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Abstract. The paper studies the global existence and general decay of so-
lutions using Lyaponov functional for a nonlinear wave equation, taking into
account the fractional derivative boundary condition and memory term. In
addition, we establish the blow up of solutions with nonpositive initial energy.

1. Introduction

Extraordinary di¤erential equations, also known as fractional di¤erential equa-
tions are a generalization of di¤erential equations through fractional calculus. Much
attention has been accorded to fractional partial di¤erential equations during the
past two decades due to the many chemical engineering, biological, ecological and
electromagnetism phenomena that are modeled by initial boundary value problems
with fractional boundary conditions. See Tarasov [19], Magin [13], and Valério et
al [20].
In this work we consider the nonlinear wave equation

(1.1)

8>><>>:
utt ��u+ aut +

R t
0
g (t� s)�u (s) ds = jujp�2u; x 2 
; t > 0;

@u
@� = �b@

�;�
t u; x 2 �0; t > 0;

u = 0; x 2 �1; t > 0;
u(x; 0) = u0(x); ut(x; 0) = u1(x); x 2 
;

where 
 is a bounded domain in Rn, n � 1 with a smooth boundary @
 of class
C2 and � is the unit outward normal to @
 = �0 [ �1, where �0 and �1 are closed
subsets of @
 with �0 \ �1 = ;.
a; b > 0, p > 2, and @�;�t with 0 < � < 1 is the Caputo�s generalized fractional
derivative (see [7] and [8]) de�ned by:

@�;�t u(t) =
1

�(1� �)

Z t

0

(t� s)��e��(t�s)us(s)ds; � � 0;

where � is the usual Euler gamma function. It can also be expressed by

(1.2) @�;�t u(t) = I1��;�u0(t);

where I�;� is the exponential fractional integro-di¤erential operator given by

I�;�u(t) =
1

�(�)

Z t

0

(t� s)��1e��(t�s)u(s)ds; � � 0:
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In the context of boundary dissipations of fractional order problems, the main
research focus is on asymptotic stability of solutions starting by writing the equa-
tions as an augmented system (see [15]). Then, various techniques are used such as
LaSalle�s invariance principle and multiplier method mixed with frequency domain,
(see [2], [3], [6], [7], [8], [16], [19]).
In [2], Akil and Wehbe used semigoup theory of linear operators to prove stability
of the following problem8>><>>:

utt ��u = 0; x 2 
; t > 0;
@u
@� = �b@

�;�
t u; x 2 �0; t > 0; � � 0; 0 < � < 1;

u = 0; x 2 �1; t > 0;
u(x; 0) = u0(x); ut(x; 0) = u1(x); x 2 
:

In [14], Mbodje carried on the study by investigating the decay rate of energy to

prove strong asymptotic stability if � = 0, and a polynomial decay rate E(t) � c

t
if

� > 0.

Later in [11], Kirane and Tatar proved global existence and exponential decay
of the following wave equation with mild internal dissipation

(1.3)8>><>>:
utt(x; t)��u(x; t) + aut(x; t) +

R t
0
g (t� s)�u (s) ds = f(x; t); x 2 
; t > 0;

@u
@� (x; t) +

R t
0
K(x; t� s)us(x; s)ds = h(x; t); x 2 �0; t > 0;

u0(x; t) = 0 x 2 �1; t > 0;
u(x; 0) = u0(x) ut(x; 0) = u1(x) x 2 
:

where the homogeneous case was also considered in [4] by Alabau and al, in order
to establish polynomial stability, then in [5] for exponential decay.
Dai and Zhang [8] replaced

R t
0
K(x; t � s)us(x; s)ds by @�t u(x; t) and h(x; t) by

jujm�1u(x; t), and managed to prove exponential growth for the same problem.
Noting that the nonlinear wave equation with boundary fractional damping case

was �rst considered by authors in [18], where they used the augmented system to
prove the exponential stability and blow up of solutions in �nite time.

Motivated by our recent work in [18] and based on the construction of a Lya-
punov function, we prove in this paper under suitable conditions on the initial data
the stability of a wave equation with fractional damping and memory term. This
technique of proof was recently used by [9] and [18] to study the exponential decay
of a system of nonlocal singular viscoelastic equations.
Here we also consider three di¤erent cases on the sign of the initial energy as re-
cently examined by Zarai and al [21], where they studied the blow up of a system
of nonlocal singular viscoelastic equations.

The organization of our paper is as follows. We start in sect.2 by giving some
lemmas and notations in order to reformulate our problem (1.1) into an augmented
system. In the following section, we use the potential well theory to prove the global
existence result. Then, the general decay result in section 4. In sect.5, following a
direct approach, we prove blow up of solutions.
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2. Preliminaries

Let us introduce some notations, assumptions, and lemmas that are e¤ective for
proving our results.

