q + r + p+ e).

The parametersApol = 29 mmolATP/gDW,Amant = 0.45 mmolATP/gDW/h, a1 = 15 mmolATP/gDW,

a2 = 6.8 mmolATP/gDW and a3 = 10 mmolATP/gDW were obtained by (Fernandez-de-Cossío-Díaz

& Vazquez, 2017) from experimental measurements available in the literature.

The dehydrogenation flux N is limited because the production of NADH must be processed in

the mitochondria via the electron transport chain. This step is limited by the available intracellular

space for the large volume of the enzymes involved. To calculate how much NADH can be oxidized,

we took into account the OxPhos capacity of the mitochondria described in (Fernandez-de-Cossío-

Díaz & Vazquez, 2017), which leads to the estimate of the dehydrogenation flux limit (conversion

of NAD+ to NADH):

N ≤ Nmax = 0.32 mmolNADH/gDW/h. (17)

In this model, the toxic by-product for cells is lactate, which induces a death rate proportional

to its concentration in the culture:

µ = Z − slacτ (18)

where slac is the lactate concentration in the culture and τ = 2.2 h−1M−1 obtained from linearizing

the death rate dependence on lactate in a mammalian cell culture reported by S. Dhir et al.(Dhir

et al., 2000). The maximum uptake rates of glucose and glutamine are Vglc = 0.5 mmol/gDW/h

(Rodríguez-Enríquez et al., 2009) and Vgln = 0.05 mmol/gDW/h (Dhir et al., 2000).

Genome-scale metabolic network of CHO-K1

Finally we analyze the steady states of a genome scale model of the CHO-K1 line, based on the

latest consensus reconstruction of CHO metabolism available at the time of writing (Hefzi et al.,

2016). This metabolic network contains 4723 reactions (including exchanges) and 2773 metabolites

(with cellular compartmentalization). It accounts for biomass synthesis through a virtual reaction

that contains the moles of each metabolite required to synthesize one gram of biomass.

12



We employ the nutrients concentrations, ci of Iscove’s modified Dulbecco’s medium (IMDM),

a standard media formulation widely used in mammalian cell cultures. The enzymatic costs were

obtained by T. Shlomi et al. from public repositories of enzymatic data. An estimate of the enzyme

mass fraction C = 0.078 mg/mgDW was obtained for mammalian cells by the same authors (Shlomi

et al., 2011). The maximum uptake rate of glucose was set at Vglc = 0.5 mmol/gDW/h, from

previous models of CHO cells probed to experimental data (Kiparissides et al., 2011; Nolan & Lee,

2011).

We estimated that the uptake rates of amino acids are typically one order of magnitude slower

than the uptake rate of glucose; (Vi = Vglc/10)(Dhir et al., 2000; Ozturk et al., 1992). We consider

the cost of each amino acid per gram unit (wi), according to the public Sigma Aldrich catalog. The

maintenance energetic demand ei is constant for each metabolite and was added in the form of an

ATP hydrolysis drain at a flux rate 2.24868 mmol/gDW/h (Kilburn et al., 1969). In this model,

we incorporate the effects of toxicity through the factor K

K = 1
(1 + snh4/Knh4)(1 + slac/Klac)

(19)

whereKnh4 = 1.05 mM,Klac = 8.00 mM (Bree et al., 1988), snh4 and slac are the concentrations

of ammonia and lactate in the culture in the steady state reached. Finally, the effective cell growth

rate is µ = Z ×K.

Results

Simplified metabolic network

This is a metabolic network that by construction consumes only two nutrients: glucose and glu-

tamine. We first optimize biomass production using as a reference medium the concentrations of

these nutrients in the IMDM media. Then, for the rate of biomass production obtained we predict

the optimum concentrations (in the sense of minimum cost of the substrate) that must be supplied

to the culture at each steady state for different prices of glucose (wg) and glutamine (wq).

