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Abstract

In this paper, we investigate an impulsive coupled system of fractional integro—differential equations having
Caputo derivatives. The existence and uniqueness results of the system are obtained with the help of
Kransnoselskii’s type fixed point theorem. Different kinds of Ulam stabilities are discussed. An example is
presented to support the results.
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1. Introduction

Fractional order derivatives are the generalized forms of integer order derivatives. The idea about the
fractional order derivative was introduced at the end of sixteenth century (1695) when Leibniz used the
notation d‘g; for nt" order derivative. By writing a letter to him, L’Hospital asked the question that what
would be the result if n = %? Leibniz answered in such words, “An apparent Paradox, from which one day
useful consequences will be drawn” and this question becomes the foundation of fractional calculus. In that
time, many mathematicians like Fourier and Laplace contributed in the development of fractional calculus.
After that, when Riemann and Liouville introduced Riemann-Liouville derivative which is a fundamental
concept in fractional calculus, the fractional calculus became the most interesting area for researchers.
Fractional order derivative is a global operator, which is used as a tool for modeling different processes
and physical phenomena occur in mathematical biology [14], electro-chemistry [11], control theory [21],
dynamical process [19], image and signal processing [17], etc. For more applications of fractional order
differential equations, we refer the reader to [1, 8, 15, 23, 24, 13, 31, 25].

The most preferable research area in the field of fractional differential equations(FDE’s) which received
great attention from the researchers is the theory regarding the existence of solutions. Many researchers
developed some interesting results about the existence of solutions of different boundary value problems
(BVP’s), using different fixed point theorems. For details we refer the reader to [2, 6]. Most of the time, it
is quite intricate to find the exact solutions of nonlinear differential equations, in such a situation different
approximation techniques are introduced. The difference between exact and approximate solutions is now a
days dealing with the help of Hyers—Ulam (H/) type stabilities, which was first introduced in 1940 by Ulam
[20] and then answered by Hyers in the following year, in the context of Banach spaces. Many researchers
investigated HU type stabilities for different problems with different approaches [7, 10, 12, 22, 26, 27, 28,
29, 30, 32].
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Zhang [33], studied the upper and lower solution method for the initial value problem:

Dyru(o) = ¢(o,u(o)), o>0, ac(0,1),

where ¢ : [0, 1] x [0,4+00) — [0, +00) is continuous and ¢(o, -) is nondecreasing for each o € [0, 1].
Bai et al. [5], using the lower and upper solution method, studied the existence of iterative solution of
fractional initial value problem with non-monotone term

Diiu(o) = ¢(o,u(0)), for each o€ (0,7), 0<T < o0,
o' u(0)|o=0 = uo # 0.

Ali et al. [3], studied a coupled system, for the existence and uniqueness of solution, using Riemann-
Liouville derivative

Do) = (0 (0) DuE), D) = o) Dov(e)), 0 €3,
D™ Na(0%) = /D (T), D Mu(0%) = 1D u(T),
DA1y(0+) = 5D 1u(T-), - Ly(0%) = 7D u(T),

where o € J =[0,T], T >0, a, 3 € (1,2] and 31, B2, 71,72 # 1. D%, D? are the Riemann-Liouville fractional
derivatives and ¢1, ¢ : [0,1] X R x R — R are continuous functions.

In [23], Wang et al. presented stability of the following coupled system of implicit fractional integro-
differential equation having anti-periodic boundary conditions

“D*u(o) — ¢1(0,v(0), “D*u(c )) — ﬁ Jy (o — s)”lflf(s,v(s), “D%u(s))ds =0, YoeJ,
DBy (o) — ¢a(o,u(0), “D’v(o “/2) NG 271g(s,u(s), “DPv(s))ds =0, Yo € J,
u(0)|o=0 = —u(0)|o=7 =0, ch (0)]o=0 = ch (

v(0)lo=0 = —v(0)lo=7 = 0, “D*v(0)[o=0 = —“D™v(0

where 1 < ,8<2,0<r;,r2 <2 7v,72>0and J =[0,7], T > 0. ¢1,¢2,f,9: T xRxR — R are
continuous functions.

Motivated from the above work, we focus our attention on the following coupled impulsive fractional
integro-differential equations with Caputo derivatives of the form:

0)|U:Ta
)|U:Ta

“D*u(0) — ¢1(0,I%(0),IPv(0)) =0, oc€w, o#0j, j=1,2,...,p,
Au(oj) — &j(u(oy)) =0, j=1,2,...,p,

Au'(oj) — & (u(oy)) =0, j=1,2,...,p,

DBy (o) — ¢o(0,I%(0),Z°v(0)) =0, 0 €w, o# o, k=1,2,...,q,
Av(og) — Ek(v(og)) =0, k=1,2,...,q,

AV (ok) — Ef(v(og)) =0, k=1,2,...,q,

ol7(0)|p=0 = u1, 027U (0)|y=0 = ug,

Ul’ﬁv(o)|ﬂ:0 = vy, UZiﬁV/(U)L,:Q = Vg,

with 1 < a, 8 <2, ¢1,¢2 : [0, 7] x R2 — R are continuous functions and

Au(o;) = u(aj) —u(o;

Av(or) =v(oy) —v(og),  AV(ok) = V(o)) = V(o)
where u(aj'), v(o}) and u(o; ),v(oy, ) are the right limits and left limits respectively, &;, 7, &, & : R — R

are continuous functions and ¢D% 7% are the a-order Caputo fractional derivative and integral operators
respectively.

