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Abstract

Background: As the sheer volume of bioinformatic sequence data increases, the
only way to take advantage of this content is to more completely automate
robust analysis workflows. Analysis bottlenecks are often mundane and
overlooked processing steps. Idiosyncrasies in reading and/or writing
bioinformatics file formats can halt or impair analysis workflows by interfering
with the transfer of data from one informatics tools to another.

Results: Fasta-O-Matic automates handling of common but minor format issues
that otherwise may halt pipelines. The need for automation must be balanced by
the need for manual confirmation that any formatting error is actually minor
rather than indicative of a corrupt data file. To that end Fasta-O-Matic reports
any issues detected to the user with optionally color coded and quiet or verbose
logs.

Fasta-O-Matic can be used as a general pre-processing tool in bioinformatics
workflows (e.g. to automatically wrap FASTA files so that they can be read by
BioPerl). It was also developed as a sanity check for bioinformatic core facilities
that tend to repeat common analysis steps on FASTA files received from
disparate sources. Fasta-O-Matic can be set with format requirements specific to
downstream tools as a first step in a larger analysis workflow.

Availability: Fasta-O-Matic is available free of charge to academic and
non-profit institutions on Github.
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Background

Sequence data can be stored as text with each letter representing a nucleic acid

(DNA and RNA) or amino acid (protein). The linear nature of these molecules

makes it natural to represent them as strings, finite sequences of characters. Al-

though it has been argued that a graph, a network of edges connected by vertices,

is a more accurate way to store genomic sequences because graphs allow the inclu-

sion of alternate alleles and alternate possible assemblies [1] all of the most common

methods for storing sequences (FASTA, FASTQ, SAM/BAM) use a linear strings.

Other decisions about how to represent sequence data can be more arbitrary. For

example, any character that is not used as a base or an amino acid could be used

to indicate the beginning of a new sequence. Additionally text could be wrapped to

limit the information content in any one line of a file. The advantage of wrapping

text is that some programs can then be designed to work one line at time limiting

the burden of each step (e.g. the program would never have to process an entire
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chromosome of sequence data in a single step). The disadvantage is that code must

be slightly more complex to load an entire sequence record into the working memory.

0.1 FASTA file format specifications versus recommendations

The popular FASTA file format stores sequence records and has very minimal format

requirements [2]. Each sequence is preceded by a header/description line that begins

with a > symbol. Sequence lines can include any standard International Union of

Pure and Applied Chemistry (IUPAC) single character symbols for nucleic acids

or amino acids or the ambiguous codes that indicate possible residues or bases [3].

They can also include - to indicate alignment gaps and * to indicate stop codons.

NCBI recommends wrapping FASTA file sequences lines [2]. It is also common

practice to use the first ‘word’ in a header (i.e. any character string to the left of

the first space in the header) as the unique sequence id. Although these features

are common they are not required leading to format compatibility issues with tools

that treat these conventions as required.

0.2 Customizing FASTA files to ensure that information is properly interpreted by

downstream tools

Regardless of whether a FASTA file is technically improperly formatted or it’s for-

mat merely violates a popular convention, it is critical to quality analysis workflows

that data is converted into a format that will be correctly interpreted by down-

stream tools. Formatting issues can fall into multiple categories including actual

format errors and formats that are not technically wrong but are non-standard,

causing some tools to throw an error.

Some format errors indicate a major problem like an attempt to use the wrong

data format (e.g. the first line is not a FASTA header because it does not begin

with a > character). These types of errors will be subsequently referred to as fatal.

Alternately, some formatting issues occur commonly without indicating the FASTA

file is corrupt (e.g. improperly wrapped/unwrapped sequence lines, missing final new

line characters, unusual new line characters like \r). These issues will be referred

to as non-fatal. Fatal formatting issues should cause processing to stop. Non-fatal

formatting issues should be automatically corrected according to the most common

resolution for this type of error. While downstream processing continues, the analyst

can double check the automated decision to reformat non-fatal issues. This way

workflow would not be slowed for trivial reformatting steps and the more rare

problems (e.g. when a missing last new line was caused by incomplete file transfer)

could still be caught.

