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Abstract

In this work, an energy stable numerical scheme is proposed to solve the PFC model with a non-

local Lagrange multiplier. The construction of the numerical scheme is based on invariant energy

quadratization (IEQ) technique to transform a nonlinear system into a linear system, while the time

variables is discretized by second order scheme. The stability term in the new scheme can balance

the influence of nonlinear term. Moreover, we obtain the results of unconditional energy stability,

uniqueness and uniform boundedness of numerical solution, and the numerical scheme is convergent

with order of O(δt2). Several numerical tests are conducted to confirm the theoretical results.

Keywords: Phase field crystal model, Invariant Energy Quadratization, Unconditionally energy

stable, Error estimate.

1. Introduction

The phase field crystal model (PFC) has attracted considerable attention recently. This model

can capture features of solid-liquid system at atomic scales, and has been proven effective, for

instance, in modeling the dynamics of crystal growth, foams, colloidal solidification, etc [1, 2] and

predicting epitaxial growth, grain growth, etc [4]. In the work of Elder et al [3, 4], the PFC model was

first solved by the phase field method, in which a total free energy functional hand been postulated

to generate the periodic structure of a crystal lattice. It’s worth noting that the well-known Swift-

Hohenberg model (SH), which was first proposed by Swift and Hohenberg in 1997 and then widely

been studied in modern physics, star from the same total free energy functional. The SH model
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is derive by taking variation of the total free energy functional in L2 space, then lead to a non-

conserved, fourth-order governing PDE system. The difference is that the Elder’s PFC model is

derive by using the variational approach in H−1 space, which result in a sixth-order governing PDE

system with conserved total mass. The above process is similar to the derivation of the classical

Allen-Cahn (AC) and Cahn-Hilliard (CH) systems, but one important difference is that the stable

phase of SH and PFC systems are periodic.

It should be recalled that there is a lot of research work on PFC model, such as implicit quadra-

ture method [6, 7], the convex-splitting method [8, 9, 10, 11, 12, 13], Invariant energy quadratiza-

tion (IEQ) method [14, 15]. The convex-splitting method can produced an energy stable numerical

scheme, but some iterative methods are needed to solve the nonlinear system. On the other hand,

IEQ method can generate linear and unconditional energy stable numerical schemes [16], but this

method does not perform so well when the mobility parameter become large [17, 18, 19]. In order to

ensure the conservation of volume, Rubinstein and Sternberg [5] proposed a non-local AC equation.

Inspired by their thoughts, Zhang and Yang [15] constructed a second-order stabilized-IEQ scheme by

adding some second-order Douglas-Dupont terms, namely, S1(φn+1−φ∗,n+1), S2∆2(φn+1−φ∗,n+1).

However, they did not discuss the error estimate of numerical scheme. More importantly, by com-

paring continuous and discrete equation, the added stability terms do not look so natural.

In this paper, we use IEQ technique to construct a new stable numerical scheme for solving the

PFC model with a nonlocal Lagrange multiplier. Firstly, the PFC model is reformulated into a

new equivalent form via IEQ technique. Secondly, a second-order unconditional numerical scheme is

constructed. It should be noted that the stable term in the scheme has the property of balancing the

influence of nonlinear term. Next, we also analyze the error estimate of the time discrete scheme.

Error estimate shows that our method can achieve second-order accuracy in time direction. More

importantly, we obtained the uniform boundedness of numerical solution, and our analysis method

does not use any Lipschitz hypothesis for the nonlinear terms. It is only necessary to obtain a

sufficiently small time step. At last, subsequent numerical experiments verify the unconditional

energy stability of the numerical method. The correctness of the theoretical analysis is also verified.

The rest of the paper is organized as follows. In Section 2, we will introduce the nonlocal PFC

model. In Section 3, the IEQ scheme is studied in detail. Some properties of the newly proposed

scheme will be introduced. In Section 4, We will introduce the uniform convergence of numerical

method. In Section 5, several numerical experiments are performed to demonstrate the effectiveness

of the numerical methods. The conclusion of this article is given in the last section.
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2. Phase field crystal model

2.1. Nonlocal phase field crystal model

In this work, we study the nonlocal phase field crystal model that preserves the total volume. In

details, for the free energy

E(φ) =

∫
Ω

(φ
2

(∆ + 1)2φ+ F (φ)
)
dx, (1)

where F (φ) = 1
4φ

4 − η
3φ

3 − ε
2φ

2 be the nonlinear potential function.

