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Abstract

Artificial subsurface (tile) drainage is used to increase trafficability and crop yield in much of the

Midwest due to soils with naturally poor drainage. Tile drainage has been researched extensively

at the field scale, but knowledge gaps remain on how tile drainage influences the streamflow 

response at the watershed scale. The purpose of this study is to analyze the effect of tile drainage 

on the streamflow response for 59 Ohio watersheds with varying percentages of tile drainage and

explore patterns between the Western Lake Erie Bloom Severity Index to streamflow response in

heavily tile-drained watersheds. Daily streamflow was downloaded from 2010-2019 and used to 

calculated mean annual peak daily runoff, mean annual runoff ratio, the percent of observations 

in which daily runoff exceeded mean annual runoff (TQmean), baseflow versus stormflow 

percentages, and the streamflow recession constant. Heavily-drained watersheds (> 40 % of 

watershed area) consistently reported flashier streamflow behavior compared to watersheds with 

low percentages of tile drainage (< 15% of watershed area) as indicated by significantly lower 

baseflow percentages, TQmean, and streamflow recession constants. The mean baseflow percent for

watersheds with high percentages of tile drainage was 20.9 % compared to 40.3 % for 

watersheds with low percentages of tile drainage. These results are in contrast to similar research

regionally indicating greater baseflow proportions and less flashy hydrographs (higher TQmean) for

heavily-drained watersheds. Stormflow runoff metrics in heavily-drained watersheds were 

significantly positively correlated to western Lake Erie algal bloom severity. Given the recent 

trend in more frequent large rain events and warmer temperatures in the Midwest, increased 

harmful algal bloom severity will continue to be an ecological and economic problem for the 
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region if management efforts are not addressed at the source. Management practices that reduce 

the streamflow response time to storm events, such as buffer strips, wetland restoration, or 

drainage water management, are likely to improve the aquatic health conditions of downstream 

communities by limiting the transport of nutrients following storm events. 

Keywords: tile drainage, agriculture, baseflow, recession analysis, intensively managed 

landscapes

1. INTRODUCTION

Artificial subsurface (tile) drainage is required for increased crop yield in much of the cropland 

in the Midwestern U.S. (‘Midwest’) due to soils with naturally poor drainage capabilities. Tile 

drains increase soil drainage by removing excess subsurface water that can inhibit plant growth, 

resulting in lower water tables that increase the trafficability of heavy machinery to operate in 

farm fields. Tile drains began to be installed in the Midwest during the late 20th century with the 

initial goal of strategically draining wet areas of farm fields that were susceptible to ponding, but

installations are now common throughout the entire field to lower the water table (Blann et al., 

2009). Drainage pipes are typically installed between 0.6 – 1.2 m below the surface 

approximately 10-30 m apart, depending on site-specific soils, crop type, and cost (Skaggs and 

van Schilfgaarde, 1999). Infiltrated water is captured underground by perforated drainage pipes 

and routed away from the field into adjacent ditches and streams. 

According to the U.S. Department of Agriculture (USDA) National Agriculture Statistics 

Service (NASS) 2017 Census of Agriculture, 225,024 km2 of cropland are estimated to have tile 

drainage with the vast majority occurring in the Midwest (USDA NASS, 2019). The amount of 

land with tile drainage in the U.S. increased by 28,484 km2 (14.5%) between 2012 and 2017

(USDA NASS, 2014), with the largest increases occurring in the Midwest. Recent changes to 

precipitation patterns that generate more frequent large rain events in the Midwest (Williams and

King, 2020) may partly explain the growing adoption of tile drainage. Further, as heavy rainfall 

events are projected to increase in frequency into the future due to climatic change, we can 

expect an expansion of land under tile drainage globally (Gordon et al., 2017). Understanding 

how tile drainage impacts the hydrologic response of downstream waterways, and subsequent 

transport of nutrients, is critical for the development holistic management plans that improve 

downstream aquatic life and help communities assess flood risks.
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However, the streamflow response, and subsequent export of nutrients, from farm fields 

under tile drainage is complicated to ascertain and predict due to compounding environmental, 

management, and site-specific soil conditions (Hanrahan et al., 2020). For example, Boland-

Brien et al. (2014) reviewed several field studies (< 10 ha) and suggested that tile drainage can 

cause peak streamflow to decrease when water tables are close to the surface due to clayey soils 

with low permeability or during high rainfall events. In contrast, peak flows may increase on 

fields with deeper water tables with drier climates or more permeable soils (Boland-Brien et al., 

2014). Such changes in peak flows across large scales could have impacts on timing and 

magnitudes of flood peaks for downstream communities. In addition, management practices that 

target particular flow pathways (e.g. reducing surface runoff or reducing tile outlet discharge) 

could have adverse effects on other nutrient transport mechanisms, and thus have unintended 

impacts to nutrient loads not initially targeted (Smith et al., 2015). Studies have consistently 

showed that water exiting tile drains contribute significant amounts of nutrients (e.g. nitrogen 

and phosphorus) to downstream waterbodies. In Illinois, riverine nitrate flux from tile-drained 

land was over twice the value compared to non-tile drained land despite higher net nitrogen 

inputs on non-tile drained land (McIsaac and Hu, 2004). Tile drainage exported 80% of stream 

nitrogen load, despite only contributing 15-43% of the streamflow in a 122 km2 watershed in 

northeast Iowa (Arenas Amado et al., 2017). In a headwater watershed in Ohio (<4 km2), tile 

drainage accounted for 47% of total discharge, 48% of dissolved phosphorus, and 40% of total 

phosphorus (King et al., 2015).