0.3 Existing tools

Existing bioinformatics tools address FASTA format inconsistencies. However many

tools either halt and exit with an error (e.g. BioPerl [4], [5], [6]) or can produce

reformatted output FASTA but cannot determine if there is a formatting issue to

begin with (e.g. EMBOSS Seqret [7]).

The BioPerl module DB::Fasta will halt if a FASTA is inconsistently wrapped or

if a line of sequence is too long (as in an unwrapped genome FASTA). This has the

disadvantage of requiring human intervention to wrap and restart analysis.

Code:
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#!/usr/bin/perl

use Bio::Seq;

use Bio::SeqIO;

use Bio::DB::Fasta; #makes a searchable db from FASTA file

my $out_file_temp = ’/home/bionano/test_db/all.fa’;

#Create new FASTA outfile object

my $seq_out = Bio::SeqIO->new(’-file’ => ">$out_file_temp",’-format’ => ’fasta’);

#Load FASTA file as DB

my $db = Bio::DB::Fasta->new("/home/bionano/test_db/miswrapped.fa");

my $seq_obj = $db->get_Seq_by_id(’seq’); # get FASTA records using headers

#(where header = first ’word’ so really header whitespace should also be

#removed for this file)

$seq_out->write_seq($seq_obj);

Input:

>seq 1

ACTGTGTGCAATCGCTGNNNNCTCTCATCGGATCTTGCAATCGCTNNNCTCTCATCGGATTGCAATCGCTNNNCTtcatcCGGAT

CGCTGNNNNCTGTGTGCAATCGCTGNNNNCTCCTGATCGCTGNNNNCTGTGTGCAATCGCTGNNNNCTCCTGCAATCGCTGNNNN

CTCCTGTTCGNATCGatcctctgtttatgcttatagctagctgatcgtagnnntcaacgt

CTAGAGCGCAGCTCTGGGGGATTACTACTCACTACATCATTAGATCAGATacgactcann

>seq 2

cttatagctagctgatAATCGCTGNNTCATCGGATCTTGCCTTGCAATCGtcatcCGtcC

CGCTGNNNNCTGTGTGCAnnnnnnnnnnncgtaaaacgcctcctccgactcgTCTCTAGG

CTAGAGCGCAGCTCTGGGGGATTACTACTCACTACATCATTAGATCAGATacgactcann

nnnctacgCTATCAGGTCTCGAG

>seq 3

ATCAGCGCTCTATATGGCTCTGATTATAGTTTGCATTCATATGCTGATCTTctcagnntc

cttgacgctcgctATCTGTAGATCTGTACTtcagacagctcTCAGCAGNNNCTCAGCAGC

CTACGACAGTcatgcagactagcagt

Output:

------------- EXCEPTION -------------

MSG: Each line of the fasta entry must be the same length except the last.

Line above #5 ’CTAGAGCGCAGCTCTGGGGG..’ is 61 != 86 chars...

EMBOSS seqret was designed as a very flexible tool to convert from one properly

formatted file to another properly but distinctly formatted file. It also was designed

to accept poorly formatted data (e.g. a FASTA missing the final new line that is

improperly wrapped) and export a reformatted file (e.g. wrapped after 60 bases

with a final new line).

Code:

seqret -stdout -sequence test.fa -outseq test_reformat.fa

Input:

>my header

AAAAAAAAAAAATTTTTTCCCCGGCGCGCGCGCTATAGCGCTATANNNNNNNNNNNNNNN

ATATATATATAT

ATTATTATATATATATTCTCTCTGGGCTCGCGTCTCGCTATTTATATATATATATATATTGCGCTCTCGTCTCCT

Output:
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>my header

AAAAAAAAAAAATTTTTTCCCCGGCGCGCGCGCTATAGCGCTATANNNNNNNNNNNNNNN

ATATATATATATATTATTATATATATATTCTCTCTGGGCTCGCGTCTCGCTATTTATATA

TATATATATATTGCGCTCTCGTCTCCT

However, seqret does not log the detected errors in the format. Another feature of

Seqret is that an output file is created even if the output is identical to the input.

