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Abstract In this paper, we give a new method to show a monotonicity result for a

function f satisfying (a∇ν
hf)(t) ≤ 0 ((a∇ν

h,∗f)(t) ≤ 0) with ν ∈ (0, 1], which has never

been solved in other papers. In addition, we give an example to illustrate one of our main

results.

Keywords Discrete fractional calculus; Nabla fractional h-difference operators; Mono-

tonicity; Power rule.

2000 Mathematics Subject Classification 39A12, 39A70.

1 Introduction

Discrete fractional calculus and its applications has become an attractive topic in

recent years, since Miller and Ross [1] initiated the discrete fractional calculus in 1988. For

the basic theory of discrete fractional calculus, we could refer to [2–10] and the references

therein. It is well known that monotonicity results play an important role in the study of

discrete fractional calculus, and numerous monotonicity results about fractional calculus

∗Corresponding author: mcsjbg@mail.sysu.edu.cn
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have been published. In [11–15], the authors obtain the monotonicity of f for ν ∈ (1, 2).

In [16], the authors have summarized the monotonicity and convexity results of f , for

(∆ν
af)(t), (∇ν

af)(t) with ν ∈ (1, 2). But there are few monotonicity results for a function

f when ν ∈ (0, 1]. In [17, 18], the authors just presented the ν-increasing (or ν-decreasing)

results for ν ∈ (0, 1), but they do not guarantee that these results hold for ν = 1.

In this paper, we give a new method to show some monotonicity results for ν ∈ (0, 1],

which are listed as follows:

Theorem 1.1. Assume f : (hN)a → R, (a∇ν
hf)(t) ≤ 0 for t ∈ (hN)a+2h, ν ∈ (0, 1]. If

f(a+ kh) ≥ Γ(k + ν)

Γ(ν)Γ(k + 1)
f(a)

for k ∈ N1, then (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h.

Theorem 1.2. Assume f : (hN)a → R, (a∇ν
h,∗f)(t) ≤ 0 for t ∈ (hN)a+2h, ν ∈ (0, 1]. If

(1− ν)f(a+ kh) ≥ hν((k + 1)h)−νh
Γ(1− ν)

f(a)− hν+1

Γ(−ν)

k−2∑
l=0

(kh+ h− lh)−ν−1
h f(a+ lh+ h)

for k ∈ N1, then (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h.

2 Preliminaries

Let FD denote the set of real valued functions defined on a domain D. We use the

notation (hN)a := {a, a+h, a+2h, · · · }, (hN)+∞
−∞ := {· · · , a−2h, a−h, a, a+h, a+2h, · · · },

where h > 0, a ∈ R. Let ρ(t) := t− h for t ∈ (hN)a+h. For the convenience of the reader,

we recall some of the notation to be used here. For a function f ∈ F(hN)a , the backward

h-difference operator is defined as

(∇hf)(t) :=
f(t)− f(t− h)

h
, t ∈ (hN)a+h. (2.1)

For arbitrary t, ν ∈ R, the h-factorial function is defined by

tνh := hν
Γ( t

h
+ ν)

Γ( t
h
)

, (2.2)

where Γ is the Euler gamma function with t
h
/∈ Z− ∪ {0}, and we use the convention that

tνh = 0, when t
h

+ ν is a non-positive integer and t
h

is not a non-positive integer.

Definition 2.1. (See [8, Definition 2.2]). Let f ∈ F(hN)a , and ν > 0 be given. The

fractional h-sum a∇−νh f is defined by

(a∇−νh f)(t) :=
h

Γ(ν)

t
h∑

s= a
h

+1

(t− ρ(sh))ν−1
h f(sh), t ∈ (hN)a, (2.3)

and (a∇0
hf)(t) = f(t), ρ(sh) = (s− 1)h, (a∇−νh f)(a) = 0.
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Definition 2.2. (See [8, Definition 2.3]). Let f ∈ F(hN)a , ν ∈ (n − 1, n) and µ = n − ν,

where n ∈ N1. The Riemann-Liouville like fractional h-difference a∇ν
hf is defined by

(a∇ν
hf)(t) := (∇n

h(a∇−µh f))(t) =
h

Γ(µ)
∇n
h

( t
h∑

s= a
h

+1

(t− ρ(sh))µ−1
h f(sh)

)
, t ∈ (hN)a+nh.

