Literature Cited:
Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A.,
Goggin C. L.,…Parkes, H. (1998). Chytridiomycosis causes
amphibian mortality associated with population declines in the rain
forests of Australia and Central America. Proc Natl Acad Sci USA, 95:
9031−9036
Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T., Hyatt, A. D.
(2004). Rapid quantitative detection of chytridiomycosis
(Batrachochytrium dendrobatidis) in amphibian samples using real-time
Taqman PCR assay. Diseases of Aquatic Organisms, 60: 141–148
Bradford, D. F., Graber, D. M. (1993). Isolation of remaining
populations of the native frog, Rana muscosa , by introduced
fishes in Sequoia and Kings Canyon National Parks, California.
Conservation
Biology, 7:882–888
California Department of Fish and Wildlife. (2020). Mountain
Yellow-legged Frog threats and Status.
https://wildlife.ca.gov/Regions/6/Conservation/Amphibians/Threats-and-Status,
[accessed 30 April 2020]
Chestnut, T., Anderson, C., Popa, R., Blaustein, A. R., Voytek, M.,
Olson, D. H, Kirshtein, J. (2014). Heterogeneous occupancy and density
estimates of the pathogenic fungus Batrachochytrium dendrobatidis in
waters of North America. PLOS ONE, 9: e106790
Dunker, K. J., Sepulveda, A. J., Massengill, R. L., Olsen, J. B., Russ,
L., Wenburg, J. K., Antonovich, A. (2016). Potential of environmental
DNA to evaluate Northern Pike (Esox lucius ) eradication efforts:
an experimental test and case study. PLOS ONE, 11:1–21
Ellison, S. L. R., English, C. A., Burns, M. J., Keer, J. T. (2006).
Routes to improving the reliability of low level DNA analysis using
real-time PCR. BMC. Biotechnologies, 6:33
Fellers, G. M., Green, D. E., Longcore, J. E. (2001). Oral
chytridiomycosis in the mountain yellow-legged frog (Rana
muscosa ). Copeia, 2001:945–953
Goldberg C. S., Pilliod, D. S., Arkle, R. S., Lisette, P. W. (2011).
Molecular detection of vertebrates in stream water: a demonstration
using Rocky Mountain tailed frogs and Idaho giant salamanders. PLOS ONE,
6: e22746
Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., Waits, L. P.
(2013). Environmental DNA as a new method for early detection of New
Zealand mudsnails (Potamopyrgus antipodarum ). Freshwater Science,
32:792–800
Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P.
F., Murphy, M. A.,…Taberlet, P. (2016). Critical considerations
for the application of environmental DNA methods to detect aquatic
species. Methods in Ecology and Evolution, 7(11): 1299-1307
Harris, R. N., Brucker, R. M., Walke, J. B., Becker, M. H., Schwantes,
C. R., Flaherty, D. C.,… Minbiole, K. P. C. (2009). Skin microbes
on frogs prevent morbidity and mortality caused by a lethal skin fungus.
ISME, J 3: 818−824
Hunter, M. E., Oyler-McCance, S. J., Dorazio, R. M., Fike, J. A., Smith,
B. J., Hunter, C. T.,…Hart, K.M. (2015). Environmental DNA (eDNA)
sampling improves occurrence and detection estimates of invasive Burmese
pythons. PlOS ONE, 10 (4)
Hyman, O. J., Collins, J. P. (2012). Evaluation of a filtration-based
method for detecting Batrachochytrium dendrobatidis in natural bodies of
water. Disease of Aquatic Organisms, 97: 185−195
Jerde, C. L., Mahon, A. R., Chadderton, W. L., Lodge, D. M. (2011).
“Sight-unseen” detection of rare aquatic species using environmental
DNA. Conservation Letters, 4, 150-157
Johnson, M. L., Berger, L., Philips, L., Speare, R. (2003). Fungicidal
effects of chemical disinfectant, UV light, desiccation and heat on the
amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic
Organisms, 57: 255−260
IUCN. (2020). IUCN Red List of Threatened Species v. 2020-1.