Storing two identical files is an inefficient use of disk space. Seqtk [8] is another

example of a tool that can automate FASTA reformatting but does not first check

original format or report format issues.

Another case to note is when an improperly formatted FASTA file is actually dis-

tributed as a component of a bioinformatics tool. Trimmomatic adapter sequences

[9], for example, are distributed versions of the proprietary Illumina sequencing

adapters but the FASTA files are missing final new lines. This can cause issues

downstream if a workflow includes common analysis techniques like FASTA file

concatenation.

The process of restarting analysis manually after wrapping a FASTA file may

only take minutes. The time consuming aspect of this interruption is the time it

takes the analyst to become available and the number of jobs this step must be

repeated for. Likewise, storage of one extra FASTA file is trivial unless the FASTA

file in question stores a whole genome in which case the burden can add up for a

bioinformatics core. Efficiency and automation are crucial as bioinformatic analysis

projects become more numerous and time consuming. Many tools can either detect a

format issue or repair a format issue. No existing tool was found that both validates

FASTA format and reformats automatically only where required for a user defined

list of non-fatal FASTA format issues.

1 Implementation
Fasta-O-Matic was designed to fit seamlessly into an analysis workflow. It detects

which format issues are actually present in the FASTA file and then only produces

a reformatted file if the current file violates the user defined format requirements.

1.1 Portability

Where possible Fasta-O-Matic was designed to be easy to distribute and use. Fasta-

O-Matic is distributed on GitHub under the MIT license to allow for easy access to

or customization of the code. The tool was also built and tested on both Python2.7

and Python3.3 to minimize incompatibility with existing linux environments. The

script generates complete help menus when called from the command line with

the --help command and from within python with help(fasta_o_matic). Ad-

ditionally, Fasta-O-Matic includes a sample FASTA file with missing new lines,

inconsistent wrapping and spaces in headers along with a tutorial which describes

how to reformat the sample. These features ensure that Fasta-O-Matic is easy to

incorporate into existing workflows.

1.2 Automate where appropriate

The script was designed to efficiently execute the most likely solution given the

presence or absence of format issues. Fasta-O-Matic returns a filename for the out-

put FASTA file that conforms to the user defined format. If the original file already
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conforms, then Fasta-O-Matic returns the original filename rather than outputting

a redundant FASTA file under a new name.

Fasta-O-Matic will exit and report an error if the FASTA file cannot be read, the

default or defined output directory cannot be written to, the input FASTA file does

not begin with a > or if any sequence line includes a non-IUPAC character. The last

two errors are considered to be fatal FASTA format errors.

Inconsistent or unwrapped sequence lines, spaces in headers and missing or non-

standard new lines are considered non-fatal errors. Testing for these issues is op-

tional. If they are detected, the decision is made to reformat as requested, report

the issue to the analyst and continue the workflow.

Testing the uniqueness of the header/description line can return a non-fatal warn-

ing and a reformatted file or a fatal error. Testing for uniqueness is optional. If the

first word in each header/description line is unique then it follows that all descrip-

tion lines are unique. If the first words are not unique then it is possible that is

because the header ids include whitespace ‘>seq 1’ or ‘> seq 1’. In this case a

resolution is to replace the whitespace with a character. Fasta-O-Matic replaces the

whitespace with an underscore and retests for the uniqueness of the first words in

the headers. If this version passes than the user is warned that whitespace effected

header uniqueness and was removed from headers. If removing whitespace also fails

to resolve the issue the lack of uniqueness is considered a fatal error. The fatal error

is reported and the program halts.

