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In this article, an approximate analytical solution of an integro-differential system of
equations is constructed, which describes the process of intense boiling of a super-
heated liquid. The kinetic and balance equations for the bubble-size distribution
function and liquid temperature are solved analytically using the Laplace transform
and saddle-point methods with allowance for an arbitrary dependence of the bubble
growth rate on temperature. The rate of bubble appearance therewith is considered
in accordance with the Dering-Volmer and Frenkel-Zeldovich-Kagan nucleation the-
ories. It is shown that the initial distribution function decreases with increasing the
dimensionless size of bubbles and shifts to their greater values with time.
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1 INTRODUCTION

It is well known that the phase and structural transformations, which are widely encountered in various natural phenomena and
numerous technological processes, completely determine the dynamics of the system, and are responsible for its properties,
structure and the final result (state of the system) after the phase transition.1−10 As this takes place, the dynamics of a metastable
system is determined by the intensity of the formation of nuclei of a new phase (for example, centers of crystallization or
vaporization, the nucleation of which depends on the intensity of fluctuations).We also especially note that the dynamic behavior
of a system is often sensitive to changes in its parameters responsible for the formation of different evolutionary scenarios (for
example, self-oscillations and instability).11−19 This, in particular, explains the need to develop approximate analytical methods
for analyzing such systems.
Mathematical models of such processes of structural-phase transformations consist of a kinetic equation for the particle size

distribution function and a balance equation (for temperature, concentration of a dissolved impurity, etc.).20−26 Such a system
of equations is integro-differential and depends on the kinetics of the evolution of nuclei. Note that the rate of growth/reduction
of nuclei, generally speaking, is a solution to a separate problem with moving boundaries.27−29 Therefore, there are no general
methods for solving such a closed model of a process with moving boundaries of phase transformations. The solution to each
problem is a separate study, which often requires the development of special mathematical methods.
This study is devoted to the development of an analytical solution to an integro-differential model of intense boiling of a liquid.

For simplicity of the model, we assume that the liquid is homogeneous in all spatial directions, and its temperature depends only
on the time variable t. For simplicity of the model, we also assume that the properties of the liquid and the radius of critical
nuclei are constant throughout the volume, and the bulk concentration of bubbles is assumed to be insignificant. The solution
of the integro-differential model under consideration is based on the Laplace integral transform method and the saddle point
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technique used to approximate the Laplace-type integral. The applied method was previously used for the analytical description
of phase transformations in supercooled and supersaturated liquids.30−34
This article is organized as follows. The system of integro-differential equations supplemented with the corresponding initial

and boundary conditions is given in Section 2. Its analytical solutions are presented in Section 3. Our main conclusions are
discussed in Section 4.

2 THE MODEL

Let us introduce the bubble-size distribution function f (r, t) and current temperature T (t) of the liquid, which describe the time-
dependent state of intense boiling. Here r and t designate the bubble radius and time. The distribution function satisfies the
kinetic equation

)f
)t
+ )
)r

(dr
dt
f
)

+ f = 0, r > r∗, t > 0, (1)

where the number of withdrawing bubbles is considered to be proportional to the concentration of bubbles with a constant
coefficient  . Here dr∕dt represents the growth rate of bubbles and r∗ is the critical radius of nucleating bubbles capable to
further growth. The flux of such bubbles is equal to the rate J of their appearance, i.e.

dr
dt
f = J

(

T − T0
T0

)

, r = r∗, (2)

where T0 stands for the boiling temperature.
The temperature balance equation depends on the bubble-size distribution function and heat exchange with external medium

of temperature Tm and takes the form

�c dT
dt

= �(Tm − T ) − 4��′L

∞

∫
r∗

r2 dr
dt
f (r, t)dr, t > 0. (3)

Here �′ is the density of two-phase system, c is its thermal capacity, � is the heat exchange coefficient, and L is the latent heat
of phase transition.
The initial distribution function and system temperature should be regarded as known

f (r, t) = f0(r), T (t) = T (0), t = 0. (4)

For the sake of definitness, let us assume that the growth rate of bubbles is given by

dr
dt
= �w

(

T − T0
T0

)

, w
(

T − T0
T0

)

=
(

T − T0
T0

)n

, (5)

where � is a constant coefficient and w represents the dimensionless function of rescaled temperature (T − T0)∕T0. Let us
especially note that we use here the power law with the constant exponent n frequently met in applications. So, for example, if
the bubble growth is limited by the inertia of liquid, one obtains n = 1∕2.35 In addition, if the growth of bubbles is controlled
by the heat supply rate of evaporation, one can get n = 1.35
The rate J of bubble appearance satisfies the Dering-Volmer and Frenkel-Zeldovich-Kagan nucleation models assuming the

following law35

J (u) = J0R(u), R[u(�)] = exp
[

− �
u2(�)[u(�) + 1]