In Figure 3 we show the concentrations of glucose and glutamine for two different steady states

of the culture. On the left, the culture is in a steady state with X =0.3 gDW/L and D =0.15 d−1,

and on the right, the culture is at the same rate of dilution but the cell density is higher, X =1.3
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gDW/L. In both cases, the minimization of the cost guarantees that the resulting concentration of

the metabolites are lower than the ones in the IMDM media represented by the green (glucose) and

blue (glutamine) dashed lines. Moreover, depending on the relative costs between the nutrients it

is possible to observe clear transitions in the concentrations to be supplied to the culture. Both

at low and high cell density, when w = wg

wq
≥ 1.2(i.e. when gln is more expensive than glc) the

glutamine supplies must be stopped (cq = 0) and the glucose concentration increased.

We also study the glucose and glutamine concentrations that must be supplied to the bioreactor

for different values of the control parameter ξ (Fig.4). If the cost of glucose is larger than the cost

of glutamine (wq < wg) (Fig.4a), the glutamine concentration is different from zero only for high

cell density (high values of ξ = X/D). If glutamine is more expensive (wq > wg) (Fig.4b), the

results suggest not to supply glutamine and to increase the glucose concentration. We can observe

that for a wide range of ξ, the glucose concentration of IMDM (cg0) is much greater than necessary

to guarantee growth. It is possible a notable reduction in the concentrations supplied having the

cell in the same steady state.

The results presented in this section should not be understood in a quantitative manner. The

metabolic network used, represents important biological processes in a cell, but it is nevertheless a

crude abstraction of reality. Several metabolic pathways, fundamental to keep the cell functioning

are not represented and this may justify the large space for optimization. However, they help

to understand that the technique proposed is valid and provides meaningful results. In the next

sections we test more realistic metabolic networks.

Genome-scale metabolic network of CHO-K1

In this section we study the optimal media formulation as a function of the steady state of the

culture (parameterized by ξ), for the CHO-K1 cell-line. To be used as a reference for further

discussions we show in Fig. 5, the effective growth rate µ and the cell density X as a function of ξ.

It is important to recall here that, in accordance with pervious results (Fernandez-de-Cossío-Díaz

et al., 2017), a given value of ξ defines an operational set-point for the cell culture, i.e., the cell

metabolism in the culture. In other words, for a given cell type and medium, completely different

fermentations (different volume and perfusion rates) will be metabolically equivalents for the same

value of ξ. We also show in dashed lines the unstable zone of the phase diagram. The system is
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stable in two regimes. In the first one there is high toxicity, low biomass yield and low cell density

(Fernandez-de-Cossío-Díaz et al., 2017). In the second, the desirable one for the industry, cells are

in an environment with no toxicity, high biomass yield and high cell density. In the later X decays

as ξ increases.

In Fig.6 we show the optimum concentrations of the main metabolites supplied to the culture

as a function of ξ and compare it with the concentrations in the IMDM culture. As the figure

clearly shows, independently of the operation range of the chemostat (i.e., independently on ξ)

most concentrations of the nutrients in the IMDM are overestimated, except glycine. Even more,

according to these results, some nutrients are not even necessary for cell growth.

It can be appreciated that the optimal concentrations exhibit a non-trivial dependency with the

control parameter ξ. For low values of ξ, (i.e., in the toxic region) where the dilution rate D is high,

the cell density is very low and consequently the nutrient concentrations to guarantee a given X are

also low. In the other stable regimen, the concentration of many metabolites first decreases with ξ,

and then increases again with larger ξ. Other metabolites are unnecessary. This behaviour can be

explained looking also to Fig.5. For 0.6 ≥ ξ ≤ 1 the cell density X is maximum, and one needs to

use a large variety of nutrients and in high concentrations to optimize the cost of the media. When

X decreases, the concentrations may decrease again. However, for larger values of ξ, one needs to

sustain a smaller number of cells and the optimization of the media is possible without using some

expensive nutrients. Their absence is counter balanced by larger concentrations of other (cheaper)

metabolites.