(2.4)

Remark 2.1. It is clear that Definition 2.2 is also true for ν = n.

The following property is useful in this paper:

Property 2.1. The nabla difference of the h-rising factorial function satisfies

s∇h(t− sh)νh = −ν(t− ρ(sh))ν−1
h , (2.5)

where s∇h(t− sh)νh =
(t−sh)νh−(t−sh+h)νh

h
.

Proof. By formula (2.1), we have

s∇h(t− sh)νh =
1

h

[
s
∇h(t− sh)νh −s ∇h(t− sh+ h)νh

]
=

1

h

[hνΓ( t
h
− s+ ν)

Γ( t
h
− s)

−
hνΓ( t

h
− s+ 1 + ν)

Γ( t
h
− s+ 1)

]
= hν−1

(
1−

t
h
− s+ ν
t
h
− s

)Γ( t
h
− s+ ν)

Γ( t
h
− s)

= −νhν−1 Γ( t
h
− s+ ν)

Γ( t
h
− s+ 1)

= −ν(t− ρ(sh))ν−1
h .

The proof is complete.

Lemma 2.1. Let ν ∈ (n− 1, n] and µ = n− ν, where n ∈ N1. The following formula is

equivalent to (2.4):

(a∇ν
hf)(t) =


h

Γ(−ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−ν−1
h f(sh), ν ∈ (n− 1, n), t ∈ (hN)a+nh,

(∇n
hf)(t), ν = n, t ∈ (hN)a+nh.

(2.6)

Proof. If ν = n, then we have

(a∇ν
hf)(t) = (∇n

h(a∇−(n−ν)
h f))(t) = (∇n

h(a∇−0
h f))(t) = (∇n

hf)(t).
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If ν ∈ (n− 1, n), then we have

(a∇ν
hf)(t) = (∇n

h(a∇−(n−ν)
h f))(t)

= ∇n−1
h

(
∇h

( h

Γ(n− ν)

t
h∑

s= a
h

+1

(t− ρ(sh))n−ν−1
h f(sh)

))

= ∇n−1
h

( h

Γ(n− ν − 1)

t
h∑

s= a
h

+1

(t− ρ(sh))n−ν−2
h f(sh)

)
.

Repeating the similar procedure n− 1 times, we obtain

(a∇ν
hf)(t) = (∇n

h(a∇−(n−ν)
h f))(t)

=
h

Γ(−ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−ν−1
h f(sh).

The proof is complete.

Definition 2.3. Let ν ∈ (n − 1, n], and set µ = n − ν, where n ∈ N1. The Caputo like

h-difference operator a∇ν
h,∗f of order ν for a function f ∈ F(hN)a is defined by

(a∇ν
h,∗f)(t) := (a∇−µh (∇n

hf))(t) =
h

Γ(µ)

t
h∑

s= a
h

+1

(t− ρ(sh))µ−1
h (∇n

hf)(sh), t ∈ (hN)a+nh.

(2.7)

Definition 2.4. (See [8, Definition 2.3]). Let ν 6= −1,−2, · · · . Then we define the ν-th

order nabla fractional h-Taylor monomial Ĥν(t, a) by

Ĥν(t, a) :=
(t− a)νh
Γ(ν + 1)

= hν
Γ( t−a

h
+ ν)

Γ(ν + 1)Γ( t−a
h

)
, (2.8)

where t ∈ (hN)a.