The L2-based PFC model, i.e. SH model, that follows the Allen-Cahn dynamics, namely, by

taking the variational derivative of (1) in L2 space, the obtained equation reads as

1

M
∂tφ = −(∆ + 1)2φ− f(φ), (x, t) ∈ Ω× [0, T ], (2)

with periodic boundary condition, where f(φ) = F ′(φ) = φ3 − ηφ2 − εφ. The new PFC model we

considered in this paper is the SH model added a nonlocal Lagrange multiplier:

1

M
∂tφ+ (∆ + 1)2φ+ f(φ)− 1

|Ω|

∫
Ω

φ+ f(φ)dx = 0. (3)

By taking the L2 inner product of (3) with 1, we note that it satisfies the mass conservation property

d

dt

∫
Ω

φdx = 0. (4)

By taking the L2 inner product of (3) with φt, the following energy dissipation law is obtained

d

dt
E(φ) = − 1

M
‖φt‖2 ≤ 0. (5)

3. IEQ technique for nonlocal PFC model

Now we introduce the IEQ scheme. Denote

q =
√
F (φ)− γφ2 +A, g =

∂q

∂φ
=

f(φ)− 2γφ

2
√
F (φ)− γφ2 +A

, (6)

where γ ≥ 0, The value of A make the inequality F (φ) − γφ2 + A > 0 holds. Then, reformulated

nonlocal PFC model as

1

M
∂tφ+ (∆ + 1)2φ+ 2qg + 2γφ− 2

|Ω|

∫
Ω

qg + (γ +
1

2
)φdx = 0, (7)

∂tq = g∂tφ, (8)

Let tn := nδt, where δt is the time step, set φn, qn as approximation of u(x, tn), q(x, tn) respec-

tively. we propose the following second order time discrete scheme

1

M

φn+1 − φn

δt
+ (∆ + 1)2φn+ 1

2 + 2g(φ?)qn+ 1
2 + 2γφn+ 1

2 − 2

|Ω|

∫
Ω

g(φ?)qn+ 1
2 + (γ +

1

2
)φn+ 1

2 dx = 0,

(9)
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qn+1 − qn

δt
= g(φ?)

φn+1 − φn

δt
, (10)

where φ? = 3
2φ

n − 1
2φ

n−1,when n ≥ 1; φ? = φ0, when n = 0.

We have the following energy dissipation properties for the time discrete scheme(9)-(10).

Theorem 3.1. The time-discrete scheme (9)-(10) is unconditionally energy stable. It satisfies the

following properties

E(φn+1, qn+1) +
1

Mδt
‖φn+1 − φn‖2 = E(φn, qn), (11)

with discrete energy defined by

E(φn, qn) :=
1

2
‖(∆ + 1)φn‖2 + γ‖φn‖2 + ‖qn‖2. (12)

Proof. Taking the L2 inner product of the equation (9) with 1, we find

(φn+1, 1) = (φn, 1). (13)

Taking the L2 inner product of the equation (9) with (φn+1 − φn), we have

1

Mδt
‖φn+1 − φn‖2 +

1

2

(
‖(∆ + 1)φn+1‖2 − ‖(∆ + 1)φn‖2

)
+ γ(‖φn+1‖2 − ‖φn‖2)

+
(
g(φ?)(qn+1 + qn), φn+1 − φn

)
− 1

|Ω|

(
g(φ?), qn+1 + qn

)(
φn+1 − φn, 1

)
− γ

|Ω|

(
φn+1 + φn, 1

)(
φn+1 − φn, 1

)
= 0. (14)

Computing the L2 inner product of the equation (10) with δt(qn+1 + qn), we obtain

‖qn+1‖2 − ‖qn‖2 =
(
g(φ?)(φn+1 − φn), qn+1 + qn

)
. (15)

Substituting (13) and (15) into (14), we have

1

Mδt
‖φn+1 − φn‖2 +

1

2

(
‖(∆ + 1)φn+1‖2 − ‖(∆ + 1)φn‖2

)
+ γ
(
‖φn+1‖2 − ‖φn‖2

)
+ ‖qn+1‖2 − ‖qn‖2 = 0, (16)

which yields (11).

Theorem 3.2. The time discrete scheme (9)-(10) is unique solvable.