Tile drains have been shown to reduce mean groundwater travel times, which is 

problematic for example when considering the transport of nitrogen which tends to have higher 

concentrations in groundwater compared to surface runoff (Schilling et al., 2012). A modeling 

study on a 74.3 km2 watershed in north-central Iowa revealed that mean groundwater travel times

are more than 150 times faster than those that existed prior to settlement, resulting in the 

majority of groundwater (>98%) bypassing perennial riparian buffers (Schilling et al., 2015), 

which drastically reduces the effectiveness of installing stream buffers to reduce nitrogen 

concentrations (Schilling et al., 2015). A study in western Indiana compared the residence time 

of baseflow in agricultural and adjacent undisturbed forested watersheds using multiple isotopic 

tracers (specifically CFC, SF6, 36Cl, and 3H) and suggested that baseflow in the agricultural 

watershed with tile drainage was controlled by a large contribution of tile drainage and/or soil 
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water with short resdience times (Frisbee et al., 2017). In contrast, Frisbee et al. (2017) 

concluded that baseflow in the adjacent, undisturbed forested catchments was supported by 

groundwater with much older residence times (at least 40 years old). Baseflow comprised of 

large contributions from tile drainage is problematic for the aquatic health of waterways due to 

the often high concentrations of nutrients measured in tile drainage. 

Baseflow proportions can be used to assess hydrologic impacts of land use and 

conservation practices and have been found to be strongly correlated to legacy nutrient 

concentrations; thus, baseflow estimations provide a first approximation of stream vulnerability 

to legacy nutrients (Tesoriero et al., 2013). Tile drainage was demonstrated to increase the 

proportion of baseflow to receiving streams in Iowa (Schilling and Libra, 2003; Schilling and 

Helmers, 2008; Boland-Brien et al., 2014), but a gap remains understanding the relationship 

between tile drainage and baseflow in other regions, particularly in regions with different soil 

and precipitation characteristics, such as Ohio. Baseflow proportions are generally thought to 

increase in larger or flatter watersheds as groundwater tends to be the main contributor to 

streamflow. According to Boland-Brien et al. (2014), while watersheds in Iowa with large 

proportions of tile drainage tended to have larger baseflow proportions compared to non-tiled 

watersheds, the variability of baseflow percentage with watershed size was much lower for 

watersheds with large proportions of tile drainage compared to non-tiled watersheds which 

exhibited an increase in baseflow proportion with watershed size. Boland-Brien et al. (2014) 

found that tile drainage had a similar homogenizing effect on all flow regimes, where heavily 

tile-drained watersheds showed little to no variability in streamflow response across a range of 

drainage areas compared to watersheds with a smaller proportion of tile drainage that exhibited 

larger variability in streamflow response when considering various streamflow metrics across a 

range of watershed sizes, which is expected for natural systems.

In addition to baseflow assessments, hydrograph recession analysis has proven to be a 

helpful mathematical exercise that estimates the potential change in the storage-discharge 

relationship for a particular watershed. Recession analysis can be used to evaluate storm 

responses and thus infer storage properties and mean residence times (e.g. Troch et al., 2013). 

For example, Schilling and Helmers (2008) found the master recession curves for tile-drained 

watersheds in Iowa to be more linear compared to less-tiled watersheds that showed a non-linear 
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recession, typical of natural systems where hydraulic conductivity deceases with depth. They 

suggested that downstream hydrograph recession may be controlled by longer recession times 

from tiled regions, but also found inconsistent recession coefficients between tiled and non-tiled 

regions and advocated for additional research in this field. Boland-Brien et al. (2014) also 

performed streamflow recession analysis on watersheds with varying percentages of tile drainage

across Iowa and concluded that tiled regions were less flashy compared to non-tiled regions 

based on master recession curve analysis.  

Clearly, tile drainage can have confounding impacts on hydrological response depending 

on scale and the combination of physical and climatic characteristics considered. Given an 

emphasis in the literature on tile drainage impacts to streamflow response in Iowa (e.g., Schilling

and Helmers, 2008; Boland-Brien et al., 2014; Schilling et al., 2015; Arenas Amado et al., 2017),

we wondered how tile drainage impacts hydrological response under other landscapes and 

climatic conditions? As such, the goal of this study is to assess the impact of tile drainage on the 

streamflow response of Ohio watersheds with varying percentages of tile drainage. The shallow, 

poorly-drained soils of Ohio provide an excellent contrast to those in Iowa, which tend to be 

deeper and coarser, thus have different drainage tendencies. We used an automated baseflow 

separation technique combined with hydrograph recession analysis to determine if the effects of 

tile drainage on the storage-discharge relationship are evident at the watershed scale and 

postulate the consequences for downstream nutrient transport. To this latter aspect, phosphorous 

loads from March to July have recently been identified as a major driver of the severity of HABs 

in the western Lake Erie basin (Baker et al., 2019), which is where the majority of tile drainage 

occurs in Ohio. Therefore, we focused on this critical time period in order to isolate the effects of

tile drainage from heavily-drained watersheds in the western Lake Erie basin on hydrograph 

partitioning that could be exacerbating HAB severity by creating a quicker hydrologic 

connection between agricultural fields and adjacent streams.  