It is particularly important to check the consistency of our data with the literature. First, we

remember that a microorganism is auxotrophic if it is capable of proliferating in a culture medium

only if a specific substance has been added to it. Generally speaking CHO cells exhibit several

amino acid auxotrophies (Naylor et al., 1979; Valle et al., 1973), the nine essential amino acids in

humans (His, Ile, Leu, Lys, Met, Phe, Thr, Trp and Val) and arginine (Arg), which is also essential

in rats for normal growth (Borman et al., 1946). In addition, CHO-specific auxotrophies include

cysteine (Cys) and proline (Pro) (Duarte et al., 2014). As we observe in our results (Fig.6), all these

amino acids must be supplied to the culture according to the simulation and its concentrations are

different from zero. Furthermore, also glucose (Glc), tyrosine (Tyr) and glycine (Gly) must be

added to the culture.
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Looking in more detail to these plots it is worth to first discuss the absence of Glutamine in

our optimized media. Glutamine, is an aminoacid consumed at high rate, therefore, it is usually

overdosed in mammalian cell cultures and it is considered fundamental for optimal growth(Eagle,

1955). For example, many myeloma and hybridoma lines have an absolute requirement for glu-

tamine. Glutamine, glutamate and asparagine play a big role in cell metabolism as protein con-

stituents, nitrogen donors in nucleotide synthesis and important respiratory fuel (Duarte et al.,

2014; Reitzer et al., 1979; Zielke et al., 1984). Glutamine depletion causes a severe decline in cell

viability by apoptosis unless the cell line has glutamine synthetase activity and then glutamate is

incorporate from culture medium to produce glutamine (Sanders & Wilson, 1984). Additionally,

lack of glutamine trigger an increase in the glycolysis and affect the metabolism of other amino

acids (Hagrot et al., 2017). However feeding excess glutamine induces high ammonium production

in different cell cultures (Butler & Spier, 1984; Ljunggren & Häggström, 1992), reducing the viable

cell density and the productivity (Hansen & Emborg, 1994; Hassell et al., 1991). Consequently, a

number of established cell lines, like BHK-21, L-cells and CHO-K1, have been adapted to grow in

glutamine-free media (Bort et al., 2010; Hassell et al., 1987; McDermott & Butler, 1993; Taschwer

et al., 2012). Our simulations of the CHO-K1 line, remarkably, reproduce a perfectly functioning

chemostat, for a medium free of glutamine for a wide range of values of ξ.

In our case the increase of glutamate and asparagine over IMDM levels was a palliative for the

effect of glutamine lacking in medium optimized for ξ ≤ 1 gDW d L−1. Values of ξ above 1 gDW d

L−1 could be difficult to attain due to the low growth rate of culture at this metabolic states. Very

low growth rate trigger apoptosis signal leading to cell death (Sitton & Friedrich, 2008). There

is experimental evidence suggesting that major glycine (Gly) addition could partially restore cell

density and product formation observed in the absence of serine and glutamine (Duarte et al.,

2014). In turn our optimization process suggests a notable increase of the Gly concentration in the

media formulation (Fig.6). Gly, after of the glucose (Glc), is the cheaper amino acids according to

the prices reported in the Sigma Aldrich catalogue. On the other hand; serine unavailability could

affect culture growth as well, so, decreased level of serine were mirrored by increased amount of

glycine. The same behavior was described by (Sellick et al., 2015).

Also, it has been proved that some intermediates of the TCA cycle (citrate, succinate, fumarate

and malate) accumulate during culture phases, which indicates a bottleneck (Dickson, 2014). These
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intermediates were observed to build up in the cell culture after the addition of a media, which

contains pyruvate and amino acids (Asp, Asn, and Glu), and have been linked to growth limitation

(Carinhas et al., 2013; Pereira et al., 2018; Sellick et al., 2011, 2015). Of course the quantitative

character of these results should be interpret with caution, because on one side, the given stoichio-

metric matrix is only an approximation of the actual one, on the other, some amino acids may not

be relevant for the metabolism of the cells, but still be used in other biological functions.

Finally, we evaluate the cost of the amino acids that are supplied to the culture, and compare the

cost of the IMDMmedium (estimated as
∑
wici) with the cost of the medium after the optimization.