Assume that the relaxation function g satis�es
(G1) g : R+ ! R+ is a nonincreasing di¤erentiable function with

(2.1) g (0) > 0; 1�
Z 1

0

g (s) ds = l > 0

(G2) There exists a constant � > 0 such that

(2.2) g0 (t) � ��g (t) ; 8t > 0:
We denote

(2.3) (g � u) (t) =
Z t

0

g (t� s) ku (t)� u (s) k2ds;

and
@ = fw 2 H1

0 jI(w) > 0g [ f0g;

H1
�1(
) =

�
u 2 H1(
); uj�1 = 0

	
:

Lemma 1. (Sobolev-Poincaré Inequality, see [16])
If either 1 � q � N+2

N�2 , (N � 3) or 1 � q � +1 (N = 2). Then there exists C� > 0
such that

kukq+1 � C�kruk2; 8u 2 H1
0 (
);

Lemma 2. (Trace -Sobolev embedding )
For all p such that

(2.4) 2 < p � 2(n� 1)
n� 2

we have
H1
�1(
) ,! Lp(�0):

We denote by Bq the embedding constant i.e.,

kukp;�0 � Bqkuk2:

Lemma 3. ( [21], p. 5, Lemma 2 or [12], p. 1406 ,Lemma 4.1)
Consider a nonegative function B(t) 2 C2(0;1) satisfying
(2.5) B00(t)� 4(� + 1)B0(t) + 4(� + 1)B(t) � 0;
where � > 0.
If

(2.6) B0(0) > r2B(0) + l0;

then

(2.7) B0(t) � l0; 8t > 0
where l0 2 R, r2 represents the smallest root of the equation
(2.8) r2 � 4(� + 1)r + (� + 1) = 0:
i.e. r2 = 2(� + 1)� 2

p
(� + 1)�:
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Lemma 4. ([21], p. 5, Lemma 3 or [12], p. 1406 ,Lemma 4.2)
Let J (t) be a non-increasing function on [t0;1) verifying the di¤erential inequality

(2.9) J 0 (t)
2 � �+ bJ (t)

2+ 1
� ; t � t0 � 0;

where � > 0; b 2 R; then there exists T � > 0 such that
(2.10) lim

t!T��
J (t) = 0;

with the following upper bound cases for T �

(i) When b < 0 and J(t0) < min
n
1;
p
�=(�b)

o
(2.11) T � � t0 +

1p
�b
ln

q
�
�bq

�
�b � J(t0)

:

(ii) When b = 0;

(2.12) T � � t0 +
J(t0)p
�
:

(iii) When b > 0;

(2.13) T � � J(t0)p
�

or

(2.14) T � � t0 + 2
3�+1
2�

�cp
�

�
1� [1 + cJ(t0)]

1
2�

�
;

where

c =

�
b

�

��=(2+�)
:

De�nition 1. We say that u is a blow-up solution of (1:1) at �nite time T � if

(2.15) lim
t!T��

1

(kruk2)
= 0:

Theorem 1. ([14], Theorem 1)
Consider the constant

% = (�)�1 sin (��)

and the function � given by

(2.16) �(�) = j�j
(2��1)

2 ; 0 < � < 1; � 2 R:
Then, we can obtain

(2.17) O = I1��;�U:

which is a relation between U the �input�of the system

(2.18) @t�(�; t) + (�
2 + �)�(�; t)� U(L; t)�(�) = 0; t > 0; � � 0; � 2 R



5

and the �output�O given by

(2.19) O(t) = %

Z +1

�1
�(�; t)�(�)d�; � 2 R; t > 0:

Now using (1:2) and Theorem 1, the augmented system related to our system
(1:1) may be given by
(2.20)8>>>>>><>>>>>>:

utt ��u+ aut +
R t
0
g (t� s)�u (s) ds = jujp�2u; x 2 
; t > 0;

@t�(�; t) + (�
2 + �)�(�; t)� ut(x; t)�(�) = 0; x 2 �0; � 2 R; t > 0;

@u
@� = �b1

R +1
�1 �(�; t)�(�)d�; x 2 �0; � 2 R; t > 0;

u = 0; x 2 �1; t > 0;
u(x; 0) = u0(x); ut(x; 0) = u1(x); x 2 
;
�(�; 0) = 0; � 2 R;

where b1 = b%.

Lemma 5. ([3], p. 3, Lemma 2.1)
For all � 2 D� = f� 2 C : =m� 6= 0g [ f� 2 C : <e�+ � > 0g, we have

A� =

Z +1

�1

�2(�)

� + �+ �2
d� =

�

sin (��)
(� + �)��1:

Theorem 2. (Local existence and Uniqueness)
Assume (2.4) holds. Then for all (u0; u1; �0) 2 H1

�0
(
) � L2(
) � L2(�1;+1),

there exists some T small enough such that problem (2:20) admits a unique solution

(2.21)

8<:
u 2 C([0; T );H1

�0
(
));

ut 2 C([0; T ); L2(
));
� 2 C([0; T ); L2(�1;+1):

3. Global existence

Before proving the global existence for problem (2.20), let us introduce the func-
tionals:

I(t) =

�
1�

Z t

0

g(s)ds

�
kruk22 + (g � ru) (t)� kukpp

and

J(t) =
1

2

��
1�

Z t

0

g(s)ds

�
kruk22 + (g � ru) (t)

�
� 1
p
kukpp:

The energy functional E associated to system (2.20) is given as follows:
(3.1)

E(t) =
1

2
kutk22+

1

2

�
1�

Z t

0

g(s)ds

�
kruk22+

1

2
(g � ru) (t)�1

p
kukpp+

b1
2

Z
�0

Z +1

�1
j�(�; t)j2d�d�:

Lemma 6. If (u; �) is a regular solution to (2.20), then the energy functional given
in (3:1) veri�es
(3.2)
d

dt
E(t) = �akutk22�

1

2
g (t) kruk22+

1

2
(g0 � ru) (t)�b1

Z
�0

Z +1

�1
(�2+�)j�(�; t)j2d�d� � 0:
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Proof. Multiplying by ut in the �rst equation from (2.20), using integration by
parts over 
, we get

1

2
kutk22 �

Z



�uutdx+ akutk22 +
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 +

1

2
(g � ru) (t)

=

Z



jujp�2u utdx:

Therefore

d

dt

�
1

2
kutk22 +

1

2

�
1�

Z t

0

g(s)ds

�
kruk22 +

1

2
(g � ru) (t)� 1

p
kukpp

�
+akutk22 + b1

Z
�0

ut(x; t)

Z +1

�1
�(�)�(�; t)d�d� = 0:

(3.3)

Multiplying by b1� in the second equation from (2.20), and integrating over �0 �
(�1;+1), we get

b1
2

d

dt

Z
�0

Z +1

�1
j�(�; t)j2d�d�+ b1

Z
�0

Z +1

�1
(�2 + �)j�(�; t)j2d�d�

� b1
Z
�0

ut(x; t)

Z +1

�1
�(�)�(�; t)d�d� = 0:

(3.4)

From (3:1), (3:3) and (3:4) we obtain

d

dt
E(t) = �akutk22�

1

2
g (t) kruk22+

1

2
(g0 � ru) (t)�b1

Z
�0

Z +1

�1
(�2+�)j�(�; t)j2d�d� � 0:

�

Lemma 7. Assuming (2:4) holds and that for all (u0; u1; �0) 2 H1
�0
(
)�L2(
)�

L2(�1;+1), verify

(3.5)

8<: � = Cp�

�
2p
p�2E(0)

� p�2
2

< 1

I(u0) > 0;

Then, u(t) 2 @; 8t 2 [0; T ].

Proof. As I(u0) > 0, there exists T � � T such that

I(u) � 0; 8t 2 [0; T �):

This leads to:�
1�

Z t

0

g(s)ds

�
kruk22 + (g � ru) (t) �

2p

p� 2J(t); 8t 2 [0; T �)

� 2p

p� 2E(0):
(3.6)

Using the Poincare inequality, (2:1), (2:3), (3:5) and (3:6), we obtain

kukpp � Cp�kruk
p
2

� Cp�

�
2p

p� 2E(0)
� p�2

2

kruk22:
(3.7)
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Thus �
1�

Z t

0

g(s)ds

�
kruk22 + (g � ru) (t)� kukpp > 0; 8t 2 [0; T �):

Consequently u 2 H;8t 2 [0; T �).
Repeating the procedure, T � can be extended to T , and that makes the proof of
our global existence result within reach. �

Theorem 3. Assume (2:4) holds. Then for all

(u0; u1; �0) 2 H1
�0(
)� L

2(
)� L2(�1;+1)
verifying (3:5), the solution of system (2.20) is global and bounded.

Proof. From (3:2), we get

E(0) � E(t) =
1

2
kutk22 +

1

2

�
1�

Z t

0

g(s)ds

�
kruk22 +

1

2
(g � ru) (t)� 1

p
kukpp

+
b1
2

Z
�0

Z +1

�1
j�(�; t)j2d�d�

� 1

2
kutk22 +

p� 2
2p

kruk22 +
1

p
I(t) +

b1
2

Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(3.8)

Or I(t) > 0, therefrom

kutk22 + kruk22 + b1
Z
�0

Z +1

�1
j�(�; t)j2d�d� � C1E(0);

where C1 = maxf 2b1 ;
2p
p�2 ; 2g. �

4. Decay of solutions

To proceed for the energy decay result, we construct an appropriate Lyapunov
functional as follows:

(4.1) L(t) = �1E(t) + �2 1(t) +
�2b1
2
 2(t);

where

 1(t) =

Z



utudx;

 2(t) =

Z
�0

Z +1

�1
(�2 + �)

�Z t

0

�(�; s)ds

�2
d�d�;

and �1, �2 are positive constants.