]

, � = 16��3Ψ
3L2�′′2kT0

, (6)

where u = (T − T0)∕T0 stands for the rescaled temperature, J0 represents the constant factor, � is the surface tension, Ψ is the
constant coefficient, �′′ is the density of vapour, and k is the Boltzmann constant.
Model (1)-(6) is a closed system of integro-differential equations, boundary and initial conditions for studying the evolution

of the process of intense boiling with polydisperse bubbles.
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For the convenience of solving the formulated nonlinear model, we introduce dimensionless variables and parameters as
follows

y =
(r − r∗)
�w(u0)

, � = t, Φ(y, �) = l40f (r, t), Φ0(y) = l
4
0f0(r), l0 =

�

, y∗ =

r∗
�w(u0)

,

u =
T − T0
T0

, um =
Tm − T0
T0

, u(0) =
T (0) − T0

T0
, a =

�c
�
, � =

J0l40
�
, ℎ =

4��′Lw3(u0)
�cT0

.
(7)

Here u0 represents a characteristic system temperature introduced as
�

∫
0

w[u(�1)]d�1 = w(u0)�. (8)

Using the dimensionless variables and parameters (7) we rewrite the model (1)-(6) in the form of
)Φ
)�

+
w(u)
w(u0)

)Φ
)y

+ Φ = 0, y > 0, � > 0, (9)

Φ(y, �) = Y [u(�)], y = 0; Y [u(�)] =
�R[u(�)]
w[u(�)]

, (10)

du
d�

=
um − u
a

− ℎw(u)Λ[u(�), �], � > 0; Λ[u(�), �] =

∞

∫
0

(y∗ + y)2Φ(y, �)dy, (11)

Φ(y, �) = Φ0(y), u(�) = u(0), � = 0. (12)

As this takes place, the growth rate of bubbles takes the form
dy
d�

=
w(u)
w(u0)

. (13)

Let us consider below the method of analytical solution of the dimensionless integro-differential model (9)-(13).

3 ANALYTICAL SOLUTIONS

Applying the Laplace transform with respect to the spatial variable y to the kinetic equation (9) and the corresponding initial
condition (12) and keeping in mind the boundary condition (10), we come to

dΦs

d�
+
w(u)
w(u0)

[

sΦs − Y [u(�)]
]

+ Φs = 0, � > 0; Φs = Φ0s, � = 0, (14)

where Φs = Φs(s, �) and s is the Laplace transform parameter.
Taking into account expression (8), we arrive at the solution to equation (14) in the form of

Φs(s, �) = exp [−(s + 1)�]

⎧

⎪

⎨

⎪

⎩

Φ0s +

�

∫
0
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exp
[

(s + 1)�1
]
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⎫

⎪

⎬

⎪

⎭

. (15)

Now applying the inverse Laplace transform to (15), we get

Φ(y, �) =

⎧

⎪

⎨

⎪

⎩

Φ0(y − �) exp (−�) , y ≥ �
�R [u(� − y)]

w(u0)
exp (−y) , y < � , (16)

where Φ0(0) = �R[u(0)]∕w(u0). This expression determines the bubble-size distribution function in dimensionless form.
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Now combining expressions (11) and (16), we obtain
Λ[u(�), �] = N[u(�), �] +M(�),

N[u(�), �] = �
w(u0)

�

∫
0

(y∗ + y)2R[u(� − y)] exp (−y) dy, M(�) =

∞

∫
�

(y∗ + y)2Φ0(y − �) exp (−�) dy.
(17)

As is easily seen, the temperature dynamics is defined by the integro-differential equation (11), where its right-hand side is
given by the functionN[u(�), �], andM(�) represents the known dependence.
To approximately evaluate the integralN[u(�), �] let us introduce the new variable � = � − y. In this case,N[u(�), �] can be

written in the form of

N[u(�), �] = �
w(u0)

�

∫
0

f̃ (�, �) exp {�S[u(�)]} d�,

f̃ (�, �) =
(

y∗ + � − �
)2 exp [−(� − �)] , S(u) = − 1

u2(u + 1)
.

(18)

The Laplace-type integral (18) can be evaluated using the saddle-point technique.36,37 Namely, the function S[u(�)] attains
the maximum value at maximal u(�), i.e. at the upper limit of integration � = �. Taking this into account let us write out the
main contribution of the Laplace-type integral (18), which takes the form36,37

N[u(�), �] =
�y2∗ exp {�S[u(�)]}
�w(u0)S′[u(�)]

, (19)

where � is considered large enough, and

S′[u(�)] =
3u(�) + 2

u3(�) [u(�) + 1]2
u′(�). (20)

To calculate u′(�)we use equation (11), where its right-hand sideΛ is given by expression (17). As a result, we have from (19)

N[u(�), �] ≈
�y2∗ exp {�S[u(�)]} u

3(�) [u(�) + 1]2

�w(u0) [3u(�) + 2] {P [u(�), �] − ℎw(u)N[u(�), �]}
, (21)

where
P [u(�), �] =

um − u(�)
a

− ℎw(u)M(�).