In Fig.7a we can observe a considerable decrease in the cost for all steady states that the system

could reach. The cost of the optimal medium is at least one third of the cost of the IMDM medium

(per liter unit).

On the other hand, in Fig.7b we show the relative cost of the production process (see Eq.(12))

as a function of ξ. When ξ increases the costs are similar and our results indicate that the efficient

zone is achieved for steady states consistent with 0.6 ≤ ξ ≤ 1. However, there is a wide range of

operation where the overall production cost can be strongly reduced by optimizing the media. It

is important to note that the first stable regimen (ξ � 1) is not optimum, despite the low value of

cost production the cell density in this regime is very low.

Figure 8 shows the variation of the unitary production cost with the value of ξ (the operational

set point) for a cell culture using the reference IMDMmedia. It can be observed that the production

cost reaches an optimum minimal value around the value ξ = 1. However this value of ξ does

not correspond to the maximum value of cell concentrations (see fig 8) and thus the maximum

production yield. Therefore, our model predicts that to operate a optimal continuous fermentation

of CHO cells, with a given fixed medium (IMDM here), an operational set-point (value of ξ between

0.6 and 1) must be selected. For ξ closer to 1 the unitary production cost is minimized, but for ξ

values closer to 0.6 the product yield is maximized at the expenses of some extra cost. Engineer

must select between one or other value of ξ, depending on other operational factors as: product

demand, profitability margin, total capacity of production available and others.

Similarly, figure 9 shows the variation of the unitary production cost and the concentration

of cells with the value of ξ (operational set point) in the CHO cell culture, but this time with

the optimum medium predicted for each value of ξ. Medium optimization indeed reduces unitary
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production cost. Note the values bellow 1 when production cost is normalized to the minimum

production cost obtained with the reference IMDM medium. However, the qualitative dependence

of the production cost and cell concentration remains similar to that depicted in figure 8. Optimal

values of ξ are now between 0.6 and 0.9, a range just slightly narrow than before, but with the

same potential conflict of interest for Engineers when selecting the operational set-point.

Other important aspect of our results, is that the optimal medium predicted is quite different

for each operational set point in the culture, i.e value of ξ. Actually, the media optimization

attained with the theoretical methods proposed here, is far from been just a mere reduction of

possible excess in some medium components of the reference medium (see again figure 5). In the

optimized medium, cell culture shows a different, optimal, metabolic state as compared to that in

the reference medium for the same value of ξ. To illustrative this, figure 10 compares the metabolic

fluxes in the culture with the reference IMDM and the optimized medium for ξ = 0.7.

Concluding remarks

Optimization of continuous fermentation process is based, generally, in decreasig the cell specific

perfusion rate (CSPR) as much as possible. CSPR then is keeping in a minimum value which

depends on the cell line nutritional requirement and nutritional depth of culture medium used

(Konstantinov, 2006). In that case, the cell culture medium should be enriched in nutrient to allow

the reduction of D without decreasing the cell concentration. In this way product concentration

increases in the harvest, decreasing culture medium volume and production costs. Application of

such optimization strategy, relay on the frequent use of cell bleeding of the bioreactor to artificially

stabilize cell concentration. In other words the continuous culture is operated out of equilibrium.

In our approach, instead, we attempt to optimize continuous culture operation, but in equilibrium.

We compute the amino acid composition in the medium, which minimize production cost for a

fixed cell concentration and likely product yield in equilibrium.

In this work we test this approach in-silico studying the metabolism of genome scale metabolic

networks in continuous cell cultures and predict an optimum media formulation for this process.

We analyzed the cellular metabolism in a chemostat by performing FBAwMC optimization coupled

to the macroscopic variables of the bioreactor. We show that our results depend on the relationship

between the cell density and the dilution rate (ξ = X/D) (Fernandez-de-Cossío-Díaz et al., 2017).
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We optimize biomass production starting from a medium formulation widely used, IMDM, a

highly enriched synthetic media well-suited for rapid proliferating and high-density cell cultures.