Lemma 8. If (u; �) is a regular solution of the problem (2.20). Then, the following
equality holdsZ

�0

Z +1

�1
(�2 + �)�(�; t)

Z t

0

�(�; s)dsd�d� =Z
�0

u(x; t)

Z +1

�1
�(�; t)�(�)d�d��

Z
�0

Z +1

�1
j�(�; t)j2d�d�:
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Proof. From the second equation of (2.20), we have

(4.2) (�2 + �)�(�; t) = ut(x; t)�(�)� @t�(�; t); 8x 2 �0:
Integrating (4.2) over [0; t], and using equations 3 and 6 from system (2.20), we get

(4.3)
Z t

0

(�2 + �)�(�; s)ds = u(x; t)�(�)� �(�; t); 8x 2 �0;

hence,

(4.4) (�2 + �)

Z t

0

�(�; s)ds = u(x; t)�(�)� �(�; t); 8x 2 �0:

A multiplying by � followed by an integration over �0 � (�1;+1), leads toZ
�0

Z +1

�1
(�2 + �)�(�; t)

Z t

0

�(�; s)dsd�d� =Z
�0

u(x; t)

Z +1

�1
�(�; t)�(�)d�d��

Z
�0

Z +1

�1
j�(�; t)j2d�d�:

�

Lemma 9. For any (u; �) solution of problem (2.20), we have

(4.5) �1E(t) � L(t) � �2E(t);

where �1,�2 are positive constants.

Proof. From (4:3), we get

(4.6)
Z t

0

�(�; s)ds =
��(�; t)
�2 + �

+
u(x; t)�(�)

�2 + �
; 8x 2 �0:

Thus

(4.7)
�Z t

0

�(�; s)ds

�2
=
j�(�; t)j2

(�2 + �)2
+
ju(x; t)j2�2(�)
(�2 + �)2

� 2�(�; t)u(x; t)�(�)
(�2 + �)2

:

A multiplying by �2 + � in (4:7) followed by an integration over �0 � (�1;+1),
leads to

j 2(t)j �
Z
�0

Z +1

�1

j�(�; t)j2

�2 + �
d�d�+

Z
�0

ju(x; t)j2
Z +1

�1

�2(�)

�2 + �
d�d�

+ 2

Z
�0

Z +1

�1

j�(�; t)u(x; t)�(�)j
�2 + �

d�d�:

(4.8)

Using Young�s inequality in order to have an estimation of the last term in (4:8),
we get for any � > 0

Z
�0

Z +1

�1

j�(�; t)u(x; t)�(�)j
�2 + �

d�d� =

Z
�0

Z +1

�1

j�(�; t)j
(�2 + �)

1
2

ju(x; t)�(�)j
(�2 + �)

1
2

d�d�

� 1

4�

Z
�0

Z +1

�1

j�(�; t)j2

�2 + �
d�d�

+ �

Z
�0

ju(x; t)j2
Z +1

�1

�2(�)

�2 + �
d�d�:

(4.9)
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Combining (4:9) and (4:8), we obtain

j 2(t)j � (
2� + 1

2�
)

Z
�0

Z +1

�1

j�(�; t)j2

�2 + �
d�d�

+ (2� + 1)

Z
�0

ju(x; t)j2
Z +1

�1

�2(�)

�2 + �
d�d�:

(4.10)

Since 1
�2+�

� 1
� , then

j 2(t)j � (
2� + 1

2��
)

Z
�0

Z +1

�1
j�(�; t)j2d�d�

+ (2� + 1)

Z
�0

ju(x; t)j2
Z +1

�1

�2(�)

�2 + �
d�d�:

(4.11)

Applying Lammas 2 and 5 we get

(4.12) j 2(t)j � (
2� + 1

2��
)

Z
�0

Z +1

�1
j�(�; t)j2d�d�+A0Bq(2� + 1)kruk22:

By Poincare-type inequality and Young�s inequality, we obtain

(4.13) j 1(t)j �
1

2
kutk22 +

C�
2
kruk22:

Adding (4:13) to (4:12):

j 1(t) +
b1
2
 2(t)j � j 1(t)j+

b1
2
j 2(t)j

� 1

2
kutk22 +

1

2
[A0Bqb1(2� + 1) + C�] kruk22

+
b1
2

�
2� + 1

2��

� Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(4.14)

Therefore, By the energy de�nition given in (3:1), for all N > 0, we have:

j 1(t) +
b1
2
 2(t)j � NE(t) +

1�N
2

kutk22 +
N

p
kutkpp

+
1

2
[A0Bqb1(2� + 1) + C� �N ] kruk22

+
b1
2

�
2� + 1

2��
�N

� Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(4.15)

From (3:7) and (4.15), we �nally get

j 1(t) +
b1
2
 2(t)j � NE(t) +

1�N
2

kutk22

+
1

2

�
A0Bqb1(2� + 1) + C� �

p� 2
2p

N

�
kruk22

+
b1
2

�
2� + 1

2��
�N

� Z
�0

Z +1

�1
j�(�; t)j2d�d�;

(4.16)

where N and �1 are chosen as follows

N > maxf2� + 1
2��

;
2p(A0Bqb1(2� + 1) + C�)

p� 2 ; 1g

�1 � N�2:
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Then, we conclude from (4.16)

�1E(t) � L(t) � �2E(t);

where

�1 = �1 �N�2
and

�2 = �1 +N�2:

�

Now, we prove the exponential decay of global solution.