), Av'(0)) =u'(0]) —u'(0;)



The remaining article is arranged as follows: In Sect. 2, we present some basics definitions, theorems,
and lemmas which will be used in our main results. In Sect. 3, we use suitable cases for the existence and
uniqueness of solution for the proposed system (1) using Kransnoselskii’s type fixed point theorem. In Sect.
4, we discuss different kinds of stabilities in the sense of Ulam, under certain conditions. In Sect. 5, an
example is given to support the main results.

2. Axillary Results

In this section, we present some basic notations, definitions, and results that are used in the whole article.
Let T > 0, w = [0, T]. The Banach space of all continuous functions from w into R is denoted by C(w, R)
with the norm
[ull = sup {|u(o)| : 0 € w}

and the product of these spaces is also a Banach space with the norm
s, ) = [full + ]
The weighted space of continuous functions with 1 — «, 1 — 8 > 0 are denoted as:
91 =C1_o(w)={u:(0,7] = R: o' (o) € C(w,R)},
Vg =C1_g(w) ={v:(0,7] = R:0'"Pv(s) € C(w,R)},

with the norms
[ullo, = Sup{lol"”‘u(a)| (0 € wl,
[v]l9, = sup{|o*Pv(0)| : 0 € w},
respectively. Their product ¥ = iy x ¥ is also a Banach space with the norm || (w,v)|ls = [ullg, + [[v]s.-

Definition 2.1. [9] Let u € C(w,R), the Caputo fractional integral of order « is defined by

8 u(0) = ﬁ / (0 — O Lu(C)dC,
0

where I'(+) is the Euler Gamma function defined by I'(a) = [ e 0% 1do, o > 0.

Definition 2.2. [9] Let u € C(w,R), then the Caputo fractional derivative of order « is defined by

g

Je=orewc,

0

1

cDngu(O') = m

where p = [a] + 1 and [a] denote the integer part of the real number «.

Lemma 2.3. Let u be any function and let o > 0, then the Caputo fractional derivative for the homogeneous
differential equation
‘D*u(c) =0, a>0

has solution
wo)=0""te, 1+ 0P %y o4+ oct + .
and for non-homogeneous differential equation

‘D*u(o) = ¢1(0), a >0,

has a solution
I “Du(0) = I%1(0) + 0P Lep1 + 0P 2y o+ -+ acr + o,

where c;_1 €R, 7=1,2,...,pandp—-1<a<p.



Theorem 2.4. (Altman[/]) Let A # 0 be a convex and closed subset of Banach space . Consider two
operators ¥, o such that

1. 9 (wv) + Sa2(u,v) € A;

&2

2. & is contractive operator;
3. s compact and continuous operator.
Then there exists (u,v) € A such that 31 (u, v) + S2(u, v) = (v, v) € V.

The following definitions and remarks are taken from [13, 16].

Definition 2.5. The given system (1) is HU stable if there exists N, g = max{N,, Nz} > 0 such that, for
k = max{kaq,, kg} > 0 and for every solution (£, () € ¥ of the inequality

°DY(0) — ¢1(0,I%(0), Z°¢(0))| < Fa, 0 € w,
|AE(05) = E(E(0)] < Bay, J=1,2,...,p,

|AE (o) = E5(E(0))] < Koy J=1,2,...,p,
“DP((0) — ¢2(0,I%(0),T°¢(0))| < kg, 0 € w,
|AC(ok) — Ex(C(or))| < kg, k=1,2,...,q,

|AC (o) = EE(Clow)| < kg, k=1,2,...,q,

there exists a solution (u, v) € ¥ with

1(w,v) (o) = (£, O)(0)]lo < Napk, o€w.

Definition 2.6. The given system (1) is generalized HU stable if 3 N/ € C(RT,R*) with N’(0) = 0 such
that for any approximate solution (£,() € ¥ of the inequality (2), there exists a solution (u,v) € ¥ of (1)
satisfying

I(a, v)(0) = (€, ) (@)lls <N'(k), o€ w.