2. MATERIALS AND METHODS

2.1 Data
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Daily mean streamflow for each study watershed was downloaded from 2010 – 2019 for 59 

United States Geologic Survey (USGS) stream gaging stations in Ohio using the R package 

‘dataRetrieval’ (De Cicco and Hirsch, 2014). The station ID for each stream gage is included as 

supplementary material. Streamflow was converted to area-weighted runoff (‘runoff’) using the 

total watershed area and daily time interval. The time period of data considered was selected to 

match with the responses from the recent county-level tile drainage census data used to generate 

AgTile-US (Valayamkunnath et al., 2020). Monthly PRISM precipitation data from the same 

period (i.e. 2010 – 2019) was aggregated to watershed boundaries to determine mean monthly 

and annual precipitation for each study watershed (PRISM Climate Group, 2019). 

The 59 study watersheds were selected based on streamflow record and limited 

hydrological modifications using the following criterion: (1) had at least eight years of complete 

data from 2010 - 2019, with each year having at least 90% daily streamflow records available, 

(2) had less than 6 major dams, (3) were located at least 5 miles downstream of dams, (4) had 

less than 25% developed land, (5) had at least 25% agricultural land, and (6) had area less than 

2,000 km2 (Falcone, 2011). The watershed size limitation was suggested as a threshold in which 

the effects of tile drainage were likely to become less apparent due to channelization and in-

stream attenuation (Boland-Brien et al., 2014). These 59 watersheds were split into three roughly

equal groups with increasing proportions of tile drainage to evaluate the mean streamflow 

response for watersheds with low (< 15 % area), medium (15% - 40% area), and high (> 40% 

area) amounts of tile drainage.

Watershed characteristics and boundaries were obtained from the GAGES-II dataset

(Falcone, 2011). For each of the 59 watersheds in Ohio, a 30-m resolution tile drainage map 

(AgTile-US) was aggregated to calculate the percent of each watershed under tile drainage

(Valayamkunnath et al., 2020). This dataset was generated using soil drainage information, 

topographic slope, and county-level tile drainage census data for the most-likely tile-drained area

of the contiguous United States. Accuracy across the Midwest ranges from 82.7% to 93.6%

(Valayamkunnath et al., 2020). The raster dataset is available in binary format, where 1 indicates

tile-drained land and 0 indicates undrained land. For each watershed, the percent of tile drainage 

was calculated by summing the total amount of tile-drained area divided by the total watershed 

area. 
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2.2 Runoff metrics

To evaluate the effects of tile drainage on streamflow response, we calculated several of the 

runoff metrics suggested by Boland-Brien et al. (2014) including runoff ratio, mean annual peak 

runoff, and the percent of time daily runoff exceeded mean annual runoff (Tqmean). Runoff ratios 

were calculated by dividing annual runoff by annual precipitation from PRISM and multiplying 

the result by 100 to have ratios expressed as a percent. To evaluate the impact of tile drainage on 

peak runoff conditions, we calculated mean annual peak daily runoff for each watershed 

considered. The final metric considered the percent of time daily runoff exceeded mean annual 

runoff, TQmean, which measures the flashiness of the hydrograph (Konrad and Booth, 2002). As 

such, a low value corresponds to a flashier response and a high value suggests a more dampened 

hydrograph. Differences in runoff metrics were compared among the three drainage categories 

using the Tukey test and Pearson’s correlation coefficient. All significant results are considered 

when p < 0.05.

Daily baseflow was calculated from the total daily runoff hydrograph using the R 

package ‘lfstat’ (Koffler et al., 2016) following methodology from Tallaksen and van Lanen 

(2004) and WMO (2008). This procedure was developed for rainfall regimes with a typical 

runoff response in hours or days and partitions the hydrograph into delayed and quick 

components by identifying turning points of runoff minima for each non-overlapping five-day 

period. Turning points are joined by straight lines to obtain the baseflow hydrograph. Daily 

stormflow was subsequently calculated by subtracting daily baseflow from daily total runoff. A 

baseflow index (BFI) was then calculated by dividing baseflow by total runoff, expressed as a 

percent. 

All runoff metrics were calculated from daily records and summarized to mean annual 

and monthly values to assess potential seasonality effects. Further, a time period of particular 

interest for the study area is from March – July, for which runoff (and nutrient loads) have been 

shown to be critical for determining HAB severity in the western Lake Erie Basin (Baker et al., 

2019). For this reason, we calculated runoff metrics by averaging daily values for these months 

in watersheds with high (> 40% area) amounts of tile drainage. In addition, we calculated the day

of calendar year in which 50% of annual runoff occurs to evaluate the effect that annual 
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streamflow timing had on bloom severity. Runoff metrics were compared to the Western Lake 

Erie Bloom Severity Index, calculated by the United States National Oceanic and Atmospheric 

Administration based on algal bloom biomass, to evaluate relationships between streamflow 

response and HAB severity. 