Proof. First, we rewrite the equation (10) as follows

qn+1 = qn + g(φ?)(φn+1 − φn). (17)

Then, we reformulate the first equation of (9) as

1

Mδt
φn+1 +

1

2
(∆ + 1)2φn+1 + γφn+1 + g2(φ?)φn+1 − 1

|Ω|

∫
Ω

g2(φ?)φn+1 + (γ +
1

2
)φn+1dx = F1,

(18)

where

F1 =
1

Mδt
φn − 1

2
(∆ + 1)2φn − γφn − 2g(φ?)qn + g2(φ?)φn
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+
1

|Ω|

∫
Ω

g(φ?)(2qn − g(φ?)φn) + (γ +
1

2
)φndx,

is not dependent on φn+1. We introduce ψ = φn+1 − c and operator

Lψ =
[ 1

Mδt
+

1

2
(∆ + 1)2 + γ + g2(φ?)− 1

|Ω|

∫
Ω

g2(φ?) ·+(γ +
1

2
) · dx

]
ψ,

where c = (φn+1, 1) = · · · = (φ0, 1) is a constant, then the equation (18) can be rewritten as

Lψ = F2. (19)

The F2 is the new right hand side and still independent of φn+1. Then, we can easily shown that

there exists a unique solution for ψ. Note that

(Lψ,ψ) = (
1

Mδt
+ γ)‖ψ‖2 +

1

2
‖(∆ + 1)ψ‖2 + ‖g(φ?)ψ‖2. (20)

When Lψ = 0, we will derive ψ = 0, i.e. there exists a unique solution for (19), which is equivalent

to say that there exists a unique solution for (18).

4. Error estimate

In this section, we will discuss the uniform boundedness results of numerical methods. First, we

can rewrite equation (7)-(8) as follows

1

M

φ(tn+1)− φ(tn)

δt
=− (∆ + 1)2φ(tn+ 1

2 )− 2g(φ(tn+ 1
2 ))q(tn+ 1

2 )− 2γφ(tn+ 1
2 )

+
2

|Ω|

∫
Ω

g(φ(tn+ 1
2 ))q(tn+ 1

2 ) + (γ +
1

2
)φ(tn+ 1

2 )dx +R
n+ 1

2
1 , (21)

q(tn+1)− q(tn)

δt
=g(φ(tn+ 1

2 )
φ(tn+1)− φ(tn)

δt
+R

n+ 1
2

2 . (22)

It is easy to check that R
n+ 1

2
i (i = 1, 2) satisfies

‖Rn+ 1
2

i ‖ ≤ Cδt2. (23)

In order to study uniform boundedness, we write B

B = max
0≤t≤T

‖φ(t)‖H2 + 1. (24)

Lemma 4.1. Suppose φ ∈ H3([0, T ];H4(Ω)). Given τ0 > 0, when δt < τ0, the following uniform

boundedness result yields

‖φk‖H2 ≤ B, k = 0, 1, · · · ,K = T/δt. (25)

Proof. We will utilize mathematical induction to prove the above conclusion. First, notice that

‖φ0‖H2 ≤ B is clearly true. Suppose ‖φn‖H2 ≤ B for n ≤ k. Then, we need to proof ‖φk+1‖H2 ≤ B
still holds. Let us define the point-wise error function

enφ = φ(tn)− φn, enq = q(tn)− qn. (26)
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We set M = 1 for convenience. Subtracting (9)-(10) from (21)-(22) yields

en+1
φ − enφ
δt

=− (∆ + 1)2e
n+ 1

2

φ − 2γe
n+ 1

2

φ +N1 −N2 +R
n+ 1

2
1 , (27)

en+1
q − enq
δt

=N3 +R
n+ 1

2
2 , (28)

where

N1 =2
(
g(φ?)qn+ 1

2 − g(φ(tn+ 1
2 ))q(tn+ 1

2 )
)
,

N2 =
2

|Ω|

(∫
Ω

g(φ?)qn+ 1
2 + (γ +

1

2
)φn+ 1

2 dx−
∫

Ω

g(φ(tn+ 1
2 ))q(tn+ 1

2 ) + (γ +
1

2
)φ(tn+ 1

2 )dx
)
,

N3 =g(φ(tn+ 1
2 ))

φ(tn+1)− φ(tn)

δt
− g(φ?)

φn+1 − φn

δt
.