Definition 2.7. [16] The given system (1) is HUR stable with respect to 1o, g = max{ta,¥s} with 1, s €
C(w,R) if 3 a constant Ny, 4, = max{Ny_ ,Ny,} > 0 such that for any x = max{rq,,sg} > 0 and for any
approximate solution (&, () € 9 of the inequality

“DE(0) — ¢1(0,T%(0),2°¢(0))| < Ya(0)ka,, 0 € w,
|A§(Uj) - gj(g(o'j))‘ < %(U)Hm Jj=12,...,p,

|AE (07) — € (E(0))] < Yal0)ka, =1,2,...,p,
“DP((0) = ¢a(0,I%(0),I°((0))| < Yp(0)kp, 0 € w,
|AC(ok) — Ex(C(or)| < ¥plo)rs, k=1,2,...,4q,

|AC (o) — Ex(Clow))| < vp(o)kp, k=1,2,...,q,

there exists a solution (u,v) € ¢ with

I, v) (@) = (€, (@)lls < Ny psap(0)r, o€ w.

Definition 2.8. The coupled system (1) is generalized HUR stable with respect to 1, 3 = max{¢a, s}
with 14,5 € C(w,R) if there exists a constant Ny, 4, = max{Ny,,Ny,} > 0 such that for any approximate
solution (£,¢) € ¥ of the inequality (3) there exists a solution (u,v) € ¥ of (1) satisfying

1w, v)(0) = (€, ) (@)llo < Ny 05 ¥a,5(0), 0 € w.



Remark 2.9. Let (£,() € ¢ is a solution of inequalities (2) if there exists a functions R,, £y, € C(w,R),
depends on &, ¢ respectively, such that

L R, (0)] < Kay |L4,(0) < Rp, 0w

“D*(0) = ¢1(0,2%(0), I°¢(0)) + Ry, (),
Ag(aj) = €i(&(05)) + Royy G=1,2,....p,
Af/(dj) = g]*(f(aj)) +R¢1ja J=12,....p;,
“DI(0) = ¢2(t, I°¢(0), I°¢(0)) + L4, (0),
Al(or) = E(C(or)) + Loy k=1,2,...,0,
ACI(Uk) = g/:(C(Uk)) +2¢2k, k=1,2,...,q

3. Existence and Uniqueness
In this section, we discuss the existence and uniqueness of solutions of the proposed system (1).

Theorem 3.1. Let a € (1,2] and ¢1 be any linear and continuous function. The fractional impulsive
differential equation

CDQU(U):¢1(U)’ 0 cuw, t#ajaj:1727"'ap7
A’U,(O'j) = gj(u(gj))a j: 1727"'7pa
Ad (o) = & (u(oy)), 7=12,...,p,

2—

gl—@u(g)|020:u17 o7 (0)|g=0 = u2,

has a solution

u(o) :ﬁ /(:(U — ) gy (m)dm + J; ﬁ /Ujjl(gj — ) gy (m)dm
+ z ) L (et + 3 &(ue)

+ZE u(0;))(oc — 0 JrZUO‘ 1u1+200 u; z=1,2,...,p. (5)

Proof. Consider
‘Do) = ¢1(0), 0 €w, aecl0,1). (6)

For o € [0,01), Lemma 2.3 gives

11(0') = ﬁ ‘/00-(0' - W)a_1¢1(7f')dﬂ' + a0 —|— as, (7)
vlo) = ﬁ /OU(" —m)*2¢1 (m)dm + .

22—,/

1=2y(0)|g=0 = w1 and 027U/ (0)|,—0 = uz, we obtain

Using initial conditions o

a; = 0% 2uy and ay = o ;.



Substituting a; and ag in (7), we get

u(o) = ﬁ /0"(0 —m)* gy (m)dm + 0% Ty + 0% My,
(o) = ﬁ /00(‘7 — m)* 2y (m)dm + 0 2uy.

Again for o € [01,02), Lemma 2.3 gives

u(o) = F(la)/:(aw)a1¢1(7r)d7r+bla+b2, (8)
W(0) = gy | o= m o mar £ b
Using initial impulses
by :ﬁ /o 1 (01 — m)*2p1 (m)dm + Ef (u(o1)) + of‘_2u2,

1 g1

iy Jy =i = s [ o

+ &1 (u(oy)) — o1& (u(o)) + o2 Ty,

by =

Substituting the values of by, by in (8), we get
1 7 a—1 1 ’ a—1
wo)=x—~ [ (or—m)* ¢i(m)dr+ —— [ (0 —m)* ¢i(m)dnm
F(Ol) 0 o1

(o1 — ) 2¢y(m)dm + &1 (u(01))

r
Er(u(o1))(o — o1) + 08 tuy + 00 uy,

(o1 =" 2r (e + g [0 = 7)o e

Similarly for o € [0},0;41)

) =iy | o = 7)oy 3 o / jjl(”j — 7)1 (m)dn

> ga_aji)) /Uj (0j —m)* 2 (m)dm + ;Ej (u(oy))

j=1 gj—1

z z z
+ Zgj(u(aj))(a —0j)+ Z 0;“_1u1 + Z JU?_QuQ.
j=1 j=1 j=1



Corollary 3.2. In view of Theorem 3.1, our coupled system (1) has the following solution:

u(o) =

=

fﬂ (0 — 7)1y (7, T%u(7), TP u())dm
[0 (03 — 7)1 (m, Tou(m), T0u(m)