To assess how water is stored and released following storm events, we performed 

hydrograph recession analyses for each of the watersheds considered in this study. The 

calculation of the recession constant required selecting an analytical expression to fit to the 

recession curve, determining the typical recession period, and optimizing the recession 

parameters (WMO, 2008). We used the R package ‘lfstat’ to determine recession rates (Koffler 

et al., 2016). The recession curve was modelled using an exponential equation assuming a single 

linear reservoir where storage is proportional to outflow:

Qt=Qoe
(
−t
C

) (1)

where Qt is total runoff at time t; Qo is total runoff at the beginning of the recession period (t=0), 

and C is the recession constant [time], which is the number of days needed for runoff to decrease

one log cycle. The recession curve plots as a straight line with slope -1/C on a semi-logarithmic 

plot of t versus lnQt. Both master recession curve (MRC) and individual recession segments 

(IRS) methods require criteria for selecting recession segments and the period of discharge to 

disregard following peak runoff to avoid selecting times of rapid response following a rainfall 

event that were not caused by groundwater discharge. For both analyses, a minimum segment 

length of five days was chosen and recession segments began at least two days after peak flood 

discharge and after runoff was below a Q25 threshold (i.e. the highest 25% of runoff following 

peak flood discharge was omitted). The MRC method constructs a single mean recession curve, 

while in the IRS method a recession model is fit to each segment and the recession constant C, is 

determined as the mean value of individual recession segments. 

3. Results

3.1 Watershed characteristics
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According to the AgTile-US dataset (Valayamkunnath et al., 2020), mean areal coverage of tile 

drainage for the watersheds analyzed in this study was 27.8% and ranged from 0.5% to 61.0%. 

Watersheds were split into three roughly equal groups to compare the mean streamflow 

response: low (< 15% tile drained, n = 18), medium (15% - 40% tile drained, n = 24), and high 

(>40% tile drained, n = 17) (Figure 1). Watersheds in the medium and high drainage categories 

were located primarily in northwestern Ohio, while watersheds in the low drainage category 

were spread out throughout the state. Mean watershed size was similar for all three drainage 

categories (Table 1). There was a significant positive relationship with agricultural land and tile 

drainage (Pearson’s r = 0.86, p < 0.001, Figure 2a, Table 1) and a significant negative 

relationship with mean watershed slope and tile drainage (Pearson’s r = -0.77, Figure 2b, Table 

1). Tile drainage was significantly positively correlated to clay content (Pearson’s r = 0.54, 

Figure 2c, Table 1) and significantly negatively correlated to the depth of the seasonally high 

water table provided in the GAGES-II dataset (Pearson’s r = -0.71, Figure 2d, Table 1; Falcone, 

2011). [Insert Figure 1] [Insert Figure 2] [Insert Table 1]

3.2 Precipitation

Mean annual precipitation (PRISM Climate Group, 2019) for the 59 watersheds over the ten-year

period (2010-2019) was 1109 mm and ranged from 945 mm in 2010 to 1465 mm in 2011. Mean 

annual precipitation was significantly greater for the low drainage category (1160 mm) compared

to the medium (1099) or high drainage (1067 mm) categories (Table 2). On average across all 59

watersheds, spring and summer months (April – September) were wetter than fall and winter 

months (October – March). The five-month period from March – July contributed 50% of annual

precipitation in high drainage watersheds.

For high drainage watersheds June had the most precipitation (133 mm), followed by 

May (123 mm) and July (111 mm), while January had the least precipitation (60 mm), followed 

by February (66 mm) and December (70 mm). In medium drainage watersheds June had the 

most precipitation (132 mm) followed by May (115 mm) and July (111 mm), while January had 

the least precipitation (63 mm), followed by February (72 mm) and October (79 mm). For low 

drainage watersheds June had the most precipitation (140 mm), followed by July (113 mm) and 

May (111 mm), while January had the least precipitation (71 mm), followed by February (80 

mm) and November (83 mm). [Insert Table 2]
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3.3 Runoff metrics

Mean annual runoff for the 59 watersheds from 2010 – 2019 was 435 mm and ranged from 298 

mm in 2012 to 717 mm in 2011. Mean annual runoff was significantly greater for the low 

drainage category (469 mm) compared to the medium (429 mm) and high drainage (407 mm) 

categories (Table 2). On average, across all 59 watersheds winter and spring months (January – 

June) produced more runoff compared to summer or fall months (July – December). The five-

month period from March – July contributed 57% of annual runoff in high drainage watersheds.

For high drainage watersheds March had the most runoff (59 mm), followed by April (56 

mm) and June (44 mm), while August had the least runoff (6 mm), followed by September (7 

mm) and October (12 mm). In medium drainage watersheds March had the most runoff (64 mm) 

followed by April (59 mm) and February (49 mm), while September had the least runoff (8 mm),

followed by August (9 mm) and October (13 mm). For low drainage watersheds March had the 

most runoff (71 mm), followed by April (65 mm) and February (57 mm), while August and 

September had the least runoff (13 mm), followed by October (16 mm).

Mean annual runoff ratio for the 59 study watersheds from 2010 – 2019 was 39.1% and 

ranged from 33.6% in 2010 to 47.8% in 2018. There was a significant positive relationship 

between mean annual runoff ratio and mean annual precipitation among all 59 watersheds 

(Pearson’s r = 0.48). Despite significantly greater mean annual precipitation and runoff for the 

low drainage category, mean annual runoff ratio was the same among all drainage categories 

(Table 2). Mean annual runoff ratio was not significantly correlated to tile drainage (Figure 3a) 

or watershed area (Figure 4a) for any of the drainage categories considered. Peak daily runoff 

was similar among all drainage categories and not significantly correlated to tile drainage (Figure

3b; Table 2). Peak daily runoff was significantly negatively correlated to watershed area for the 

medium (Pearson’s r = -0.67) and high (Pearson’s r = -0.76) drainage categories, but not for the 

low drainage category (Figure 4b). [Insert Figure 3] [Insert Figure 4]