Now expressingN[u(�), �] from (21), we come to the following approximation

N[u(�), �] ≈
P [u(�), �] ±

√

P 2[u(�), �] − 4ℎw(u)Q[u(�)]
2ℎw(u)

, (22)

where

Q[u(�)] =
�y2∗ exp {�S[u(�)]} u

3(�) [u(�) + 1]2

�w(u0) [3u(�) + 2]
.

Now expression (22) defines N[u(�), �] and the right-hand side of temperature equation (11) represents a function of u(�)
and �. By this is meant that the temperature dynamics can be found from the following Cauchy problem

du
d�

=
um − u
a

− ℎw(u)Λ[u(�), �],

u(�) = u(0), � = 0,
(23)

where Λ[u(�), �] andM(�) are defined by expressions (17), andN[u(�), �] is given by (22).
Determining the temperature from (23), we completely know the bubble-size distribution function (16) at y < �. Thus, the

approximate analytical solution of the integro-differential problem on intense boiling is described by solutions (16), (17), (22)
and (23).
To illustrate the analytical solutions obtained let us introduce the normal initial distribution function

f0(r) =
A

√

2��
exp

[

−1
2

(r − �f
�

)2
]

, (24)
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FIGURE 1 The rescaled initial distribution function Φ0(y)∕B versus the dimensionless size y of bubbles at different values of
y∗ (numbers at the curves), � = 3, �∗ = 0.

FIGURE 2 The dimensionless temperature u(�) as a function of dimensionless time. The system parameters are in the text and
the caption to Fig. 1 .

where � stands for the mean of the distribution, � represents the standard deviation, and A is a constant. Rewriting (24) in
dimensionless form, we get

Φ0(y) = B exp
{

−1
2
[

�
(

y + y∗ − �∗
)]2

}

, (25)

where

B =
l40A

√

2��
, � =

l0w(u0)
�

, �∗ =
�f
w(u0)�

.

The initial distribution function (25) at different values of y∗ is shown in Fig. 1 . As is easily see, the smaller y∗, the larger
the initial distribution function, since bubbles are easier to be born.
Figure 2 demonstrates the solution of Cauchy’s problem (23) whereN[u(�), �] is taken from (22). The temperature increases

with time from its initial value u(0) = 5 up to the maximal dimensionless temperature um = 8. The other dimensionless
parameters are estimated as follows � = 3, ℎ = 0.01, n = 1, B = 1, a = 1, and

�
w(u0)

= Φ0(0) exp
{

�
u2(0) [u(0) + 1]

}

.

Figure 3 shows the evolutionary behavior of the bubble-size distribution function (16). At all times, this function decreases
with increasing the bubble size. However, the form of this dependence changes with time. This is due to the competition of
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FIGURE 3 The rescaled distribution function Φ(y, �)∕B versus the dimensionless size y of bubbles at different values of
dimensionless time � (numbers at the curves). The system parameters are in the text and the caption to Fig. 1 and y∗ = 0.1.

two processes: the nucleation of new bubbles and the enlargement of the existing ones. Namely, the number of small bubbles
increases due to their inflow (temperature rise), and the number of large bubbles increases due to the enlargement of existing
bubbles.

4 CONCLUSION

In summary, in the present study, a system of integro-differential equations is formulated and solved, which describes the process
of intense boiling of a liquid. The kinetic equation for the bubble-size distribution function takes into account the process of
bubble withdrawal. As this takes place, the rate of bubble appearance is used accordingly to the Dering-Volmer and Frenkel-
Zeldovich-Kagan nucleation theories. The subsequent growth of nucleated bubbles is considered as an arbitrary function of the
relative superheating of the liquid. An important circumstance is a fact that the distribution function and temperature of the fluid
are found using the saddle point method to calculate the Laplace-type integral. In this case, for simplicity of presentation of the
theory and demonstration of the main idea of the proposed method, we limited ourselves only to the main term in the expansion
(see expressions (18) and (19)). Note that to improve the theory being developed, one can easily take into account terms of a
higher order of smallness by analogy with the previously developed theory for the crystallization of supercooled liquids.38,39
The considered model of the boiling process of a superheated liquid can be generalized in future studies to take into account

the “diffusion” of the distribution function in the space of bubble sizes,40 the dependence of the growth rate of bubbles on their
size, a more general law for the rate of bubble nucleation, the possible presence of an impurity dissolved in the liquid, as well
as the other processes and phenomena. Such generalizations can be made by analogy with the theories of crystallization and
dissolution in metastable liquids.41−50
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