_J
=
&

+
'MNW MN

(x)

+3 é‘ia,ﬁ I (05 = m)* 261 (m, T o), T u(m) )dr
P2
+ 3 Ei(uloy) + X & (wl0)) (0 — o) + X 08w + 3 008w,
Jj=1 j=1 Jj=1 j=l1
=1,2,...
z 1 707 7p’ (9)

:
g:

o (0= )P Lo (1, T u(n), TP u(r))dm

ﬁf;: ok — )8 Lo (m, T%u(T), P (7)) dm

+
MN

k=1
Z 6 1) fgk L or — )P 2o (7, T%u(r), TP u(n))dr
k=
3 E(w(on) + X E(v(on) (0 —0n) + X 0f tu + 3 0of P,
=1 k=1 = =
z=1,2,...,q.

Now, for transformation of the given system (1) into a fixed point problem. Let the operators &, S :
¥ — ¥ be defined as

S (u,v)(0) =

and

Sa(u, v) (o)

St (u(o)) = g &(u(o;) + é Er(u(o)))(o — o)) + ; ot Ty, ¢ g 007y
zZ: 1,2,...,p, ) (10)
W) = X Elvlon) + X Ev(o0)o — o)+ X1+ 3 00 v,
z=1,2,...,q,
S3(0,9)(0) = iy J2. (0 1711 (m, Tou(r), Tow()
F 3 i [T (o — M) 6 (m, Tou(), ()

-
I
=

+ 3 (A I (0 = 12 Tu(m), TP dn
]:
Z:1727 "7p’ (11)
S5 (w,v)(0) = iy S (0 — )P o (m, Iu(r), TPv(x))dr

+ =
MN

L) f:: (o) —m) B=Lgs (7, Tu(7), ZPv(m))dm

k=1
k; (2 [0 (o =m0 (m Tu(m), TPv(m))dr
=1,2,...,q.

For additional analysis, the following hypothesis need to hold:



(H;) For 0 € w and 1,75 € R, there are o, 7,v € C(w,R™") such that
[¢1(0,21(0), 22(0))| < 0(0) + 7(0)|z1(0)| + v(0)|z2(0)|

with 01 = sup,¢,, 0(0), 71 = sup,¢,, 7(0) and v; = sup,¢, v(o) < 1.
Similarly, for o € w and 1,72 € R, there are o*, 7*,v* € C(w,RT) such that

|92(0, 21(0), 22(0))| < 0™(0) + 77 (0)[21(0)] + 0™ (0)|22(0)]|
with 0y = sup, ¢, 0*(0), 72 = sup,¢,, 7%(0) and vy = sup,, v*(0) < 1.

H,) £, : R — R are continuous and there exist constants Gg, Ge+, G=, G+ *,357 gAg*,gA’ ,é’ . >0, such
315 & Ye & Ye

that for any (u,v) € ¢

E.(w)] < Gelu| +GE,  |E.(v)| < Gelv| + Gt,
E2(0)] < Geelu| + Gbey  |EX(V)] < Ge-|v] + G,

where z =1,2,...,p.
(H3) For all 1, z9, 27,25 € R and for each o € w there exists constants L4, > 0, 0 < L7 <1, such that
[¢1(0, 21, 22) — ¢1(0, 27, 25)| < Lo, w1 — 27[ + L3, w2 — @3-
Similarly, for all 1, zo, z7, 23 € R and for each o € w there exists constants L4, > 0, 0 < £% < 1, such that
y ) 1) %2 b2 b2
|¢2(0, 21, 22) — P2(0, 21, 25)| < Lo, w1 — @7[ + L3, |22 — 23].

(Hy) &.,€F : R — R are continuous and there exists constants Lg, Lex, L%, L3 such that for any
(u,v), (u*,v*) €

|Eu(o) — Eu”(0)] < Lelu—u®|, [E.v(o) — EvT(0)] < LE|v— VT,
| u(o) — Exu"(0)] < Le<fu—n*|, [EXv(o) —EXvT(o)| < Liv|v — V7.

Here we use Kransnoselskii’s fixed point theorem to show that the operator & + S5 has at least one fixed
point. Therefore, we choose a closed ball

0, = {(a) € 0wl <l < & and vl < L} € 0.

r
2

where ) .
G1+ G +01G3 + 0263

r> .
T 1—(G2+ G5 + G304 + G3G7)
Theorem 3.3. If the hypothesis (Hy)—(Hy) hold, then the given system (1) has at least one solution.