The percent of time in which mean daily streamflow was greater than mean annual 

streamflow (TQmean) was significantly negatively correlated to tile drainage (Pearson’s r = -0.57, 

Figure 3c, Table 2). A lower TQmean value implies a flashier hydrograph response for the high 

drainage category watersheds. There was a significant positive relationship between watershed 

area and TQmean for the medium (Pearson’s r = 0.47) and high (Pearson’s r = 0.51) drainage 
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categories, but not for the low drainage category (Figure 4c). The mean annual baseflow index 

(BFI) was significantly negatively correlated to tile drainage (Pearson’s r = -0.58, Figure 3d, 

Table 2). The mean annual BFI for the high drainage category was 20.9% compared to 40.3% for

the low drainage category. Conversely, watersheds with a high percentage of tile drainage had 

significantly higher stormflow proportions compared to watersheds with low to medium 

percentages of tile drainage. There was no significant relationship between watershed area and 

BFI for any of the drainage categories (Figure 4d). 

Both MRC and IRS techniques for hydrograph recession analysis revealed a significant 

negative correlation between recession constants and tile drainage (Pearson’s r = -0.45, Figs. 5a; 

Pearson’s r = -0.46, Figure 5c, Table 2). There was no significant relationship with watershed 

area and recession constant using either MRC or IRS methods for any of the drainage categories 

(Figs. 5b & 5d). Both MRC and IRS recession constants were significantly positively correlated 

to annual BFI (Pearson’s r = 0.89), TQmean (Pearson’s r = 0.70), and average soil permeability 

(Pearson’s r = 0.79) (Falcone, 2011). These relationships suggest a flashier hydrograph response 

from watersheds with higher percentages of tile drainage and poorer drainage capabilities. [Insert

Figure 5]

It should be noted that the March – July BFI was similar to the annual BFI and was 

significantly lower for the high drainage category watersheds (Table 2). In addition, the amount 

of March – July stormflow as a percentage of total annual runoff was significantly positively 

correlated to tile drainage (Pearson’s r = 0.58, Figure 6a). The amount of annual runoff from 

March – July stormflow approached 50% for watersheds with high percentages of tile drainage, 

while the percent of total annual runoff from March – July stormflow in watersheds with low 

percentages of tile drainage was around 30%. [Insert Figure 6]

We compared runoff metrics from the high drainage category watersheds, which 

predominantly drain into western Lake Erie, to the Western Lake Erie Bloom Severity Index and 

found mean March – July total stormflow (mm) to be the best predictor of bloom severity for all 

of the runoff metrics (Pearson’s r = 0.90, Figure 6b). The March – July stormflow runoff ratio 

(i.e. the ratio of total stormflow to total precipitation during March – July) was also highly 

positively correlated to bloom severity (Pearson’s r = 0.87, Figure 6c), unlike the March – July 

baseflow runoff ratio that did not show any correlation (Figure 6c). Another runoff metric that 
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was highly correlated to the bloom severity index was the mean day of year in which 50% of 

annual runoff occurred (Pearson’s r = 0.89, Figure 6d). Recent years with the highest bloom 

severity index (>10) observed 50% of annual streamflow in June, while years with less severe 

blooms saw 50% of annual streamflow occurring much earlier in the year.  

4. Discussion

4.1 Comparison with other studies across the Midwestern U.S. 

Our results on the streamflow response of watersheds with varying percentages of tile 

drainage in Ohio are markedly different from previous studies conducted in Iowa watersheds. 

We showed a significant negative relationship between tile drainage percent and mean annual 

baseflow index (BFI) (Figure 3d) and a significant positive relationship between tile drainage 

percentage and Mar-Jul total stormflow (Figure 6a) for 59 watersheds in Ohio. This is in contrast

to extensive research performed with Iowa watersheds that showed an increase in baseflow 

proportions with tile drainage percentage (Schilling and Libra, 2003; Schilling and Helmers, 

2008; Boland-Brien et al., 2014). This should not come as a surprise since previous work showed

a linear relationship between rainfall and tile drainage in which 12.6% of rainfall was recovered 

in tile drainage in Iowa, compared to 22.2% in Ohio (Logan et al., 1980). According to 30-year 

climate normal, the watersheds used our study have significantly greater mean annual 

precipitation (979 mm) compared to Iowa watersheds (869 mm) analyzed by Boland-Brien et al. 

(2014) (Falcone, 2011). In the Midwest, Ohio and Iowa roughly represent two end-members in 

terms of the meteorological and physical characteristics of watersheds with high percentages of 

tile drainage; thus, it is fair to assume that tile drainage could result in greater baseflow or 

stormflow proportions, depending on site-specific meteorological and physical conditions. 

When our results are compared to the work from Boland-Brien et al. (2014) - who 

calculated similar runoff metrics - it is clear that large percentages of tile drainage can cause a 

notably different hydrologic response at the watershed scale in terms of baseflow and stormflow 

proportions and the general flashiness behavior. Boland-Brien et al. (2014) reported a mean BFI 

of 67% for the Iowa watersheds considered with a high degree of tile drainage (>50%), 

compared to 22% reported for the high drainage category (>40%) in our Ohio study. The mean 

annual runoff ratio was notably higher for watersheds analyzed in our study (39%) compared to 
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those by Boland-Brien et al. (2014) (28%). In addition, our results suggest TQmean and the 

recession constants indicate flashier streamflow behavior in watersheds with high amounts of tile

drainage compared to the Iowa watersheds that showed the opposite trend. Given low drainage 

category watersheds had significantly greater mean annual precipitation and runoff (Table 2), we

would usually expect to observe a significantly greater mean annual runoff ratio and peak daily 

runoff for the low drainage category. However, there were no significant difference between 

mean annual runoff ratio or peak daily runoff for any of the drainage categories, suggesting 

medium and high drainage category watersheds had greater mean annual runoff ratios and peak 

daily runoff than expected. All of these results suggest an increasing percentage of tile drainage 

leads to flashier watersheds in Ohio. 

