loading page

Litter mixing effect on decomposition rate and nutrient release: low quality leaves of coastal species
  • Lili Wei
Lili Wei

Corresponding Author:l.l.wei@hotmail.com

Author Profile


Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants which generally having low-quality litters. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.