Proof. 1. For any (u,v) € ¥,., we have
191 (w, v) + S2(uw, v)llo < (ST [0, + 19T (0) o, + (1950w, v) Lo, + 11957 (w, v)]lv, - (12)

From (10), we get

1 (o)) <Dl (o) + 310 I ol — o)+ 3 los o

Jj=1

z
+ Z |00;‘72H01_au2|, z2=1,2,...,p.
j=1



This implies that
IST(w)llo, <zlo'™*[(Gellull + Ge) + 20" |(Ge- [ull + G-)I(0 — 02)]
+ 20027 | | + 2[00 T3 Jo " g

<G1 + Ga|lu|.

Similarly, we can obtain
IST* (W)llo, < G + G3llvll,
where
G1 =2G¢|0' | + 2Gp. 0" % lo — oa] + 2|0t T o' m| + 2|oot T2 0! "),
Gy =2Ge|o' ™ 4 2Ge- |0 |0 — 02|, for z=1,2,....p, and
Gf =2Gelo" 7| + 2Gp. |0 Pllo — a.] + 2|0l Mo~ Pui| + 2ot 2ot P,
G =2Ge|o" P+ 2Ge- |0 P|lo — 0.|, for z=1,2,....¢q

Also, we have

O.lfa o
79300 < [ = 1 o, 2, T i
Z 11—« o
-3 T L N0 ot Tutm), (i
l-«a _
+Z o [ e o ), Tt
for z=1,2,...,

Now by (Hj)

[y(0)| =|¢1(0,T%u(0), v (o))
<o(0) +7(0)|Tu(0)| + v(0)|T%v(0)|

<ola) + 7(0) gy [ =) | e(o)ds + v(o ﬁ/ o)
0

Now taking sup,,, on both side, we get

| [[|u Loy feadlIkdl
Tla+1)  T@E+r1)

Applying sup,¢,, to (15) and using (16) in (15), we get

lo|[[ul o |||v|| lot=||(0 — 0.)]
Cy* <
19200, ¥)llo < (01 T TUTE ) T(a+1)

zlot (o — 021)?] | zle' % lo — ol(0x — Oz—l)“‘1|>

lyll <o1+m

T(a+ 1) + (o)

lo?I[wlgs , - 1o”[lIv]Gs
T(a+1)  'T(B+1)
<01G3 + G3G| (w, V).

+

<01G3 + 11

(15)

(16)

(17)



Similarly

957 (w, v)[lo, < 0203 + G365 ||(w, v)[, (18)
where
Gy = ‘Ul_aH(J —0.)°| Zlgl_aH(oz —0.1)"| + Z|01_a||‘7 —o.||(o, - szl)a_1|
3 (a+1) T(a+1) I'(a) ’
z=1,2,...,p,
Gr — o' P]|(0 — 0.)”| n zlo' P02 — 0.21)"| n zlo!'Pllo = o.l|(0: = 021) 7!
’ L(g+1) L(B+1) I'(B) ’
z=12,...,q,
o ‘*I Ll }
=max and
e e
. { ld }
=max
“T(B+1)

Putting (13), (14), (17) and (18) in (12), we get

[S1(w, v) + S2(w, v)[[o <G1 + Gallull + G + G3l[v]| + 01G3 + G3Gu|(uw, V)|
+02G3 + G361 [|(w, v)||
<G1 + G 4+ 01G3 + 02G5 + (G2 + G5 + G3G4 + G3G1)|| (0, v)||
<r.

Hence, ||S1(u,v) + Sa(u, v)|ly € Y.
2. Next for any o € w, (u,v),(§,() € ¢

181(, v) = (&, Ollo <[IS7(w) = ST(E) oy + 577 (v) = STl

< Z_; [ =1(&5 (ulo)) — & (E()))] + kz_: 1 P ||(Er(v(ok)) = Ex(C(ow))]
+ Z [ =[5 (u(ay)) — £ (&(oy))llo — o]

+ > 1o PI(ER ((ow) = i (Clow))ll(o = on)]
k=1

<(2Le +zlo — 02| Le-)|o' T |lu — €]l + (2L5 + 2|(0 — 02)[ L )]0 ¢l
<L(o1+ 02)|[(u—¢& v =
Here £ = max{Lg, Lex, L5, L5},
01 = Z|Ul_a| + 2‘0.1—04”0. - UZ|7 z = 1727 - Dy
and
02 = Z|0-1_B‘ +Z|0-1_BHU _UZ|7 z=1,2,...,q
Therefore, & is a contractive operator.
3. Now, for continuity and compactness of Iy, we make a sequence Ty = (us,vs) in ¥, such that

10



(us,vs) = (u,v) for s = oo in ¥,.. Thus, we have

192 (us, vs) = F2(u, v)lly <[5 (us, vi) = S5(w, v)llo, + 1957 (ws, vi) — 357 (w, v)[v,