Lemma 2.2. Assume the functions f , g : (hN)a → R and b, c ∈ (hN)a, b < c. Then we

have the following summation by parts formulas:

c
h∑

s= b
h

+1

f(sh)(∇hg)(sh) =
f(sh)g(sh)

h

∣∣∣ ch
s= b

h

−
c
h∑

s= b
h

+1

g(ρ(sh))(∇hf)(sh), (2.9)

c
h∑

s= b
h

+1

f(ρ(sh))(∇hg)(sh) =
f(sh)g(sh)

h

∣∣∣ ch
s= b

h

−
c∑

s= b
h

+1

g(sh)(∇hf)(sh). (2.10)
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Proof. By formula (2.1), we have

∇h(fg)(t) =
1

h
[f(t)g(t)− f(ρ(t))g(ρ(t))]

=
1

h
[f(t)g(t)− f(t)g(ρ(t)) + f(t)g(ρ(t))− f(ρ(t))g(ρ(t))]

= f(t)(∇hg)(t) + g(ρ(t))(∇hf)(t),

(2.11)

or, alternatively, we have

∇h(fg)(t) =
1

h
[f(t)g(t)− f(ρ(t))g(ρ(t))]

=
1

h
[f(t)g(t)− f(ρ(t))g(t) + f(ρ(t))g(t)− f(ρ(t))g(ρ(t))]

= g(t)(∇hf)(t) + f(ρ(t))(∇hg)(t).

(2.12)

If we take the summation on both sides of (2.11), (2.12), we can obtain the formulas (2.9),

(2.10), respectively. This completes the proof.

Lemma 2.3. Assume f : (hN)a → R, and ν ∈ (0, 1). Then the following formula holds:

(a∇ν
hf)(t) =

(t− a)−νh
Γ(1− ν)

f(a) + (a∇ν
h,∗f)(t), (2.13)

Proof. According to the summation by parts (2.10) and Definition 2.3, we have

(a∇ν
h,∗f)(t) = (a∇−(1−ν)

h (∇hf))(t)

=
h

Γ(1− ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−νh (∇hf)(sh)

=
h

Γ(1− ν)

[(t− sh)−νh f(sh)

h

∣∣∣ th
s= a

h

−
t
h∑

s= a
h

+1

ν(t− ρ(sh))−ν−1
h f(sh)

]

= −(t− a)−νh
Γ(1− ν)

f(a) +
h

Γ(−ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−ν−1
h f(sh)

= −(t− a)−νh
Γ(1− ν)

f(a) + (a∇ν
hf)(t).

The proof is complete.

Lemma 2.4. Let f ∈ F(hN)a , and ν > 0. Then

(a∇−νh f)(t) = hν
(
a
h
∇−ν1 f̃

)( t
h

)
, (2.14)

where t ∈ (hN)a+h, and f̃(s) = f(sh).
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Proof. By Definition 2.1, we have

(a∇−νh f)(t) =
h

Γ(ν)

t
h∑

s= a
h

+1

(t− ρ(sh))ν−1
h f(sh)

=
hν

Γ(ν)

t
h∑

s= a
h

+1

(
t

h
− ρ(s))ν−1f̃(s)

= hν
(
a
h
∇−ν1 f̃

)( t
h

)
.

The proof is complete.

Lemma 2.5. (See [2, Theorem 3.93]). Assume ν ∈ R+ and µ ∈ R such that µ, µ + ν,

and µ− ν are nonnegative integers. Then we have that

(i) ∇−νa (t− a)µ = Γ(µ+1)
Γ(µ+ν+1)

(t− a)µ+ν , t ∈ Na,

(ii) ∇ν
a(t− a)µ = Γ(µ+1)

Γ(µ−ν+1)
(t− a)µ−ν , t ∈ Na+2.

Lemma 2.6. Assume ν ∈ R+ and µ ∈ R such that µ, µ + ν, and µ− ν are nonnegative

integers. Then we have that

(i) a∇−νh (t− a)µh = Γ(µ+1)
Γ(µ+ν+1)

(t− a)µ+ν
h , t ∈ (hN)a,

(ii) a∇ν
h(t− a)µh = Γ(µ+1)

Γ(µ−ν+1)
(t− a)µ−νh , t ∈ (hN)a+2h.

Proof. (i) Let f(s) = (sh− a)µh = hµ(s− a
h
)µ. Then, using Lemmas 2.4, 2.5, we have

a∇−νh (t− a)µh = hν( a
h
∇−ν1 f)(

t

h
)

= hν+ν( a
h
∇−ν1 (s− a

h
)µ)(

t

h
)

= hµ+ν Γ(µ+ 1)

Γ(µ+ ν + 1)

(t− a
h

)µ+ν

=
Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a)µ+ν

h .