Taking the inner product of equation (27) with error function (en+1
φ − enφ) gives

1

δt
‖en+1
φ − enφ‖2 +

1

2

(
‖(∆ + 1)en+1

φ ‖2 − ‖(∆ + 1)enφ‖2
)

+ γ
(
‖en+1
φ ‖2 − ‖enφ‖2

)
=
(
N1, e

n+1
φ − enφ

)
−
(
N2, e

n+1
φ − enφ

)
+
(
R
n+ 1

2
1 , en+1

φ − enφ
)
. (29)

Taking the inner product of equation (28) with the error function δt(en+1
q + enq ) gives

‖en+1
q ‖2 − ‖enq ‖2 = δt

(
N3, e

n+1
q + enq

)
+ δt

(
R
n+ 1

2
2 , en+1

q + enq

)
. (30)

Summing up above equations, we find

1

δt
‖en+1
φ − enφ‖2 +

1

2

(
‖(∆ + 1)en+1

φ ‖2 − ‖(∆ + 1)enφ‖2
)

+ γ
(
‖en+1
φ ‖2 − ‖enφ‖2

)
+ ‖en+1

q ‖2 − ‖enq ‖2

=
(
N1, e

n+1
φ − enφ

)
−
(
N2, e

n+1
φ − enφ

)
+
(
R
n+ 1

2
1 , en+1

φ − enφ
)

+ δt
(
N3, e

n+1
q + enq

)
+ δt

(
Rn+ 1

2 , en+1
q + enq

)
. (31)

Note that

N1 =2q(φ(tn+ 1
2 ))(g(φ?)− g(φ(tn+ 1

2 )))− g(φ?)
(

(en+1
q + enq ) + q(tn+1) + q(tn)− q(tn+ 1

2 )
)
,

N2 =
2

|Ω|

(∫
Ω

(g(φ?)− g(φ(tn+ 1
2 )))q(φ(tn+ 1

2 ))dx−
∫

Ω

g(φ?)e
n+ 1

2
q dx− γ

∫
Ω

e
n+ 1

2

φ dx
)

− 1

|Ω|

∫
Ω

q(tn+1) + q(tn)− q(tn+ 1
2 )dx,

N3 =
φ(tn+1)− φ(tn)

δt
(g(φ(tn+ 1

2 ))− g(φ?)) + g(φ?)
en+1
φ − enφ
δt

.

For the nonlinear terms, we find∣∣∣√F (φ(tn+ 1
2 ))− γ(φ(tn+ 1

2 ))2 +A−
√
F (φ?)− γ(φ?)2 +A

∣∣∣
=
∣∣∣ (F (φ(tn+ 1

2 ))− F (φ?))− γ((φ(tn+ 1
2 ))2 − (φ?)2)√

F (φ(tn+ 1
2 ))− γ(φ(tn+ 1

2 ))2 +A+
√
F (φ?)− γ(φ?)2 +A

∣∣∣
≤C(|enφ|+ |en−1

φ |+ δt2), (32)
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and

|g(φ?)− g(φ(tn+ 1
2 ))| =

∣∣∣ f(φ?)− 2γφ?

2
√
F (φ?)− γ(φ?)2 +A

− f(φ(tn+ 1
2 ))− 2γφ(tn+ 1

2 )

2
√
F (φ(tn+ 1

2 )− γ(φ(tn+ 1
2 ))2 +A

∣∣∣
≤ 1

2A

(
|f(φ?)− 2γφ?|

∣∣∣√F (φ(tn+ 1
2 ))− γ(φ(tn+ 1

2 ))2 +A−
√
F (φ?)− γ(φ?)2 +A

∣∣∣
+
√
F (φ?)− γ(φ?)2 +A

∣∣∣(f(φ?)− 2γφ?)− (f(φ(tn+ 1
2 ))− 2γφ(tn+ 1

2 ))
∣∣∣)

≤C(|enφ|+ |en−1
φ |+ δt2). (33)

The inner product can be handled in a straightforward way(
N2, e

n+1
φ − enφ

)
≤3δt‖N2‖2 +

1

3δt
‖en+1
φ − enφ‖2

≤Cδt(‖en+1
φ ‖2 + ‖enφ‖2 + ‖en−1

φ ‖2 + ‖en+1
q + enq ‖2) +

1

3δt
‖en+1
φ − enφ‖2, (34)(

R
n+ 1

2
1 , en+1

φ − enφ
)
≤Cδt‖Rn+ 1

2
1 ‖2 +

1

3δt
‖en+1
φ − enφ‖2, (35)(

R
n+ 1

2
2 , en+1

q + enq

)
≤C
(
‖Rn+ 1

2
2 ‖2 + ‖en+1

q + enq ‖2
)
. (36)