The script also automatically adjusts to run the minimal number of steps sufficient

to fix and report format issues. If it is included in the set of quality control (QC)

steps then wrapping is the first format issue tested because while repairing FASTA

wrapping both headers and new lines can be corrected. New lines are given priority

after wrapping because while repairing new lines it is also trivial to repair headers.

Next, uniqueness of the header lines is tested. Finally, headers are evaluated for

whitespace. If an early test returns a format issue and launches a reformatting that

automatically repairs any remaining format issues then Fasta-O-Matic still tests for

any additional format errors in the original file.

All format issues are reported in the programs logs in case they indicate an unex-

pected issue with the data. Logs can be optionally color coded so that red indicates

errors, yellow indicates warnings (e.g. a non-fatal issue was found and automati-

cally reformatted) and green indicates status information. This method of logging

is designed to draw the attention of the bioinformatics analyst to relevant warn-

ings or errors even if they have grown accustomed to seeing Fasta-O-Matic output

frequently.

1.3 Workflow integration

Sequence FASTA files are often passed as arguments to commandline tools. For

example FASTA files can be passed as an argument to bowtie2-build to be indexed

as an alignment reference [10] or passed to trimmomatic as adapters to detect

sequencing artifacts. The output filename used by Fast-O-Matic varies to reflect

the reformatting performed. For seamless integration into automated workflows

Fasta-O-Matic returns the full path of the new properly formatted FASTA file or

the original file (if it is already formatted properly). This can be captured as a
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variable and used as an argument in subsequent commands. The Bash commands

below show and example of capturing the FASTA file name as a variable.

Code (backslashes are used to indicate a new line that is for display in the article

rather than the new lines being included in the actual code):

filename="$(python fasta_o_matic.py -f NC_010473_mock_scaffolds.fna \

-o ~/out_fasta_o_matic -c)"

echo $filename

2 Results
2.1 Data

FASTA format tools were tested on the Vicugna pacos-2.0.1 whole genome shotgun

sequence scaffolds because the 2.17 Gb Vicugna pacos genome is large (> 1 Gb) and

has many scaffolds (276727) [11]. The large genome size and high number of individ-

ual sequences should approximate a typical large FASTA file. The FASTA file was

downloaded from the National Center for Biotechnology Information (NCBI) FTP

as NW 005882702.1 Vicugna pacos isolate Carlotta (AHFN-0088) Vicugna pacos-

2.0.1 assembly scaffolds. An additional unwrapped sequence was added to the end

of the file. This sequence was also missing a new line. Each FASTA record in the

file also had spaces within the text of the headers.

The additional simulated FASTA record is available on Github.

2.2 Reformatting tests

No tool was found with all of Fasta-O-Matic’s functions. Therefore sequence line

wrapping was compared between Fasta-O-Matic and two other common reformat-

ting tools, seqtk and seqret. Fasta-O-Matic was run with the --qc_steps flag set

to either wrap new_line header_whitespace unique (all), wrap (W) new_line

(NL), unique (U) or header_whitespace (HW). Seqtk was run with the arguments

seq -l 60. Seqret was run using only the -sequence and -outseq arguments. Code

used in tests or to produce figures can be found on github. Run time and max mem-

ory was reported for each tool. Tests were run on a Xeon Phi server with 48x12-core

Intel Xeon CPUs, 256GB of RAM, Linux CentOS 7 and Python2.7.

2.3 Comparison between results

All tools could reformat the improperly wrapped FASTA file. Fasta-O-Matic had

the lowest maximum memory requirements (Figure 1, Table 1). This may be useful

if working on a large genome on a local machine or cluster headnode where memory

usage is restricted. Fasta-O-Matic took several minutes rather than seconds (seqtk

and seqret took < 13 s) (Figure 2, Table 1).