(ii) By Definition 2.2, we have

a∇ν
h(t− a)µh = ∇n

h

(
a∇−(n−ν)

h (t− a)µh

)
=

Γ(µ+ 1)

Γ(µ+ n− ν + 1)
∇n
h

(
(t− a)µ+n−ν

h

)
=

Γ(µ+ 1)

Γ(µ− ν + 1)
(t− a)µ−νh .

This completes the proof.

Remark 2.2. In Lemma 2.6, when µ+ν and µ−ν are negative, the conclusion still holds

true.
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3 Main Results

In this part, we give a new method to show the monotonicity results for ν ∈ (0, 1].

Theorem 3.1. Assume f : (hN)a+h → R, (a∇ν
hf)(t) ≤ 0 for t ∈ (hN)a+2h, ν ∈ (0, 1]. If

f(a+ kh) ≥ Γ(k + ν)

Γ(ν)Γ(k + 1)
f(a+ h) (3.1)

for k ∈ N1, then (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h.

Proof. If ν = 1, it is easy to show that (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h. If ν ∈ (0, 1), by

Lemma 2.1, we have

(a∇ν
hf)(t) =

h

Γ(−ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−ν−1
h f(sh).

We prove that f(a + nh) ≤ Γ(ν+n−1)
Γ(ν)Γ(n)

f(a + h) for n ∈ N1, by the principle of strong

induction. When t = a+ 2h, we have

(a∇ν
hf)(a+ 2h) =

h

Γ(−ν)

a
h

+2∑
s= a

h
+1

(a+ 2h− ρ(sh))−ν−1
h f(sh)

= h−ν(−νf(a+ h) + f(a+ 2h)) ≤ 0,

that is,

f(a+ 2h) ≤ νf(a+ h).

So, we have

f(a+ 2h)− f(a+ h) ≤ (ν − 1)f(a+ h) ≤ 0.

Now, we assume f(a+kh) ≤ Γ(ν+k−1)
Γ(ν)Γ(k)

f(a+h) for k = 1, 2, · · · , n. When t = a+ (n+ 1)h,

we have

(a∇ν
hf)(a+ (n+ 1)h) =

h

Γ(−ν)

a
h

+n+1∑
s= a

h
+1

(a+ (n+ 1)h− ρ(sh))−ν−1
h f(sh)

s− a
h
−1=k

========
h

Γ(−ν)

n∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

=
h

Γ(−ν)

n−1∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

+ h−νf(a+ (n+ 1)h) ≤ 0,

7



By Lemma 2.6, we have

a∇ν
h

(t− a)ν−1
h

Γ(ν)
=

(t− a)−1
h

Γ(0)
= 0,

that is,

h

Γ(−ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−ν−1
h

(sh− a)ν−1
h

Γ(ν)

t=a+nh+h
========

n∈N1

h

Γ(−ν)

a
h

+n+1∑
s= a

h
+1

(a+ nh+ 2h− sh)−ν−1
h

hν−1Γ(s− a
h

+ ν − 1)

Γ(ν)Γ(s− a
h
)

k=s−( a
h

+1)
=========

h

Γ(−ν)

n∑
k=0

(nh+ h− kh)−ν−1
h

hν−1Γ(k + ν)

Γ(ν)Γ(k + 1)
= 0.

Then, we obtain

− hν

Γ(−ν)

n−1∑
k=0

(nh+ h− kh)−ν−1
h

Γ(k + ν)

Γ(ν)Γ(k + 1)
=

h−1Γ(n+ ν)

Γ(ν)Γ(n+ 1)
.

So, we have

f(a+ (n+ 1)h) ≤ − hν+1

Γ(−ν)

n−1∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

≤ − hν+1

Γ(−ν)

n−1∑
k=0

(nh+ h− kh)−ν−1
h

Γ(ν + k)

Γ(ν)Γ(k + 1)
f(a+ h)

=
Γ(n+ ν)

Γ(ν)Γ(n+ 1)
f(a+ h).