Theorem 4. If (2:4) and (3:5) hold. Then, there exist k and K, positive constants
such that the global solution of (2.20) veri�es

(4.17) E(t) � Ke�kt:

Proof. By di¤erentiation in (4:1), we get

L0(t) = �1E
0(t) + �2kutk22 + �2

Z



uttudx

+ �2b1

Z
�0

Z +1

�1
(�2 + �)�(�; t)

Z t

0

�(�; s)dsd�d�:

(4.18)

Combining with (2.20) to obtain

L0(t) = �1E
0(t) + �2

�
kutk22 � kruk22 + kukpp � a

Z



uutdx

�
� b1�2

Z
�0

u(x; t)

Z +1

�1
�(�)�(�; t)d�d�

+ b1�2

Z
�0

Z +1

�1
(�2 + �)�(�; t)

Z t

0

�(�; s)dsd�d�:

(4.19)

An application of Lemma [8] leads to

L0(t) = �1E
0(t) + �2kutk22 � �2kruk22 + �2kukpp

� b1�2
Z
�0

Z +1

�1
j�(�; t)j2d�d�� a�2

Z



uutdx:
(4.20)

Using Poincare-type inequality and Young�s inequality on the last term of (4:20),
we get for all �0 > 0

(4.21)
Z



uutdx �
1

4�0
kutk22 + C��0kruk22:

From (4:20), (4:21) and (3:2), we obtain

L0(t) �
h
�a�1 + �2(1 +

a

4�0
)
i
kutk22 + �2

�
�1 + �0C�a

�
kruk22

+ �2kukpp � b1�2
Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(4.22)
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Using (3:7) to get

L0(t) �
h
�a�1 + �2(1 +

a

4�0
)
i
kutk22 + �2

�
�1 + �0C�a+ Cp� (

2p

p� 2)
p�2
2

�
kruk22

� b1�2
Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(4.23)

On the other hand, from (3:5)

�1 + Cp� (
2p

p� 2)
p�2
2 < 0:

For a small enough �0, we may have

�1 + �0C�a+ Cp� (
2p

p� 2)
p�2
2 < 0:

Then, choosing d > 0, depending only on �0 such that

L0(t) �
h
�a�1 + �2(1 +

a

4�0
)
i
kutk22 � �2dkruk22

� b1�2
Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(4.24)

Equivalently, for all positive constant M , we have

L0(t) �
�
�a�1 + �2(1 +

a

4�0
+
M

2
)

�
kutk22 + �2

�
M

2
� d

�
kruk22

+ b1�2

�
M

2
� 1
� Z

�0

Z +1

�1
j�(�; t)j2d�d�� �2ME(t):

(4.25)

For �1 and M < minf2; 2dg chosen such that

�1 >
�2(1 +

a
4�0 +

M
2 )

a
:

We obtain from (4:25)

(4.26) L0(t) � �M�2E(t) �
��2M
�2

L(t);

as a result of (4:5). Now, a simple integration of (4:26) yields

L(t) � L(0)e�kt;

where k = �2M
�2
. Another use of (4:5) provides (4:17). �

5. Blow up

In the current section, we follow the same approach given in [7] to prove the
blow up of solution of problem (2.20).
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Remark 1. By integration of (3.2) over (0; t), we have

E(t) = E(0)� a
Z t

0

kusk22ds

+
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 +

1

2
(g � ru) (t)

� b1
Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds:

(5.1)

Now, let us de�ne F (t):

F (t) = kuk22 + a
Z t

0

kuk22ds

�1
2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) + b1H(t);(5.2)

where

(5.3) H(t) =

Z t

0

Z
�0

Z +1

�1
(�2 + �)

�Z s

0

�(�; z)dz

�2
d�d�ds:

Lemma 10. Assuming kruk22 is bounded on [0; T ), Then
(5.4) H(t) � C < +1:
More precisely

H(t) � 1

2
C1Bqe

��C2
�
C2��12 �+ C3�2�2 �

�
�(�)T 4

where
C1 = sup

t2[0;T )
fkruk22; 1g:

Proof. Using (2:17) and (2:18), we obtain

(5.5) �(�; t) =

Z t

0

�(�)e�(�
2+�)(t�s)u(x; s)ds; 8x 2 �0:

A Hölder inequality yields

(5.6) �(�; t) �
�Z t

0

�2(�)e�2(�
2+�)(t�s)ds

� 1
2
�Z t

0

ju(x; s)j2ds
� 1

2

; 8x 2 �0:

On the other hand,

(5.7)
�Z t

0

�(�; s)ds

�2
� T

Z t

0

j�(�; s)j2ds:

From (5:6) in (5:7), we obtain

(5.8)
�Z t

0

�(�; s)ds

�2
� T

Z t

0

�Z s

0

�2(�)e�2(�
2+�)(s�z)dz

Z s

0

ju(x; z)j2dz
�
ds:

Applying Lemma [2] leads to

(5.9)
Z
�0

�Z t

0

�(�; s)ds

�2
d� � BqC1T

Z t

0

�Z s

0

�2(�)e�2(�
2+�)(s�z)dz

�
ds:
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Since z 2 (0; s), we choose 9C2 � 0 such that s� z � C2
2 to term (5:9) into

(5.10)
Z
�0

�Z t

0

�(�; s)ds

�2
d� � 1

2
BqC1T

3�2(�)e�C2(�
2+�):

A multiplication by �2 + � followed by integration over (0; t)� (�1;+1), yields

H(t) � C1Bqe
��C2T 3

Z t

0

�Z +1

0

�2�+1e�C2�
2

d�

�
ds

+ C1Bqe
��C2�T 3

Z t

0

�Z +1

0

�2��1e�C2�
2

d�

�
ds:

(5.11)

Then

H(t) � 1

2
C1Bqe

��C2C2��12 T 3
Z t

0

�Z +1

0

y�e�ydy

�
ds

+
1

2
C1Bqe

��C2C3�2�2 �T 3
Z t

0

�Z +1

0

y��1e�ydy

�
ds:

(5.12)

Applying a special integral ( Euler gamma function), we obtain

(5.13) H(t) � 1

2
C1Bqe

��C2
�
C2��12 �+ C3�2�2 �

�
�(�)T 4:

�

Lemma 11. Suppose p > 2, then

F 00(t) � (p+ 2)kutk22

+ 2p

�
�E(0) + a

Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) :

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�

(5.14)

Proof. We di¤erentiate with respect to t in (5:2), then we get

F 0(t) = 2

Z



uutdx+ akuk22

+
1

2
g (t) kruk22 �

1

2
(g0 � ru) (t)

+ 2b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)�(�; s)

Z s

0

�(�; z)dzd�d�ds:

(5.15)

Using divergence theorem and (2.20), we obtain

F 00(t) = 2kutk22 � 2
Z



ru
Z t

0

g (t� s)ru (s) dsdx

+ 2kukpp + 2b1
Z
�0

u(x; t)

Z +1

�1
�(�)�(�; t)d�d�

+ 2b1

Z
�0

Z +1

�1
(�2 + �)�(�; t)

Z t

0

�(�; s)dsd�d�:

(5.16)
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By de�nition of of energy functional in (3:1) and relation (5:1), we give the following
evaluation of the third term of (5.16)

2kukpp = pkutk22 + pkruk22 + pb1
Z
�0

Z +1

�1
j�(�; t)j2d�d�� 2pE(0)

+ 2p

�
a

Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�
:

(5.17)

We can also estimate the last term of (5.16) using Lemma [8]:Z
�0

Z +1

�1
(�2 + �)�(�; t)

Z t

0

�(�; s)dsd�d� =Z
�0

u(x; t)

Z +1

�1
�(�; t)�(�)d�d��

Z
�0

Z +1

�1
j�(�; t)j2d�d�:

(5.18)

From (5:17), (5:18) and (5:16), we get

F 00(t) � (p+ 2)kutk22 + (p� 2)kruk22 + b1(p� 2)
Z
�0

Z +1

�1
j�(�; t)j2d�d�

+ 2p

�
�E(0) + a

Z t

0

kusk22ds�
1

2
(1�

Z t

0

g(s)ds)kruk22 �
1

2
(g � ru) (t) :

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�
:

(5.19)

Taking p > 2, we obtain the needed estimation

F 00(t) � (p+ 2)kutk22

+ 2p

�
�E(0) + a

Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) :

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�
�

Lemma 12. Suppose p > 2 and that either one of the next assumptions is veri�ed
(i) E(0) < 0.
(ii) E(0) = 0, and

(5.20) F 0(0) > aku0k22:

(iii) E(0) > 0, and

(5.21) F 0(0) > [F (0) + l0] + aku0k22;

where

r = p� 2
p
p2 � p

and

(5.22) l0 = aku0k22 � 2E(0):
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Then F 0(t) > aku0k22, for t > t0; where

(5.23) t� > max

�
0;
F 0(0)� aku0k22]

2pE(0)

�
;

where t0 = t� in case(i), and t0 = 0 in case(ii) and (iii)

Proof. (i) Case of E(0) < 0.
From (5:14), we have

F
00
(t) � �2pE(0);

which clearly leads to :
F

0
(t) � F

0
(0)� 2pE(0)t:

Then
F

0
(t) > aku0k22; 8t � t�;

where t� as given in (5:23).
(ii) Case E(0) = 0.
Using (5.14) we got

F 00(t) � 0; 8t � 0:
Thus

F 0(t) � F 0(0); 8t � 0:

Then, by (5:20)
F

0
(t) > aku0k22; 8t � 0:

(iii) Case E(0) > 0.
The proof of this case consist of getting to a di¤erential inequality: B00(t)�pB0(t)+
pB(t) � 0 pursued by a use of Lemma 3. Indeed, from (5:15) we have