<<£@oﬂWuuH+£&0ﬂWs—ﬂ><oiamaaﬁﬂ

S\ 7 T+ T(3+1) D(a+1)
ot =|(0z —0.1)| | 2lo"%lo = o.|l(02 = 02m1) !
+ T(a+ 1) * (o)
L Loalo®lllus —ufl ci loPllvs = v\ [ |o22|(o — 0.)?
T(a+1) T(3+1) T(3+1)
O e [P O s LA A ol
rB+1) I'(B)
Loy lo®||[us — ]| | £3,10"]llvs — v
<Q3< Mo+ 1) + TG+ 1)
o [ Loslollls =l | £5,10%lvs — vl
i < Ma+1) | T@+D )

This implies ||Sa(us, vs) — Sa2(u, v)||9 — 0 as s — oo, therefore Iy is continuous.
Next, we show that Sy is uniformly bounded on ¥,.. From (17) and (18), we have

[S2(w, v)[lo <[IS5(w, v)[lo, + 1957 (0, v)l|o,
<01G3 4+ 02G5 + (G3G4 + G361 (u, v)]|
<r.

Thus, ¥ is uniformly bounded on ,.

For equicontinuity, suppose 71,72 € w with n; < 7 and for any (u,v) € 9, C ¢ where 9, is clearly
bounded, we have

195 (, v) (1) — S50, v) (n2) [lo, =max o~ (35w, v) (1) — 33w, v)(n2))]

o [l [Pl \ (e =l = 02)°]
<<01+T1F(a—|—1) +”1r(5+1)> < T(a+1)

=2 — 0.)%] | 2lo ] — nal|(o- —aﬂ)a-w)

B T(a+1) + T(a)

This implies that
92 (a, v)(m1) — S5 (w0, v)(n2)[lo, =0 as m — 2.

In the same way, we have

1957 (w, v)(m) = 57 (w, v)(n2)[[9, = 0 as m = na.

Hence
[S2(w, v)(m) — Sa2(w, v)(m2)|ly = 0 as m — n2.

Thus, Sy is equicontinuous. So Jg is relatively compact on 9,.. Hence, by the Arzela—Ascoli Theorem,
Sy is compact on ¥,.. Thus all the conditions of Theorem 2.4 are satisfied. So the given system (1) has at
least one solution. O
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Theorem 3.4. Let the hypothesis (Hs)—(Hy) be satisfied with

(A2£¢1 + A4‘C¢>2)|0-a| (A2‘CZ>1 + A4‘C22)|Jﬁ|

A+ Az +

INa+1)

then the given system (1) has a unique solution.

Proof. First we define an operator ¢ =

1

p1(u,v)(0) =

TG +1) <L

(p1,p2) : 9 = U, ie. p(u,v)(o) = (¢1(uw,v), p2(u,v))(c), where

Uaiﬂaillﬂ “u(r), Z%v(n))dn
NML( 2161 (m, Tu(r), TPv(m))d

z 1 o
),
+Z1"6;—]1/

oj — ) Ly (mr, Iau(w),IBv(ﬂ'))dﬂ'

(oj — 7r)a72¢1 (m, Z%(n), IBV(TI'))dﬂ'

z z

308 uloy)) + Y o) o — )+ 3

j=1 j=1

and

+Z€k

v(ok) +Z€k v(ok))(oc — ok —|—z:o',~C vy

k=1
+Zaa,’f—2V2, z=1,2,...,q.
In view of Theorem 3.3, we have
Lol \ (o' =ell(e = 02)°] | 2lo'=?]l(02 — 02m1)°]
1-a _ < 1 z 2 z—1
ot o — ol[(0: — 02—1)* Y|
o | (Lendo®l (lol22lllo = 02)%] | 2lot ™ l(on = 02-1)°
Ia+1) I'a+1) INa+1)
11—« _ _
+ z|o |lo —o:||(o-

INCY

12

a—1
0:-1) |> +(z£5+z|o—az\ﬁg*)|al_a\ |lu—¢|.



Taking sup,¢,,, we get

AsLy 0% DAoL |o”|
H‘pl(uvv) - 901(5’4)”191 < (AI + F(a—i— 1) + F(ﬁ + 1) H(uav) - (57()“

for z=1,2,...,p,

where
Ay =20 7Y Le 4 2|0 |0 — 0. |Le-
Ay = |Jl_a”(0 —0.)% Z|Jl_a|‘(0z —0,-1)"] + Z|01_a||0 —0.|(o. — szl)a_l‘
I(a+1) I(a+1) () ’
for z=1,2,...,p.
Similarly
A4£¢ |O’a‘ A4£2 |aﬁ|
— <A 2 2 —
||Q02(11,V) 902(&-14-)”792 = ( 3+ F(Oé—l— 1) + F(ﬁ"‘ 1) ||(u,v) (£7C)||7
for z=1,2,...,q,
where
As :z|01_6|£§ + z|01_6||(0 —0,)|LE-
A4:|‘71_5H(0_UZ)6| Z|01_6|‘(0z_0271)5| z|‘71_6||0_0zu(gz_szl)ﬂ_ll
r(B+1) r(B+1) r'(8) ’
for z=1,2,...,q.
Hence

(A2£¢1 + A4£¢2)|0-0l| (A2£*1 + A4£Z§>2)‘O—ﬂ|
le(u, v) = @& Ollo < <A1 + Az + ot 1) + NCE) 1w, v) = (& Ol

This implies that the operator ¢ is a contraction. Therefore, (1) has a unique solution. O

4. Ulam’s stability analysis

In this section, we study different kinds of stabilities, like HU, generalized HU, HUR and generalized
HUR stability of the proposed system.