Hence, by the condition (3.1), we have

f(a+ (n+ 1)h)− f(a+ nh) ≤ Γ(n+ ν)

Γ(ν)Γ(n+ 1)
f(a+ h)− f(a+ nh) ≤ 0.

Therefore, we conclude (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h. The proof is complete.

Corollary 3.1. Assume f : (hN)a+h → R, (a∇ν
hf)(t) ≥ 0 for t ∈ (hN)a+2h, ν ∈ (0, 1]. If

f(a+ kh) ≤ Γ(k + ν)

Γ(ν)Γ(k + 1)
f(a+ h) (3.2)

for k ∈ N1, then (∇hf)(t) ≥ 0 for t ∈ (hN)a+2h.

Proof. Put g = −f . Then g(a + kh) ≥ Γ(k+ν)
Γ(ν)Γ(k+1)

g(a + h). Consequently, each of the

hypotheses of Theorem 3.1 is satisfied. Therefore, we conclude that (∇hg)(t) ≤ 0, whence

(∇hf)(t) ≥ 0 for t ∈ (hN)a+2h. The proof is complete.
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Theorem 3.2. Assume f : (hN)a → R, (a∇ν
h,∗f)(t) ≤ 0 for t ∈ (hN)a+2h, ν ∈ (0, 1]. If

(1− ν)f(a+kh) ≥ hν((k + 1)h)−νh
Γ(1− ν)

f(a)− hν+1

Γ(−ν)

k−2∑
l=0

(kh+h− lh)−ν−1
h f(a+ lh+h) (3.3)

for k ∈ N1, then (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h.

Proof. If ν = 1, clearly, the conclusion is true. If ν ∈ (0, 1), by the formula (2.13), and

Lemma 2.1, we have

(a∇ν
h,∗f)(t) = −(t− a)−νh

Γ(1− ν)
f(a) +

h

Γ(−ν)

t
h∑

s= a
h

+1

(t− ρ(sh))−ν−1
h f(sh).

When t = a+ 2h, we have

(a∇ν
h,∗f)(a+ h) = − (2h)−νh

Γ(1− ν)
f(a) +

h

Γ(−ν)

a
h

+2∑
s= a

h
+1

(a+ 2h− ρ(sh))−ν−1
h f(sh)

= −h−ν(1− ν)f(a)− h−ννf(a+ h) + h−νf(a+ 2h) ≤ 0,

that is,

f(a+ 2h) ≤ νf(a+ h) + (1− ν)f(a).

So, according to the condition (3.3), we have

f(a+ 2h)− f(a+ h) ≤ 0.

When t = a+ (n+ 1)h, we have

(a∇ν
h,∗f)(a+ (n+ 1)h)

= −((n+ 1)h)−νh
Γ(1− ν)

f(a) +
h

Γ(−ν)

a
h

+n+1∑
s= a

h
+1

(a+ (n+ 1)h− ρ(sh))−ν−1
h f(sh)

s− a
h
−1=k

======== −((n+ 1)h)−νh
Γ(1− ν)

f(a) +
h

Γ(−ν)

n∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

= −((n+ 1)h)−νh
Γ(1− ν)

f(a) +
h

Γ(−ν)

n−1∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

+ h−νf(a+ (n+ 1)h) ≤ 0.

So, we obtain

f(a+ (n+ 1)h) ≤ hν((n+ 1)h)−νh
Γ(1− ν)

f(a)− hν+1

Γ(−ν)

n−1∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

=
hν((n+ 1)h)−νh

Γ(1− ν)
f(a)− hν+1

Γ(−ν)

n−2∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

+ νf(a+ nh).
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Hence, by the condition (3.3), we have

f(a+ (n+ 1)h)− f(a+ nh) ≤ hν((n+ 1)h)−νh
Γ(1− ν)

f(a)

− hν+1

Γ(−ν)

n−2∑
k=0

(nh+ h− kh)−ν−1
h f(a+ kh+ h)

+ (ν − 1)f(a+ nh) ≤ 0.