Then, we cast the problem of media optimization within a Linear Programming framework in

which the cost of the media should be minimized, constrained to maintain the same cell density

in the chemostat as previously estimated for the reference medium. We also study the cost of

the production process as a whole, to understand how the steady state of the culture determines

the optimal mode of operation of the system. We exploit public data obtained from an economic

evaluation performed in the Center of Molecular Immunlogy (CIM) at Habana, Cuba (Torriente,

2014) and show that this cost actually depends on the ratio: ξ = X/D.

We first studied a simplified metabolic model that exchanges glucose, glutamine and lactate

with the culture and includes synthesis of precursors required for biomass formation, mitochondria

OxPhos capacity, energy requirements of biomass biosynthesis, NADH production and maintenance

energy, based on the parameters of the study performed by (Fernandez-de-Cossío-Díaz & Vazquez,

2017). We show that depending on the relative cost of glucose and glutamine, it is better to choose

one medium or another. Remarkably, already in this simple model the results depend on the ration

between the cell density X and the dilution rate D.

We also analysed genome scale models of mammalian cells. In particular the CHO-K1 line. We

show that, in both cases, the medium can be optimized in for wide range of values of ξ. Also in

both cases the cost of optimal medium formulation represents costs that are approximately one

third of the cost of the IMDM medium, and still reproduce the same stable states. Finally, we

also show that the optimal medium minimizes the cost of the whole production process at high cell

densities.

We studied in detail the specificities of the CHO cell line. We show that the optimal media

contains all the essential amino acids that are auxotrophic in CHO cells, such as His, Ile, Leu,

Lys, Met, Phe, Thr, Trp, Val, Cys and Pro. We have found that most of the optimal nutrient

concentrations are lower than in the IMDM media. On other hand, our results indicate that Asn,

Gln, Asp and Glu only are necessary for high growth rate, and Ala and Ser are absolutely needless

for cell growth. Glycine, on the other hand, seems a good substitute for more expensive nutrients.

At present, we don’t pretend to give too much quantitative relevance to our results. Still, we are

confident that the qualitative hallmarks of our simulations may be useful to guide the production of
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new media. At first, they highlight the importance of the specificities of the metabolism of the cells

when a media is selected. While this is certainly known by experimentalists our approach may help

them saving time and resources when looking for optimal media. For example, our results suggest

that, increasing the concentration of glycine and decreasing the presence of glutamine seems to

be a reasonable strategy to decrease the cost of the standard media used in the industry for the

CHO-K1 line.

More generally our results show that medium optimization for a continuous fermentation in

equilibrium is highly dependent of the operational metabolic set-point in the cell culture (i.e.

determined by the value ξ = 1/CSPR). Therefore, we predict that medium optimization in

small non-continuous cell cultures could be misleading. Instead we support, following the results

of (Fernandez-de-Cossío-Díaz et al., 2017), to model the metabolic behavior of large industrial

bioreactor, in a small chemostat or a much smaller bioreactor operated in a continuos mode at the

same operational set-point (value of ξ). The theoretical method proposed here, could be then used

to guide a deep medium optimization at the small scale, and only then extrapolate to industrial

scale. Note that for our method the selection of the initial reference medium shall be important,

it determines the maximal cell concentrations attained (accessible) in the culture. Using a rich,

although expensive, medium as initial reference medium shall be recommended.

These results rely on the validity of our assumptions. First of all we consider that the metabolic

network studied should be a proper proxy for the behaviour of the cell lines. We have considered a

homogeneous cell population in a well-mixed bioreactor, that provide reasonable fits to experimental

data (Ben Yahia et al., 2015; Fernandez-de-Cossío-Díaz et al., 2017) but this may not be true in

other realistic settings. Another important omission of this model is that we assume that the

exchange of oxygen with the culture is not limited and does not limit cell growth. As a proof

of concept we adopt a flux balance approach (Edwards et al., 2002), where cells are supposed

to optimize their metabolism towards maximizing the growth rate. This may not be true in the

industry, where cell lines may be optimized for productivity. However, this case can be easily

introduced in our formalism. In addition, the quantitative predictions depend on the accuracy of

the parameters found in the literature and databases.
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Figure legends