For the last nonlinear term, we find(
N1, e

n+1
φ − enφ

)
+ δt

(
N3, e

n+1
q + enq

)
=
(

2q(φ(tn+ 1
2 ))(g(φ?)− g(φ(tn+ 1

2 )))− g(φ?)(q(tn+1) + q(tn)− q(tn+ 1
2 )), en+1

φ − enφ
)

+
(

(φ(tn+1)− φ(tn))(g(φ(tn+ 1
2 ))− g(φ?)), en+1

q + enq

)
≤Cδt

(
‖enφ‖2 + ‖en−1

φ ‖2 + δt4 + ‖en+1
q + enq ‖2

)
+

1

3δt
‖en+1
φ − enφ‖2. (37)

Combing with (32)-(37), we have

1

2

(
‖(∆ + 1)en+1

φ ‖2 − ‖(∆ + 1)enφ‖2
)

+ γ
(
‖en+1
φ ‖2 − ‖enφ‖2

)
+ ‖en+1

q ‖2 − ‖enq ‖2

≤Cδt5 + Cδt
(
‖en+1
φ ‖2 + ‖enφ‖2 + ‖en−1

φ ‖2 + ‖en+1
q ‖2 + ‖enq ‖2

)
. (38)

Summing (38) for n = 1, · · · , k, we deduce that

Ek+1 ≤ E1 + Cδt4 + Cδt

k∑
n=1

En+1, (39)

where

Ek+1 =
1

2
‖(∆ + 1)ek+1

φ ‖2 + γ‖ek+1
φ ‖2 + ‖ek+1

q ‖2.

It is easy to check that

E1 ≤ C1δt
4. (40)

Applying discrete Gronwall inequality to derive that

Ek+1 ≤ C2δt
4. (41)
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Thus

‖ek+1
φ ‖H2 ≤ C3δt

2. (42)

If we set τ0 =
√

1
C3

, then for all δt ≤
√

1
C3

, it holds

‖ek+1
φ ‖H2 ≤ 1. (43)

This ends the proof.

Theorem 4.2. Suppose the assumption of Lemma (4.1), the following error estimate holds.

‖φ(tk+1)− φk+1‖H2 + ‖q(φ(tk+1))− q(φk+1)‖ ≤ Cδt2. (44)

5. Numerical examples

In this section, we present some numerical tests for the validation of the developed model, as

well as the efficiency and accuracy of the proposed IEQ scheme.

5.1. Temporal convergence rate

Firstly, we test the temporal convergence rate. Set the computational domain as Ω = [0, 2π]2,

and the order parameters as M = 1, γ = 1, η = 0, ε = −1, A = 5, a forcing function is added to the

right hand side of system (7),(8) such that the exact solution is given by

φ(x, y, t) = cos(t) sin(2x) sin(4y).

We use 1292 Fourier modes so the spatial discretization error is negligible compared with the time

discretization error. Table 5.1 show the H2-error for φ, L2-error for auxiliary variable q between

the numerical solution and the exact solution at t = 1 with different time step sizes, we observe

that the numerical solution φ and q both are second-order convergent, which is consistent with our

theoretical estimate.

δt H2-error for φ order L2-error for q order

0.1 0.00270143071312333 - 7.60230673887e-05

0.05 0.00174737253973162 0.629 2.04847554780988e-05 1.892

0.01 7.15201988020057e-05 1.986 8.11109066356989e-07 2.006

0.005 1.7879511693599e-05 2.000 2.02514354280915e-07 2.002

0.001 7.15166099298328e-07 2.000 8.09242682881422e-09 2.001

0.0005 1.787911221463e-07 2.000 2.02285458496778e-09 2.000

0.0001 7.151654506629e-09 2.000 8.09058107565712e-11 2.000

Table 1: numerical error for φ and q at time t = 1
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5.2. Benchmark simulations

In this subsection, we implement several long-time benchmark simulations to investigate whether

the nonlocal PFC model solved by IEQ method can recover the same dynamical behaviors that had

been simulated by the classical Elder’s PFC model.

5.2.1. Crystal growth in a supercooled liquid

The First example presents the growth of a poly-crystal in a supercooled liquid. The computa-

tional domain is set as Ω = [0, 800]2, the order parameters take the values M = 1, γ = 0, η = 0, ε =

0.25, A = 4. To define the initial configuration, we first set φ(x, y, 0) = φ̄, where φ̄ is a constant.