https://www.iucnredlist.org, [accessed 30 April 2013]
Kamoroff, C., Goldberg, C. S. (2017). Using environmental DNA for early
detection of amphibian chytrid fungus Batrachochytrium dendrobatidis
prior to a ranid die-off. Diseases of Aquatic Organisms, 127(1): 75-79
Kamoroff, C., Goldberg, C. S. (2018). An issue of life or death: using
eDNA to detect viable individuals in wilderness restoration. Freshwater
Science, 37 (3), 685-696
Kamoroff, C., Daniele, N., Grasso, R. L., Rising, R., Espinoza, T.,
Goldberg, C. S. (2019). Effective removal of the American bullfrog
(Lithobates catesbeianus ) on a landscape level: long term
monitoring and removal efforts in Yosemite Valley, Yosemite National
Park. Biological Invasions, 1-10
Kirshtein, J. D., Anderson, C. W., Wood, J. S., Longcore, J. E., Voytek,
M. A. (2007). Quantitative PCR detection of Batrachochytrium
dendrobatidis DNA from sediments and water. Diseases of Aquatic
Organisms, 77: 11−15
Knapp, R. A., Matthews, K. R. (2000). Non-native mountain fish
introductions and the within decline of the yellow-legged frog from
within protected areas. Conservation Biology, 14: 428–438
Knapp, R. A., Fellers, G. M., Kleeman, P. M., Miller, D. A. W.,
Vredenburg, V. T., Rosenblum, E. B., Briggs, C. J. (2016). Large-scale
recovery of an endangered amphibian despite ongoing exposure to multiple
stressors. Proceedings of the National Academy of Sciences, 113(42):
11889-11894
Kriger, K. M., Hines, H. B., Hyett, A. D., Boyle, D. G., Hero, J. M.
(2006). Techniques for detecting chytridiomycosis in wild frogs:
comparing histology with real-time Taqman PCR. Diseases of Aquatic
Organisms, 71: 141−148
Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2015). Package
‘lmerTest’. R package, version 2.0. R Project for Statistical Computing.
Vienna, Austria
Minamoto, T., Naka, T., Mji, K., Maruyama, A. (2016). Techniques for the
practical collection of environmental DNA: filter selection,
preservation, and extraction. Limnology, 17:23-32
Longcore, J. E., Pessier, A. P., Nichols, D. K. (1999).Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid
pathogenic to amphibians. Mycologia, 91:219–227
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/
Rachowicz, L. J., Hero, J. M., Alford, R. A., Tayon, J. W., Morgan, J.
A. T., Vredenburg, V. T.,…Briggs, C. J. (2005). The novel and
endemic pathogen hypotheses: competing explanations for the origin of
emerging infectious diseases of wildlife. Conservation Biology, 19:
1441−1448
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M.,
Gough, K. C. (2014). The detection of aquatic animal species using
environmental DNA – a review of eDNA as a survey tool in ecology.
Journal of Applied Ecology, 51:1450–1459
Sepulveda, A. J., Hutchins, P. R., Massengill, R. L., Dunker, K. J.,
Barnes, M. A. (2018). Tradeoffs of a portable, field-based environmental
DNA platform for detecting invasive northern pike (Esox lucius )
in Alaska. Management of Biological Invasions, 9 (3), 253-258
Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R.,
Phillott, D.,… Kenyon, N. (2007). Spread of chytridiomycosis has
caused the rapid global decline and extinction of frogs. EcoHealth, 4:
125−134
Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A.
S. L., Fischman, D. L., Waller, R. W. (2004). Status and trends of
amphibian declines and extinctions worldwide. Science, 306:1783–1786
Taberlet, P., Coissac, E., Hajibabaei, M., Rieseberg, L. H. (2012).
Environmental DNA. Molecular Ecology, 21:1789–1793
U.S. Fish and Wildlife Service. (2014). Endangered species status for
Sierra Nevada yellow-legged frog and northern distinct population
segment of the mountain yellow-legged frog, and threatened species
status for Yosemite toad: Final Rule. Fed Regist, 79(82):24256–24310
Vredenburg, V. T., Knapp, R. A., Tunstall, T. S., Briggs, C. J. (2010).
Dynamics of an emerging disease drive large-scale amphibian population
extinctions. Proc Natl Acad Sci, USA 107: 9689−9694
Walker, S. F., Salas, M. B., Jenkins, D., Garner, T. W. J., Cunningham,
A. A., Hyatt, A. D.,…Fisher, M. C. (2007). Environmental
detection of Batrachochytrium dendrobatidis in a temperate climate.
Disease of Aquatic Organisms, 77:105−112
Yosemite National Park (2019) Unpublished data
Table 1. Sample collection meta-data and results across all 3
sites and sample types: control sample (Blank), environmental DNA sample
(eDNA), and frog swab (Swab). “# of Samples Collected” refers to
number of frogs swabbed, eDNA samples collected, and eDNA blanks
collected for PCR analysis of Batrachochytrium dendrobatidis (Bd)DNA. Bd DNA detection and quantification results for field and
lab methods are indicated by “Field:” or “Lab:” respectively. MeanBd DNA quantification is the average number of Bd DNA
copies found across all samples and technical replicates with standard
deviation (SD) across all samples. – indicates not applicable for
respected cell type. DNA below the level of the standard curve is marked
by “<100”.