Figure 1: Cell culture in continuous mode

A cell culture is grown in a tank that is continuously fed with a constant flux (blue arrows) of

fresh media coming from a reservoir. An equivalent flux carries used media and cells away from

the culture tank, maintaining a constant volume in the culture. The effluent contains cells, se-

creted metabolites and unused substrates. The figure displays the simple case of no cell retention

(chemostat). Notation: substrate concentrations in media reservoir (ci), cell density and metabolite

concentrations in the culture (X, si), dilution rate (D = F/V , where F is the input/output flux

and V the culture volume).

Figure 2: Simplified model of the metabolism of a mammalian cell

Lower-case letters without a prime denote precursor requirements to duplicate a cell, using the

one-letter nomenclature for amino acids, x for AcCoA and z for glucose. Upper-case letters denote

the uptake of glucose (G), secretion of lactate (L), uptake of glutamine (Q), dehydrogenase flux

(red arrows with reverse dashed, N), ATP synthesis (A) and total transaminase (blue arrows, T).

The primed variables are the isocitrate dehydrogenase flux (E’) and the production rate of glu-

tamine derived from glutamate (glutamine synthase, Q’). The dashed reactions are reversed under

a limitation of OxPhos capacity. Generation and consumption of ATP is indicated by filled and

empty black circles, respectively.

Figure 3: Nutrient concentrations vs. w for the simplified metabolic network

Optimum concentrations of glucose cg (continuous green line) and glutamine cq (continuous blue

line) in function of costs w = wg/wq for two different steady states. Left, lower cell density and

right, higher cell density. In right, horizontal dashed lines represent fixed concentrations of IMDM

media, cg0 (green) and cq0 (blue). Vertical lines show the values of w where a transition occurs in

nutrients concentrations.

Figure 4: Nutrient concentrations vs. ξ for the simplified metabolic network

Optimum concentrations of glucose cg (continuous green line) and cq (continuous blue line) as func-

tion of ξ for a fixed dilution rate, D =0.20 d−1. Horizontal dashed lines represent the constant
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concentrations of IMDM media, cg0 (green) y cq0 (blue). Left, glucose is more expensive than

glutamine (w =0.5); and right, glucose is cheaper than glutamine (w =2.0).

Figure 5: Cell density and effective cell growth rate for the simplified metabolic

network

Cell density and effective cell growth rate as a function of ξ, using the IMDM media.

Figure 6: Culture media for the Genome-scale metabolic network of CHO-K1

Main metabolites concentrations supplied to the culture as a function of ξ. Red lines represent

IMDM medium and green lines correspond to optimum media.

Figure 7: Media cost and Unitary cost of the production process

7a Media cost as a function of ξ, using fixed media (red line, IMDM media) and with optimum

media (green line). 7b Unitary cost of the production process using the optimum media divided by

the cost using IMDM media as a function of ξ.

Figure 8: Cost of the production process using IMDM media

Cost of the production process using IMDM media divided by the minimum value of the cost

reached using the same media (red) and the cell density (gray) as a function of ξ.

Figure 9: Comparison of production process costs using IMDM and optimized me-

dia

Cost of the production process using the optimum media divided by the minimum value of the cost

reached using the IMDM media (green) and the cell density (gray) as a function of ξ.

Figure 10: Comparison of specific uptake rate using IMDM and optimized media

Specific uptake rate by some metabolites for the value of ξ = .7, where the cost of production is

minimum, using optimum media (green) and IMDM media (red).
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Figure 3

(a) w = 0.5 (b) w = 2.0

Figure 4

(a) Effective cell growth rate (b) Cell density

Figure 5
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Figure 6

31



(a) (b)

Figure 7

Figure 8

Figure 9

32



Optimum media

IMDM media

his ile leu lys met phe thr trp val arg cystin pro glc tyr gly gln asn glu asp ala ser
0.0

0.1

0.2

0.3

0.4

0.5

u
(m
m
ol
/g
D
W
/h
)

Figure 10

33