Thus, we conclude (∇hf)(t) ≤ 0 for t ∈ (hN)a+2h. The proof is complete.

Corollary 3.2. Assume f : (hN)a → R, (a∇ν
h,∗f)(t) ≥ 0 for t ∈ (hN)a+2h, ν ∈ (0, 1]. If

(1− ν)f(a+kh) ≤ hν((k + 1)h)−νh
Γ(1− ν)

f(a)− hν+1

Γ(−ν)

k−2∑
l=0

(kh+h− lh)−ν−1
h f(a+ lh+h) (3.4)

for k ∈ N1, then (∇hf)(t) ≥ 0 for t ∈ (hN)a+2h.

Proof. Let g = −f . Then (1 − ν)g(a + kh) ≥ hν((k+1)h)−νh
Γ(1−ν)

g(a) − hν+1

Γ(−ν)

∑k−2
l=0 (kh + h −

lh)−ν−1
h g(a + lh + h). Consequently, each of the hypotheses of Theorem 3.2 is satisfied.

Therefore, we conclude that (∇hg)(t) ≤ 0, whence (∇hf)(t) ≥ 0 for t ∈ (hN)a+2h. The

proof is complete.

4 Example

Now, we give an example to illustrate Theorem 3.1.

Example 4.1. Consider f(t) = (3
8
)t, t ∈ (hN)a+h, (a∇ν

hf)(t) ≤ 0 for t ∈ (hN)a+3h
a+2h, ν = 1

2
,

a = 0, h = 1. If

f(a+ kh) ≥ Γ(k + ν)

Γ(ν)Γ(k + 1)
f(a+ h) (4.1)

for k ∈ N2
1, then (∇hf)(t) ≤ 0 for t ∈ (hN)a+3h

a+2h.

When t = a+ 2h, we have

(a∇ν
hf)(a+ 2h) =

h

Γ(−ν)

a
h

+2∑
s= a

h
+1

(a+ 2h− ρ(sh))−ν−1
h f(sh)

=
h

Γ(−ν)

[
(2h)−ν−1

h f(a+ h) + (h)−ν−1
h f(a+ 2h)

]
= −νh−νf(a+ h) + h−νf(a+ 2h)

= −1

2
· 3

8
+

(
3

8

)2
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= − 3

64
≤ 0,

which implies

f(a+ 2h) ≤ νf(a+ h).

When t = a+ 3h, we have

(a∇ν
hf)(a+ 3h) =

h

Γ(−ν)

a
h

+3∑
s= a

h
+1

(a+ 3h− ρ(sh))−ν−1
h f(sh)

=
h

Γ(−ν)

[
(3h)−ν−1

h f(a+ h) + (2h)−ν−1
h f(a+ 2h) + (h)−ν−1

h f(a+ 3h)
]

= −ν(1− ν)

2
f(a+ h)− νh−νf(a+ 2h) + h−νf(a+ 3h)

= −
(

1

2

)3

· 3

8
− 1

2
·
(

3

8

)2

+

(
3

8

)3

= − 33

512
≤ 0,

this yields

f(a+ 3h) ≤ ν(ν + 1)

2
f(a+ h).

Further, when n = 1, we obtain

3

8
≥

Γ(1 + 1
2
)

Γ(1
2
)Γ(2)

· 3

8
=

1

2
· 3

8
,

that is,

f(a+ h) ≥ Γ(1 + ν)

Γ(ν)Γ(1 + 1)
f(a+ h) = νf(a+ h).

When n = 2, we have (
3

8

)2

≥
Γ(2 + 1

2
)

Γ(1
2
)Γ(3)

· 3

8
=

3

8
· 3

8
,

that is,

f(a+ 2h) ≥ Γ(2 + ν)

Γ(ν)Γ(2 + 1)
f(a+ h) =

ν(ν + 1)

2
f(a+ h).

Hence, we conclude that

f(a+ 3h) ≤ ν(ν + 1)

2
f(a+ h) ≤ f(a+ 2h) ≤ νf(a+ h) ≤ f(a+ h).

Therefore, we conclude that f(t) is nonincreasing on (hN)a+3h
a+2h.
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