F 0(t) = 2

Z



uutdx+ akuk22

+
1

2
g (t) kruk22 �

1

2
(g0 � ru) (t)

+ 2b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)�(�; s)

Z s

0

�(�; z)dzd�d�ds:

(5.24)

Or, the last term in (5:24) can be estimated using a Young�s inequalityZ t

0

Z
�0

Z +1

�1
(�2 + �)�(�; s)

Z s

0

�(�; z)dzd�d�ds

� 1

2

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

+
1

2

Z t

0

Z
�0

Z +1

�1
(�2 + �)

�Z s

0

�(�; z)dz

�2
d�d�ds

(5.25)

On the other hand

(5.26) 2

Z t

0

Z



usudxds =

Z t

0

d

ds
kusk22ds = kuk22 � ku0k22:

By Young�s inequality, we get

(5.27) kuk22 �
Z t

0

kusk22ds+
Z t

0

kuk22ds+ ku0k22:
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Now, we remake (5:24) using (5:25) and (5:27)

F 0(t) � kuk22 + kutk22 + a
Z t

0

kusk22ds+ a
Z t

0

kuk22ds+ aku0k22

� 1
2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) + b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

+ b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)

�Z s

0

�(�; z)dz

�2
d�d�ds:

(5.28)

From de�nition of F in (5:2), inequality (5:28) also becomes

F 0(t) �F (t) + kutk22 + b1
Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

+ a

Z t

0

kusk22ds+ aku0k22:
(5.29)

Thus by (5:14), we get

F 00(t)� p fF 0(t)� F (t)g � 2kutk22 + ap
Z t

0

kusk22ds� paku0k22 � 2pE(0)

+ pb1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds:

(5.30)

Hence

(5.31) F 00(t)� pF 0(t) + pF (t) + pl0 � 0;
where

l0 = aku0k22 � 2E(0):
Posing

B(t) = F (t) + l0:

Leads to

(5.32) B00(t)� pB0(t) + pB(t) � 0:
By Lemma (3) and for p = � + 1, we conclude that if

(5.33) B0(t) > (p� 2
p
p2 � p)B(0) + aku0k22:

Then
F 0(t) = B0(t) > aku0k22 8t � 0:

�

Theorem 5. Suppose p > 2 and that either one of the next assumptions is veri�ed
(i) E(0) < 0.
(ii) E(0) = 0 and (5.20) holds.

(iii) 0 < E(0) <
(2p�4)(F 0(t0)�aku0k22)

2
J(t0)

1

1

16p and (5.21) holds.
Then, In the sense of De�nition 1, the solution (u; �) blows up at �nite time T �.
For case (i):

(5.34) T � � t0 �
J(t0)

J 0(t0)
:
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Moreover, if J(t0) < min
n
1;
q

�
�b

o
; we get

(5.35) T � � t0 +
1p
�b
ln

q
�
�bq

�
�b � J(t0)

:

For case (ii): we get either

(5.36) T � � t0 �
J(t0)

J 0(t0)
;

or

(5.37) T � � t0 +
J(t0)

J 0(t0)
:

For case (iii):

(5.38) T � � J(t0)p
�
;

or else

(5.39) T � � t0 + 2
3
1+1
2
1


1cp
�
f1� [1� cJ(t0)]

1
2
1 g;

where 
1 =
p�4
4 , c = (

b
� )


1
2+
1 , J(t), b and � are as in (5:40) and (5:54) respectively.

Note that t0 = 0 in cases (ii) and (iii). For case (i), we have as in (5.23): t0 = t�.

Proof. Consider

(5.40) J(t) =
�
F (t) + a(T � t)ku0k22

��
1 ; t 2 [t0; T ]:

We di¤erentiate on J(t) to get

(5.41) J
0
(t) = �
1J(t)

1+ 1

1

�
F 0(t)� aku0k22

�
and again

(5.42) J
00
(t) = �
1J(t)

1+ 2

1G(t);

where

(5.43) G(t) = F
00
(t)
�
F (t) + a(T � t)ku0k22

�
� (1 + 
1)

n
F

0
(t)� aku0k22

o2
:

Using (5:14), we obtain

F 00(t) � (p+ 2)kutk22

+ 2p

�
�E(0) + a

Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) :

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�
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Consequently

F 00(t) � �2pE(0)

p

�
kutk22 + a

Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�
:

(5.44)

Or, from from (5:15) and the fact that kuk22 � ku0k22 = 2
R t
0

R


usudxds, we attain

F 0(t)� aku0k22 = 2
Z



uutdx+ 2a

Z t

0

Z



usudxds

+ 2b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)�(�; s)

Z s

0

�(�; z)dzd�d�ds:

(5.45)

Going back to (5:43) with (5:44) and (5:45) in hand, we get

G(t) � �2pE(0)J(t)
�1

1

+ p

�
kutk22 + a

Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds

�
�
�
kuk22 + a

Z t

0

kuk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)