Of course, the watersheds analyzed by Boland-Brien et al. (2014) were substantially 

larger (average area of 1,666 km2) compared to the ones presented in this study (average area of 

605 km2), which likely partially explains the larger observed BFI in Iowa watersheds. This 

difference, however, does not explain the opposite trend observed between the relationship of 

percent tile drainage and runoff metrics. Despite similar soil textures (i.e. sand, silt, clay 

percentages) between our watersheds and the ones presented in Boland-Brien et al. (2014), the 

Ohio watersheds showed significantly greater soil bulk density (1.54 g/cm3) compared to the 

Iowa watersheds (1.44 g/cm3) (Falcone, 2011). The lower bulk density values observed in Iowa 

favor faster infiltration rates compared to Ohio, which likely results in greater groundwater 

recharge and smaller proportions of stormflow in Iowa. In fact, the Ohio watersheds analyzed in 

this study had a significantly greater percent of soils in hydrologic group C (62%), characterized 

by moderately fine or fine texture, slow soil infiltration rates with layers impeding the downward

movement of water (Falcone, 2011). In contrast the Iowa watersheds had a significantly lower 

percent of soils in hydrologic group C (16%) and were dominated by soils in hydrologic group 

B, characterized by moderately deep, coarse, well drained soils with moderate infiltration rates. 

Another substantial difference between the two areas is the depth to seasonally high water table, 

which was significantly smaller for the Ohio watersheds (which averaged 0.80 m) compared to 

the Iowa watersheds (which averaged 1.23 m) (Falcone, 2011). Tile drains installed in Ohio 

fields with slow soil infiltration rates and shallow water tables creates a more direct response to 

rainfall events observed in tile drainage outlets compared to installations in fields with moderate 

infiltration rates and deeper water tables since soil bulk density typically increases with depth. 
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Another major difference in hydrologic response of Ohio and Iowa watersheds to varying

percentages of tile drainage was the homogenization of all runoff metrics with high percentages 

of tile drainage reported by Boland-Brien et al. (2014). While our study watersheds with high 

percentages of tile drainage did not show a relationship with drainage area for mean annual 

runoff ratio or mean annual BFI, we found significant correlations between drainage area and 

TQmean (Figure 4c) and peak daily runoff (Figure 4d) for the medium and high tile drainage 

category watersheds, but not for the low drainage category watersheds. In contrast, drainage area

was not correlated to any of the runoff metrics for the low drainage category (Figure 4). As 

mentioned before, larger watersheds typically show higher percentages of baseflow and a more 

attenuated streamflow response as groundwater contributions increase (Price, 2011). However, 

the influence of geological conditions on streamflow response will be most apparent during dry 

conditions when baseflow contributions are high (Cross, 1949). Since the low drainage category 

watersheds are more dispersedly located throughout Ohio (Figure 1), it is possible the geological 

conditions are more variable for these watersheds compared to the medium or high drainage 

categories, which are predominantly located in northwest Ohio and likely have more similar 

geological conditions.

4.2 Implications for nutrient transport

The agricultural economic benefits of tile drainage are accompanied with environmental and 

economic costs associated with impaired water quality. Water exiting tile drain outlets transport 

agricultural pollutants (e.g. nitrogen, phosphorous, pesticides) downstream which can 

accumulate leading to hypoxic zones and harmful algal blooms (HABs), with detrimental effects 

to human and aquatic systems (Diaz, 2001). Harmful algal blooms are not unique to Ohio and 

have become a global problem in recent decades (Ho et al., 2019). The environmental 

consequences of HABs are difficult to remediate and can negatively impact tourism, recreation, 

property values, wildlife, and commercial fishing. In August of 2014, elevated microcystin toxin 

levels associated with a HAB resulted in 400,000 residents left without drinking water. In Lake 

Erie, the world’s largest walleye fishery, summer-long HABs can result in $5.6 million in lost 

fishing expenditures alone (Wolf et al., 2017).

Tile drainage is thought to reduce surface runoff, therefore improve soil stability and 

limit the amount of erosion and particulate nutrient concentrations exporting via surface runoff. 
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While nutrient concentrations measured in tile drainage are often low during low discharge 

periods, elevated nutrient concentrations have been measured during high discharge periods, 

proving that tile drains can act as effective conduits for nutrient export from agricultural fields

(Dils and Heathwaite, 1999). Numerous studies have showed a strong surface connection to tile 

drainage through macropores and other preferential flow paths (Stamm et al., 1998; Smith et al., 

2015; Williams et al., 2016; Macrae et al., 2019), and thus potential to transport nutrients applied

to the soil surface. In addition, recent research suggests storm events can accelerate the 

subsurface transport of particulate and dissolved nutrient species (Jiang et al., 2021).