Secondly, we modify this constant configuration by setting some perfect crystallites in small square

patches of the domain as illustrated in the first subfigure of Fig5.2.1 or Fig5.2.1. We use the following

expression to define the crystallites

φ(xl, yl) = φ̄+ C

(
cos(

p√
3
yl) cos(pxl)− 0.5 cos(

2p√
3
yl)

)
, (45)

where xl and yl define a local system of cartesian coordinates that is oriented with the crystallite

lattice. The parameters φ̄, C and p take the values φ̄ = 0.285, C = 0.446, and q = 0.66. To generate

crystallites with different orientations, we formulate the local coordinates (xl, yl) by using an affine

transformation of the global coordinates (x, y), that produces a rotation given by and angle θ, i.e.,

xl(x, y) =x sin θ + y cos θ,

yl(x, y) =− x cos θ + y sin θ.

All the above initial configurations are consistent with those in [4, 15, 20]. We perform the simula-

tions by using the second order IEQ scheme with time step δt = 0.1, and 10252 Fourier modes to

discretize spaces.

Figure 1: The dynamical behaviors of the crystal growth with one initial crystallite arbitrarily deposited in a super-

cooled liquid for PFC model.

Fig 5.2.1 shows snapshots of the numerical solution at several computational times where the

initial condition is set to be a single crystallite that is placed at the center of the domain with

θ = 0. Fig 5.2.1 presents close view for several snapshots. We observe that the crystals form

hexagonal lattice structure in the end. We further simulate evolution of three crystallites with

different orientations. Setting the initial conditions to be three arbitrarily deposited crystallites

with θ = −π4 , 0,
π
4 respectively. Several snapshots and close views of the phase variable φ are shown

in Fig 5.2.1, Fig 5.2.1. We observe the growth of the crystalline phase and the motion of well-defined

crystal-liquid interfaces. The dislocation lines are formed due to the different alignment of the initial

crystallites. This results present similar features to those obtained in references mentioned above.

Fig 5.2.1, Fig 5.2.1 present time evolution of discrete energy defined in (12) and total mass
∫

Ω
φdx.
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These results verify the conclusion of Theorem 3.1 and equation (13), i.e. the numerical solution

obtained by the IEQ method satisfies the energy dissipation law and guarantees the conservation of

total mass.

Figure 2: The dynamical behaviors of the crystal growth with three initial crystallites arbitrarily deposited in a

supercooled liquid for PFC model.

5.2.2. Phase transition behaviors

In Fig 3, and Fig 4, we simulate the phase transition behaviors of nonlocal PFC model. Initial

condition reads as

φ(x, y, 0) = φ̄(1 + rand(x, y)),

where φ̄ is the mean density of solid and liquid, rand(x, y) is the random numbers in the rang of

[−1, 1]. We set computational domain [0, 256]2, the parameters take the values φ̄ = 0.07,M = 1, r =

0, A = 4. The only difference between the two examples is that the parameter η and ε is set to

η = 0, ε = 0.3 in Fig 5.2.2 and η = 1, ε = 0.1 in Fig 5.2.2. We perform the simulations by using the

second-order scheme IEQ with time step δ = 0.1 and 5132 Fourier modes to discretize spaces.

Figure 3: The dynamical behaviors of the phase separation behaviors for PFC model with η = 0, ε = 0.3.

Figure 4: The dynamical behaviors of the phase separation behaviors for PFC model with η = 1, ε = 0.1.

In Fig 3, Fig 4, we present the snapshots of phase transition behaviors of the density field φ

at different computational times. We observe the formation of rolls in Fig 5.2.2 and hexagons in

Fig 5.2.2 respectively. These results are similar to those of SH model [15, 21]. The time evolution

of discrete energy and total mass
∫

Ω
φdx are show in Fig 5.2.2, Fig 5.2.2, we come to the same

conclusion that IEQ method is effective in solving the nonlocal phase field crystal model.

6. Conclusion

In this article, we have constructed a second order, unconditional energy stable numerical method

for nonlocal PFC model. Stability, uniqueness and convergence in time direction are proved. Theo-

retical proof and numerical experiments show that the constructed numerical scheme can achieve the

second-order accuracy of time. A large number of numerical experiments show that our algorithm

can better simulate the dynamic behavior of the nonlocal PFC model.
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