�Z s

0

�(�; z)dz

�2
d�d�ds

#

� 4(1 + 
1)
�Z




uutdx+ a

Z t

0

Z



usudxds+
1

2
g (t) kruk22 �

1

2
(g0 � ru) (t) :

+b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)�(�; s)

Z s

0

�(�; z)dzd�d�ds

�2
:

(5.46)

For sake of simplicity, we introduce the following notations
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A = kuk22 + a
Z t

0

kuk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

+ b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)

�Z s

0

�(�; z)dz

�2
d�d�ds;

B =

Z



uutdx+ a

Z t

0

Z



usudxds+
1

2
g (t) kruk22 �

1

2
(g0 � ru) (t)

+ b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)�(�; s)

Z s

0

�(�; z)dzd�d�ds;

C = kutk22 + a
Z t

0

kusk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

+ b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)j�(�; s)j2d�d�ds:

Therefore

(5.47) Q(t) � �2pE(0)J(t)
�1

1 + p

�
AC�B2

	
:

Note that, 8w 2 R and 8t > 0,

Aw2 + 2Bw +C =

�
w2kuk22 + 2w

Z



uutdx+ kutk22
�

+ a

Z t

0

�
w2kuk22 + 2w

Z



uusdx+ kusk22
�
ds

+
�
w2 + 1

��
�1
2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

�
+ w

�
1

2
g (t) kruk22 �

1

2
(g0 � ru) (t)

�
+ b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)

"
w2
�Z s

0

�(�; z)dz

�2
+2w�(�; s)

Z s

0

�(�; z)dz + j�(�; s)j2
�
d�d�ds:

(5.48)

Hence

Aw2 + 2Bw +C = [wkuk2 + kutk2]2 + a
Z t

0

[wkuk2 + kusk2]2 ds

+
�
w2 + 1

��
�1
2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t)

�
+ w

�
1

2
g (t) kruk22 �

1

2
(g0 � ru) (t)

�
+ b1

Z t

0

Z
�0

Z +1

�1
(�2 + �)

�
w

Z s

0

�(�; z)dz + j�(�; s)j
�2
d�d�ds:

(5.49)
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It is clear that

Aw2 + 2B+C � 0
and

(5.50) B2 �AC � 0:

Then, from (5:47) and (5:50), we obtain

(5.51) G(t) � �2pE(0)J(t)
�1

1 ; t � t0:

Hence, by (5:42) and (5:51)

(5.52) J 00(t) � p2 � 4p
2

E(0)J(t)1+
1

1 ; t � t0:

Or, by Lemma [12], J
0
(t) < 0, where t � t0.

A multiplication by J
0
(t) in (5:52), followed by an integration from t0 to t leads

to

(5.53) J
0
(t)2 � � + bJ(t)2+

1

1 ;

where

(5.54)

8>><>>:
� =

�
(p� 4)2
16

�
F

0
(t0)� ku0k22

�2
� p(p� 4)2

2p� 4 E(0)J(t0)
�1

1

�
J(t0)

2+ 2

1

b =
p(p� 4)2
2p� 4 E(0):

Note that � > 0, is equivalent to E(0) <
(2p�4)(F 0(t0)�aku0k22)

2
J(t0)

1

1

16p , which by
Lemma [4] ensure the existence of a �nite time T � > 0 such that

lim
t!T��

J (t) = 0:

That involves

(5.55)

lim
t!T��

�
kuk22 + a

Z t

0

kuk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) + b1H(t)

��1
= 0:

i.e.
(5.56)

lim
t!T��

�
kuk22 + a

Z t

0

kuk22ds�
1

2

�
1�

Z t

0

g(s)ds

�
kruk22 �

1

2
(g � ru) (t) + b1H(t)

�
= +1:

So, there exists a T such that t0 < T � T � and kruk22 �! +1 as t �! T�.

Indeed, if it is not the case, then kruk22 remained bounded on [t0; T �), which by
Lemma [10] leads to

lim
t!T��

�
kuk22 + b1H(t)

�
= C < +1;

contradicting (5.56). �
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6. Conclusion

Much attention has been accorded to fractional partial di¤erential equations dur-
ing the past two decades due to the many chemical engineering, biological, ecological
and electromagnetism phenomena that are modeled by initial boundary value prob-
lems with fractional boundary conditions. In the context of boundary dissipations
of fractional order problems, the main research focus is on asymptotic stability of
solutions starting by writing the equations as an augmented system. Then, various
techniques are used such as LaSalle�s invariance principle and multiplier method
mixed with frequency domain. we prove in this paper under suitable conditions
on the initial data the stability of a wave equation with fractional damping and
memory term. This technique of proof was recently used by [18] to study the ex-
ponential decay of a system of nonlocal singular viscoelastic equations.
Here we also considered three di¤erent cases on the sign of the initial energy as
recently examined by Zarai and al [21], where they studied the blow up of a system
of nonlocal singular viscoelastic equations.
In next work, we try to extend the same study of this paper to a general source
term case.
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