Theorem 4.1. If assumptions (Hy)—(Hz) and inequality (19) are satisfied and
AsL 0P AsLy, 0%
<A1 + T ) <A3 + e

AsLy, |0 ALy |of|

then the unique solution of the coupled system (1) is HU stable and consequently generalized HU stable.

F=1-— > 0,

13



Proof. Consider (£,() € ¥ be an approximate solution of inequality (2) and let (u,v) € 9 be the unique

solution of the coupled system given by

“Du(0) — ¢1(0,I%(0),IPv(0)) =0, o €w, o#0oj, j=1,2,...,p,
Au(o;) — &a(3)) =0, j=1,2-...p,

Am/'(o;) = & (u(oy) =0, j=1,2,...,p,

DBy (o) — pa(0,T%(0),IPv(0)) =0, o0 €w, a# ok, k=1,2,...,q,
Av(og) — Ek(v(ok)) =0, k=1,2,...,q,

An/ (o) — & (v(og)) =0, k=1,2,...,q,

ot %u(0)|y=0 = my1, 027

o' Pv(0)|o=0 = n1, 027Pn/(0)|o=0 = na.

ml(a) |a:0 = ma,

By Remark 2.9 we have

“D(0) = ¢1(0,I%(0), I°¢(0)) + Ry, (0),
A(oj) = &j(&(05)) + Ry, T=1,2,...,p,
Al (o)) = E(E(0))) + Rerjs 7=1,2,...,p,
“DP((0) = da(0,I%(0), I°¢(0)) + L4, (0),
AC(O‘k) = 5k(<(0k)) +£¢2k7 k=1,2,...,q,
AC'(Ok) = Sz(C(ak)) + Lo k=1,2,...,q

By Corollary 3.2, the solution of problem (21) is

14

€0)= ey S5, (0~ )" (61 IE(R), TP() + Ry ()
X iy oo (05 = m) 7 (G1(m, I (), I°¢ () + Ry, (m))drm
+ 3 R L7 (0~ )20 T ), T ) + R ()
+ S E ) + 8a,) + j;w; (60) + 8,0 —03) + 52 05
-+éa;2m,z:1zuqn
() = iy 5.0~ 1) Gl To€() TP+ 20

+,§: a) Joey (01 = T (o (7, I (7), T7C(7)) + L4, (7))dr
* él G20 I (on = m)P 72 (a(m, T€(x), I (7)) + Lo () )

£ 3 ECo) + S0 + 3 EC0R) + L)l o) + 3 o
+g;052w,z:12 .q.



We consider

o™ “( (o)

(@)

‘/
11—«
+Z |U |
Z"’l “I|(0 - o))
MNa-1)
+Zlal‘°‘llc‘3j(u(
j=1

ot

[l

Z|01 O‘||U—UJ|
IMNa-1)

;) = &(§

As in Theorem 3.4, we get
— <l A
Hu 5”191—( 1+ F(oz—|—1)

and

[[v = ¢lly, < <A3 +

MNa+1)

™) |1 (m, I

7 — 1) |1 (m, T%(7), TPv(m)) —
— )2 g1 (m, T%(r), T (7)) —
(a)| + Z o' €5 (u(oy)) —

™ R, (m)ldr + >
j=1

A2£¢1 |aa|

A4£¢2|0a|

u(m), Z%v(m)) — éu(mw, I&(m), I7¢(m)) | dm

¢1(m, I¢(), ¢ (m))|dm
¢1(m, I¢(m), ¢ (m)) |dm

& (&(ai)l|(o = aj)l

ot~

(Uj =) R, (m)]dm

™) 2] | R, (1 |d77+2:|01 N1 Ry, | +Z | 1Ry, llo —
Jj=1
a— Agﬁ* |0'B| o
>|0 1|||u—§||191+<A1+F(ﬁ‘:1_1) 7w = Cllo,
+ (A + 2|0 + 20 |0 — o) Ka, 2=1,2,...,p (23)
_ ALy 0" _
)Uﬂ 1|Hu_£”192+<A3+F(6¢—2|—1) |0 H]lv = Cllo,
+ (A + 2|0 P 4 210 |0 — ow))ks, 2=1,2,...,q. (24)

From (23) and (24), we have

(m +

AoLy |of|

T(B+1)

)