Fully re-formatted simulated FASTA record (backslashes are used to indicate a

new line that is for display in the article rather than the new lines being included

in the actual FASTA record):

>NW_000000000.0 Vicugna pacos isolate Carlotta (AHFN-0088) FAKE genomic scaffold, \

Vicugna_pacos-2.0.1 Scaffold-, whole genome shotgun sequence

ATACAACCATAAAGGTGCTATTCAGTCCATGGTTACAGGACATAACTACAACACACACCC

ACGTACACATGCGCATGCGCATGCACACACCCACGTACACGTACACGTACGCATACACAC

CCACGTACACGTACACGTACGCATACACACCCACGTACACGTACACGTACGCATACACAC

https://github.com/kstatebioinfo/Fasta-O-Matic-a-tool-to-sanity-check-and-if-needed-reformat-FASTA-files/blob/master/simulated_unwrapped.fa
https://github.com/kstatebioinfo/Fasta-O-Matic-a-tool-to-sanity-check-and-if-needed-reformat-FASTA-files/tree/master/figures
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CCACGTACACGTACACGTACGCATACACACCCACGTACACGTACACGTACGCATACACAC

CCACGTACGCACACACGTACACGTGTAGGCACGCATTTAGCAAGTATTTAGCTTGCTTAA

ACAAACCCCCCCTACCCCCCACGAGCCCCACCTTATATACCAGACAGTCTTGCCAAACCC

CAAAAACAAGACATAGCGCATAAGCTATAGAACCCGGACAAACCTTTGCCCACAAACCCA

ACTTCTTAAATAATCACATGGCCAAATCGTACCAATGTGTTACTCTAGTATATTAAAAAT

ATACAGACAGCTATCTCCCTAGATCCGCCAAAATTTTTAAAACAGAATTCAACAACCTTT

TTAATGGCACCCCCCCCCCCCATAAATGACC

3 Conclusions
Overall, both memory and run time requirements were small for all three programs.

However, the extra minutes taken by Fasta-O-Matic to test for fatal and non-fatal

format issues may prevent hours lost waiting for an analyst to manually restart

analysis or worse discover that a file was corrupt only after analysis is complete.

Fasta-O-Matic was also the only tool identified that skips reformatting if none is

required balancing the need to prepare data to be properly interpreted by bioin-

formatics tools with the practical need to conserve disk space. Fasta-O-Matic is a

portable and easy to use tool to facilitate bioinformatics analysis by automating

FASTA file inspection in busy bioinformatics cores.

4 Availability and requirements
Project name: Fasta-O-Matic tool

Project home page: The Fasta-O-Matic script and tutorial are available at

https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/

tree/master/KSU_bioinfo_lab/fasta-o-matic.

Operating system(s): Linux (tested on CentOS 7, Gentoo and Ubuntu).

Programming language: Python2.7+, Python3.3+

License: Tool and tutorial are available free of charge to academic and non-profit

institutions.

Any restrictions to use by non-academics: Please contact authors for com-

mercial use.

Dependencies: Fasta-O-Matic requires the python modules Colorer and general

which are distributed in the same git repository.
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Figures

Figure 1 Max memory used by various FASTA tools. Tools were run on the Vicugna pacos
isolate Carlotta (AHFN-0088) Vicugna pacos-2.0.1 whole genome shotgun sequence
NW 005882702.1 with additional unwrapped FASTA sequence record.

Figure 2 Run time for various FASTA tools. Tools were run on the Vicugna pacos isolate
Carlotta (AHFN-0088) Vicugna pacos-2.0.1 whole genome shotgun sequence NW 005882702.1
with additional unwrapped FASTA sequence record.

Tables

Table 1 Runtime and max memory used by various FASTA tools. Tools were run on the Vicugna
pacos isolate Carlotta (AHFN-0088) Vicugna pacos-2.0.1 whole genome shotgun sequence
NW 005882702.1.

Program Max mem (kbytes) Run time (s)
Fasta-O-Matic (HW) 7084 112.02
Fasta-O-Matic (NL) 7084 93.21
Fasta-O-Matic (W) 10996 141.41
Fasta-O-Matic (U) 30800 105.65

seqtk 38352 3.17
Fasta-O-Matic (all) 69452 162.86

seqret 137840 12.50
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