References:
Arora, V., Sahoo, N. K., Gopi, A., & Saini, D. K. (2016).
Implant-retained auricular prostheses: a clinical challenge.International Journal of Oral and Maxillofacial Surgery ,45 (5), 631–635. https://doi.org/10.1016/j.ijom.2015.12.011
Assaw, S. (2018). THE USE OF MODIFIED MASSON ’ S TRICHROME STAINING IN
COLLAGEN EVALUATION IN WOUND HEALING STUDY, (November).
Barron, V., & Pandit, a. (2003). Combinatorial Approaches in Tissue
Engineering: Progenitor Cells, Scaffolds, and Growth Factors.Topics in Tissue Engineering , 1–21.
Borrelli, M. R., Hu, M. S., Longaker, M. T., & Lorenz, H. P. (2020).
Tissue Engineering and Regenerative Medicine in Craniofacial
Reconstruction and Facial Aesthetics, 31 (1), 15–27.
https://doi.org/10.1097/SCS.0000000000005840
Cervantes, T. M., Bassett, E. K., Tseng, A., Kimura, A., Roscioli, N.,
Randolph, M. A., … Sundback, C. A. (2013). Design of composite
scaffolds and three-dimensional shape analysis for tissue-engineered
ear.
Díaz-Moreno, E., Durand-Herrera, D., Carriel, V., Martín-Piedra, M. Á.,
Sánchez-Quevedo, M. D. C., Garzón, I., … Alaminos, M. (2018).
Evaluation of freeze-drying and cryopreservation protocols for long-term
storage of biomaterials based on decellularized intestine. Journal
of Biomedical Materials Research - Part B Applied Biomaterials ,106 (2), 488–500. https://doi.org/10.1002/jbm.b.33861
Duisit, J., Orlando, G., Debluts, D., Maistriaux, L., Xhema, D., De
Bisthoven, Y. A. J., … Gianello, P. (2018). Decellularization of
the Porcine Ear Generates a Biocompatible, Nonimmunogenic Extracellular
Matrix Platform for Face Subunit Bioengineering. Annals of
Surgery , 267 (6), 1191–1201.
https://doi.org/10.1097/SLA.0000000000002181
Hasan, A., Ragaert, K., Swieszkowski, W., Selimovi, Š., Paul, A.,
Camci-unal, G., … Khademhosseini, A. (2014). Biomechanical
properties of native and tissue engineered heart valve constructs,47 , 1949–1963.
Kim, M., & Evans, D. (2005). Tissue Engineering : The Future of Stem
Cells. Topics in Tissue Engineering , 2 , 1–22.
Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C.,
Marini, A., … L’Heureux, N. (2009). Mechanical properties of
completely autologous human tissue engineered blood vessels compared to
human saphenous vein and mammary artery. Biomaterials ,30 (8), 1542–1550.
https://doi.org/10.1016/j.biomaterials.2008.11.011
Kshersagar, J., Kshirsagar, R., Desai, S., Bohara, R., & Joshi, M.
(2018). Decellularized amnion scaffold with activated PRP: a new
paradigm dressing material for burn wound healing. Cell and Tissue
Banking , 19 (3). https://doi.org/10.1007/s10561-018-9688-z
Kshersagar, Jeevitaa, Kshirsagar, R., Desai, S., & Bohara, R. (2018).
Decellularized amnion scaffold with activated PRP : a new paradigm
dressing material for burn wound healing Decellularized amnion scaffold
with activated PRP : a new paradigm dressing material for burn wound
healing. Cell and Tissue Banking , (March).
https://doi.org/10.1007/s10561-018-9688-z
Rahman, S., Griffin, M., Naik, A., Szarko, M., & Butler, P. E. M.
(2018). Optimising the decellularization of human elastic cartilage with
trypsin for future use in ear reconstruction. Scientific Reports ,
1–11. https://doi.org/10.1038/s41598-018-20592-x
Reighard, C. L., Hollister, S. J., & Zopf, D. A. (2017). Auricular
reconstruction from rib to 3D printing. Journal of 3D Printing in
Medicine , 2 (1), 35–41. https://doi.org/10.2217/3dp-2017-0017
Suvik, A., & Effendy, A. W. . (2012). The Use of modified masson’s
trichrome staining in collagen evaluation in wound healing study.Malaysian Journal of Veterinary Research , 3 (1), 39–47.
Retrieved from http://www.dvs.gov.my/dvs/resources/user_15/Mjvr
v3/MJVR-V3N1-p39-47-email.pdf
Tardalkar, K., Desai, S., Adnaik, A., Bohara, R., & Joshi, M. (2017).
Novel Approach Toward the Generation of Tissue Engineered Heart Valve by
Using Combination of Antioxidant and Detergent: A Potential Therapy in
Cardiovascular Tissue Engineering. Tissue Engineering and
Regenerative Medicine , 14 (6), 755–762.
https://doi.org/10.1007/s13770-017-0070-1
Ten Koppel, P. G. J., Van Osch, G. J. V. M., Verwoerd, C. D. A., &
Verwoerd-Verhoef, H. L. (2001). A new in vivo model for testing
cartilage grafts and biomaterials: The “rabbit pinna punch-hole”
model. Biomaterials , 22 (11), 1407–1414.
https://doi.org/10.1016/S0142-9612(00)00298-2
Utomo, L., Pleumeekers, M. M., & Nimeskern, L. (2015). Preparation and
characterization of a decellularized cartilage scaffold for ear
cartilage reconstruction, (February).
https://doi.org/10.1088/1748-6041/10/1/015010
Youngstrom, D. W., Barrett, J. G., Jose, R. R., & Kaplan, D. L. (2013).
Functional Characterization of Detergent-Decellularized Equine Tendon
Extracellular Matrix for Tissue Engineering Applications. PLoS
ONE , 8 (5). https://doi.org/10.1371/journal.pone.0064151