(B + 200" + 20"l — o))

lu—¢&lls, — v = Clls, < .
Ao L o AL N
- <A1 + lz“(i-li-lf)|> — (Al + m) g1
and
ALy, ||
Az + o )
(a+1) B B
v =g, — [u— €|y, < (Ay + 2|0 P+ 2|0t B|o — ax)
2 AaLy, o) T AuL3, |0

o

1_<A3+F(ﬁ+1

15



respectively. Let

Dol |68
A1+ 91
P - ( o ) py (B2 + 2010+ 20"l — oy

) 2 — N
AsLy, o AoLy, o=
- <A1 + ?((fin) 1- <A1 + 412“(;1‘1*) ) o]

AyLy, o]
<A3 ;(2—',—2 1) )
] 3

and Py =

(Ay + 2|0 B + 2|0t 8|0 — op)

AsLy |0 INVIRE
1—<A3+r(5+1>> 1—<A3+r(5+1>|’“|

Then the last two inequalities can be written in matrix form as
L =Pu| [lu=¢llo, | o |Paka
=Ps 1 | |lIv—=Cllo.] = [Pars

1
HU—5||191 F Paka
-l | [P

W

[V = Cllo,

w3
=

where

> 0.

As L, 1|€7 AyLy, |0
<A1 + e ><A3+ TTatn )
F=1-
A z: AsLy, |o| AgLy o]

PQHa + 'P1'P4Ii,3

From system (25) we have

Hu - €||191 <

j'.' f
Pngﬂa 7)4,‘{[3
— < [

which implies that

’leﬁa 7317)4:%5 7327)3:%& 'P4I€B
F F T F TTF

If k = max{kq,kp} and N, g = % + @ + % + %, then
(0, v) = (& Ollo < Nash-

Thus the system (1) is HU stable. Also, if

(0, v) = (& Ollo < Na,gN' (),
with N’(0) = 0, then the given system (1) is generalized HI/ stable.

Hu - 5”191 + ”V - <||192 <

For the next result, we assume that:
(H;5) Let 3 two nondecreasing functions wq, wg € C(w, R™) such that

Ty (0) < Lowa (o) and TPws(o) < Lywg(o), where Lo, Lz > 0.

16
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Theorem 4.2. If assumptions (Hy), (Hs), (Hs) and inequality (19) are satisfied and
Aol |of AsLy, o]
(Al + 5D ) <A3 + Tasn

AsLy, |0 AyLy |oP]

then the unique solution of the given system (1) is HUR stable and accordingly generalized HUR stable.

F=1-— > 0,

Proof. With the help of Definitions 2.7 and 2.8, we can achieve our result, doing the same steps as in Theorem
4.1. O
5. Example

Here we present a specific example, as follows:

Example 5.1.

s 5
CDQ . 2+Z5u(o)+Z4v(o) -0 3
511(0) 8060+50(1+I§r((%))_~|_zgv(a)) y O 7& 27
3y _ ¢. ) — uls
Au(ﬁ) - g](u(aj)) - 70_76(3%?‘7
3\ _ ox _ uls
o) 7gjt(u%?;(ﬂiﬂj((%))‘7 (o)
c2 cos(u(o))—v(o)sin(o u(o _ 3
Da 0) - 50 = 25+u(o) 0, o ?é 27 (27)

v(
Av(3) = Ey(v(oy)) = 70I1(|3()%)"

"3y = & _ &I
AV'(5) = & (v(ow)) = FoeaTk
o1 0u(0)|omo = w1, 02 W(0)]g=0 = ua,
JliﬂV(J”U:O = Vi, 0-27ﬁvl(0_)|020 = Vg.

From system (27), we see that a = g, B =2 and o1 = 3. Also, for o € [0,€] and u;,us, v1,v2 € R* we can

easily find
1 1 R 1 1

‘C‘lbl:ﬁ;lim’ £¢2: 22:%, ;Cg:Eg:%, Eg*zﬁz*:%

From Theorem 3.4, we use the inequality, and get

(A2Ly, + AyLy,)|o? n (DAoL, + ALy )]0’
I(a+1) I'B+1)

A+ Az + ~ 0.825607 > 0,

hence (27) has unique solution with
AaLy |o? AyLy,|o%|
(Al F(,g-',-l 1) ) (A?’ 4F(<j+2 1)

AnLy, |0 AyLy 0P
1- (Aﬁ?(i’inﬂ [1— <A3+r(§il>

Thus, with the help of Theorem 4.1, the given system (27) is HU stable and also generalized HU stable.
Likewise, we can justify the conditions of Theorem 3.3 and 4.2.

F_q1_ ~ 0.981382 > 0.

17



6. Conclusion

In this article, we used the Kransnoselskii’s fixed point theorem, to acquire the necessary cases for the

existence and uniqueness of solution for the proposed system of fractional integro—differential equations.
Further, under specific assumptions and conditions, we proved different kinds of Ulam’s stability of the
system.
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