The results reported in this study suggest that Ohio watersheds with large percentages of 

tile drainage could be exacerbating the problem with downstream nutrient transport due to 

increases in total stormflow amounts and proportions (Figure 3d; Figure 6a). In fact, recent HAB

severity observed in the western Lake Erie basin was significantly correlated to March-July 

stormflow amounts (Figure 6b). It should be noted that one of the strongest correlations of 

watershed attributes from the GAGES-II dataset with tile drainage percentage were estimates of 

applied nitrogen (Pearson’s r = 0.79) and phosphorus (Pearson’s r = 0.70) from agricultural 

censuses (Falcone, 2011). This should not be surprising given the strong correlation between 

agriculture and tile drainage (Figure 2a) but emphasizes the role that watersheds with high 

percentages of tile drainage, and higher percentages of stormflow, play in the downstream 

transport of nutrients.

Direct HAB remediation is costly and involves either physical, chemical, or biological 

control measures, but will not help mitigate future severe HABs. If left uncontrolled, HABs in 

Lake Erie are estimated to cost Canada alone $5.3 billion over the next 30 years (Smith et al., 

2019), thus targeting conservation efforts at the source could prove to be cost-effective. A 

combination of both nutrient and water management practices are probably needed to improve 

downstream aquatic conditions (Hanrahan et al., 2019). In Ohio, soil test phosphorus 

concentrations were found to be linearly related to dissolved concentration loads in tile-drained 

fields, thus soil test phosphorus can be a good screening method to identify fields at risk for 

greater phosphorus loss (Duncan et al., 2017). Limiting fertilizer application prior to spring 

storm events or incorporating fertilizer into the soil structure could help to reduce the 

downstream transport of nutrients from tile-drained fields (Williams et al., 2016). The strong 
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positive correlation between the timing of 50% of annual streamflow and HAB severity (Figure 

6d) supports an earlier application of fertilizer to avoid excess nutrient transport during large 

late-spring storms which could be contributing to more severe HABs when water temperatures 

are greater. 

Conservation practices that decrease the hydrologic response time to storm events in 

Ohio watersheds could benefit the aquatic health of downstream communities (e.g. buffer strips, 

wetland restoration). Restoring 5-10% of the 4,000 km2 Great Black Swamp in the Maumee 

River basin could reduce phosphorus loading by 18-37% (Mitsch, 2017). Another technique that 

could decrease the hydrologic response time and thus greatly reduce the export of nutrient loads 

from agricultural fields is drainage water management, which has been shown to significantly 

reduce annual tile drainage discharge and subsequent nutrient loads (e.g. Williams et al., 2015). 

Through drainage water management, tile drainage outlets can be manipulated at the edge of 

field to reduce discharge during winter fallow periods and times in which field accessibility is 

not imperative. 

4.3 Limitations and future research needs

One of the main limitations to our analyses was accurately selecting appropriate watersheds to 

compare the hydrologic response. The medium and high drainage category watersheds analyzed 

in this study are primarily located in northwest Ohio, while the low drainage category watersheds

are scattered more throughout the state. Thus, the low drainage category watersheds have more 

variable soil properties, land cover, and precipitation patterns compared to the medium and high 

drainage category watersheds. In addition, some of the low drainage category watersheds have 

much greater mean slope (>4 %) and forest cover, thus the processes leading to the observed 

streamflow response in these low drainage category watersheds are likely quite different 

compared to the medium or high drainage category watersheds or the remaining low drainage 

category watersheds with lower mean watershed slope (< 4%). We performed the same analyses 

after removing the steepest watersheds (> 4% mean watershed slope, n = 13), which tended to be

located in eastern and southern Ohio and none of the results changed, suggesting that our results 

and interpretations presented are robust across a range of tile drainage percentage for Ohio 

watersheds. 
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Another limitation for this study was relying on the modeled tile drainage dataset

(Valayamkunnath et al., 2020) for accurate identification of land drained by subsurface tiles. 

While recent advancements using thermal infrared sensors deployed with drones have provided 

adequate representation of tile delineation at agricultural fields (Allred et al., 2018), it is 

currently unrealistic to obtain this information at the scale of the watersheds analyzed in this 

study. In Ohio, the total land area in the AgTile-US dataset is within 0.22 % of the total tile 

drained area reported in the USDA Census of Agriculture. However, neither of these datasets are

able to provide information on whether drainage water management is implemented. For this 

reason, we assumed that drainage water management did not contribute substantially to the tile 

drained land or that drainage water management is uniformly practiced throughout the study 

watersheds, thus would not impact any particular watershed or drainage category.  

Baseflow is a fairly ambiguous term but is generally thought to be representative of the 

water that sustains streamflow in between storms. In contrast, stormflow (i.e. quickflow, Hewlett

and Hibbert, 1967) is a term used to represent the remaining streamflow not accounted for in 

baseflow. While mathematical baseflow separation techniques have been used since the early 

20th century, more recently, chemical and isotopic mass-balance methods have become a popular 

alternative to mathematical approaches and are generally considered to be more physically-based

due to incorporating chemical and/or isotopic information (Schilling and Helmers, 2008;

Tesoriero et al., 2013; Frisbee et al., 2017; Schilling et al., 2019). However, mathematical 

approaches continue to be used widespread due to fewer data requirements, with only stream 

discharge being needed to perform baseflow separation (Schilling and Helmers, 2008; Boland-

Brien et al., 2014; Schilling and Jones, 2019). Since the calculations for baseflow and stormflow 

used in this study are strictly based on the shape of the hydrograph, mathematical derivations of 

these terms cannot differentiate the geographic sources or ages and residences times of these two

hydrograph sources. For example, under dry conditions tile drainage is likely composed of 

primarily baseflow derived from relatively older groundwater, whereas during wet storm 

conditions tile drainage could be comprised from a mixture of older groundwater and younger 

rainfall event water. Thus, the water discharging from tile drainage cannot be assumed to be 

entirely baseflow or stormflow. Additional research utilizing unique tracer signatures would be 

valuable for assessing the relative age of stream water and discharge from tile drainage outlets 

and downstream rivers and lakes.
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5. Conclusion

This study analyzed the effect of tile drainage on various runoff metrics for 59 Ohio watersheds. 

We used a recently developed 30-m resolution tile drainage dataset to calculate the percentage of

tile drainage in each watershed. Our results indicate that high percentages of tile drainage (> 40%

of watershed area) result in significantly greater percentages of stormflow and a flashier 

hydrograph response in general, which contrasts with similar studies conducted in Iowa that 

showed increases in baseflow percentages and less flashy hydrographs for heavily tiled 

watersheds. Using baseflow and recession analysis, watersheds with high percentages of tile 

drainage consistently reported flashier behavior compared to watersheds with low percentages of

tile drainage. The total amount of March – July stormflow and the stormflow proportion during 

this time was significantly positively correlated to western Lake Erie harmful algal bloom 

severity during the study period (2010-2019). 

Increases in stormflow proportions, or the fast-varying portion of the hydrograph, are 

problematic for the downstream transport of nutrients and could be linked to exacerbated 

harmful algal bloom severity in Lake Erie observed in recent years. Given the recent trend in 

more frequent large rain events and warmer temperatures in the Midwest, increased harmful 

algal bloom severity will continue to be an ecological and economic problem for the region if 

management efforts are not addressed at the source. Management practices that reduce the 

hydrologic response time to storm events, such as buffer strips, wetland restoration, or drainage 

water management, are likely to improve downstream aquatic health conditions by limiting the 

transport of nutrients after storm events. 
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TABLES

Table 1: Mean watershed characteristics for the three drainage categories. Area, Agricultural 
land, slope, clay, and depth to seasonally high water table from the GAGES-II dataset (Falcone, 
2011). Unique letters represent significant differences (p < 0.05) using the Tukey Test.

Drainag
e
Categor
y Number

Area
(km2)

Tile
Drainage (%)

Agricultura
l Land (%)

Slope
(%)

Clay
(%)

Water Table
Depth (m)

Low 18 493 a 4.9 a 42.2 a 5.3 a 27.4 a 1.08 a
Medium 24 655 a 28.5 b 72.6 b 1.3 b 27.9 a 0.80 b
High 17 653 a 51.2 c 82.2 c 0.4 b 33.7 b 0.52 c

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696



25

Table 2: Mean annual precipitation (PRISM Climate Group, 2019), area-weighted runoff, runoff 
ratio, peak daily runoff (Peak Q), proportion of time mean daily streamflow is greater than mean 
annual streamflow (TQmean), mean annual baseflow index (BFI), March – July BFI, and recession 
constants from MRC and IRS methods for the three drainage categories during all study years 
(2010-2019). Unique letters represent significant differences (p < 0.05) using the Tukey Test.

Drainage
Category

Precip.
(mm)

Runoff
(mm)

Runoff
Ratio (%)

Peak Q
(mm/day)

TQmean

(%)
BFI
(%)

Mar-Jul
BFI (%) MRC IRS

Low 1160 a 469 a 40.3 a 17.7 a 27.9 a 40.3 a 41.1 a 6.3 a 7.6 a
Medium 1099 b 429 b 38.9 a 18.3 a 25.7 a 35.6 a 35.8 a 6.5 a 7.5 a
High 1067 b 407 b 38.1 a 19.6 a 22.3 b 20.9 b 22.2 b 3.5 b 4.2 b

FIGURE LEGENDS

Figure 1: Location and drainage category of 59 watersheds used in this study.

Figure 2: Watershed tile drainage (%) versus agricultural land (a), mean watershed slope (b), 

average value of soil clay content (c), and depth to seasonally high water table (d) (Falcone, 

2011). 

Figure 3: Mean annual runoff ratio (%) (a), mean annual peak daily runoff (b), percent of 

observations daily runoff exceeds mean annual runoff (TQmean) (c), and mean annual baseflow 

index (BFI) (d) versus watershed tile drainage (%).

Figure 4: Mean annual runoff ratio (%) (a), mean annual peak daily runoff (b), percent of 

observations daily runoff exceeds mean annual runoff (TQmean) (c), and mean annual baseflow 

index (BFI) (d) versus watershed drainage area colored by drainage category.

Figure 5: Recession (MRC) constant versus watershed tile drainage (a) and watershed area (b) 

colored by drainage category. Recession (IRS) constant versus watershed tile drainage (c) and 

watershed area (d) colored by drainage category. 
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Figure 6: March – July stormflow as a percentage of total annual runoff versus tile drainage (a). 

March – July mean total stormflow (mm) for the high drainage category watersheds vs Western 

Lake Erie Bloom Severity Index (b). March – July mean stormflow (blue) and baseflow (red) 

runoff ratio for the high drainage category watersheds vs Western Lake Erie Bloom Severity 

Index (c). Day of calendar year (DOY) when 50% of annual streamflow occurs for the high 

drainage category watersheds vs Western Lake Erie Bloom Severity Index (d).
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