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Abstract: In this work, a class of fractional delay differential equations with four-point boundary
condition and p-Laplacian operator are discussed. Based on the Avery-Peterson theorem, the
existence of at least triple positive solutions are derived. An simple example are given to show the

validity of the conditions of our main theorem.
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1 Introduction

Fractional calculus are generalized from the integer order and have been widely used in control
system, aerodynamics, fluid flows and many other branches of engineering [1-7]. Recently, the

fractional differential equation models has attracted great interest.

In the past several decades, fractional boundary value problems have obtained abundant the-
oretical achievements. There are many papers studying the existence of positive solutions under
various boundary conditions by different methods, the approaches are mainly including the method
of upper and lower solutions [8, 9], fixed point theorem on cones [10, 11], monotone iterative method
[12, 13], Leray-Schauder degree [14, 15], Avery-Peterson theory [16-18], and so on. Especially, in
[19], the existence multiple positive solutions for two classes of fractional differential equations with
delay are analyzed with the help of Leggett-Williams theorem and a generalization of Leggett-

Williams theorem.

At present, fractional differential equations with p-Laplacian operator have aroused the exten-
sive attention of many scholars. There are many research results about the existence of solutions
for fractional boundary value problems with p-Laplacian operator, one can refer to [8, 9, 12, 15,
18, 20-22] and references therein.
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Enlightened by the above literature, we discuss the following equation:

D6<wp(cDax(t))) :g(tu $t,CD7$(t)), te (07 1)7
z(t) = &(1), te -0
cDz(0) = z'(0) = 0,

z(1) = cx(N), °D%x(1)=d°D*z((),

(1)

where 1 < a,f < 2,0 <y <1, ¢c € [0,400),d € [0,420),0 < A\, ( < 1 and ¢ < A. DF
is the Riemann-Liouville fractional derivative, ¢D% and ¢D” are the Caputo fractional derivative.
g = 111;1, 1, is the p-Laplacian operator, ¥, (t) = [t[P~2, p > 1, %‘F% =1. g € C([0,1] x [0, +00) X
(—00,0],[0,400)), z¢(s) = z(t + s), for t € [0,1],s € [-7,0], 7 > 0. £ € C-(:= C([—7,0], [0, +00)),
C; is a Banach space with Hf”[—r,o} = MaXye[—r,0] 1€(s)].

In this paper, the sufficient conditions are obtained for the existence of at least three positive
solutions for a class of four-point boundary value problems of fractional delay differential equations
with p-Laplacian operator. This research method can be extended to many fractional boundary

value problems.
For each ¢ € C; and x € C([0,1], R), we define and let
x(t+¢), t+e >0,
reg={ 209 2
E(t+e), t+e<0,ee]—10],

Obviously, x:(+, &) € C(]0,1], R).

2 Preliminaries

This part introduce some useful definitions and important lemmas.
Definition 2.1([1]) The § > 0 order Riemann-Liouville fractional integral and derivative for a

function ¢(t) is defined, respectively

Py(t) = F(lé) /0 (t — ) g(0)db,

1 d

n ! _ pyn—90—1 n—
) /0 (t—90) g(0)de, 0] + 1.

Definition 2.2([1]) The ¢ > 0 order Caputo fractional derivative for a function g(t) is defined as

following
1 t
cpd — _gn—9-1,n) =) 1.
o) = Fa | =0 O, 019+
Lemma 2.1([1]) Assume that 6 > 0 and n = [§] + 1. If the function g € L[0,1] N C[0, 1], then

g CD‘sg(t) =g(t)—a —agt —---—apt" ', @ €R,i=1,2,---,n,



Lemma 2.2 If g is continuous function and 1 < o, < 2, 0 < v < 1, then z(¢) is a solution of
equation (1) when and only when, for certain £(t) € C;, x(t) is equivalent to the following integral

form:
£(t) = ar - F(la) /O (t — m)* (), 3)
where
D AT R — e J§ — 0)* k() @
' (1 o)l(a) ’
k(n) = %[—(F(lﬂ) /0 (0= 01 g0 29 £).¢ DV(8))d8 + byn® )] (5)

Proof: From Lemmma 2.1, we get

Yp(“Dx(1)) = F(lﬁ) /Ot(t — )1 g(0, 2(-, ), D2(0))dO + bit? ! + bot? 2,

According to D*z(0) = 0, *D%z(1) = d°D*z((), we know that

5= 0)P 1 g(0.wo(-,€).0 DYw(6))d6 — fy (1= 0)° " g(8, wo(-, ), DYax())d0

by =0, b= (1 —¢F=tar=1)r(B) |
that is 1 ‘
UCD"a(0) = g5 | (6= 07 00,200 Do) ab + bt ©)
By (6), we have
“Dalt) = byl [ (=09l D O) s+ bt ) = —k().

From Lemmma 2.1, we obtain

x(t) = —P(la) /0 (t —=n)* " k(n)dn + a1 + ast,

By use of 2’ (0) = 0, (1) = cz()\), one get

o = Ry — e O = ) k)
oo (1= T (a) :

Hence

2(t) = a1 — = /0 (t — ) k(n)dn.
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The conclusion has been proved.
Lemma 2.3 If g € C([0,1] x [0, +00) X (—00,0], [0, +00)), then z(t) > 0.
Proof: By (3)- (5) one has

K = fo (1= 60))°~1g(8, 29(-, €).© DYx(6))d6 — AP~ [$[(C — 0))P~g(6, w4 (-, ). DIx(6))dB
K (1= P 11T (B)

w5/ "<n —0)1g(6, (-, €).° D 2(0))d0)
:w f() 1 _9 (Q,xe(-,f),cDVx(H))dH—f(?(n—0)5_19(0,xe(-,g),cDVx(Q))dH
! INE))
N AP 1P ([ C(L — 0)1P 1 g(0, wa (-, ), DYw(0))dO — [ (C — 0)P1g(6, wg(-,€).¢ D’V:r(«9))d9)]
(1 —¢Ftar= 1)1 (B)
f [n(1—0)]"g(0,29(-,€),c Dx(0))df
>7!}q[ F(B)
n S (L =)~ — (n—0)P~1g(0, e (-, ) .0 D”x(ﬁ))éw]
INE))
f [ (1 - 9)] (07379('75)70 D’YQ:(Q))dQ + f[)n[n(l - 6)]5_1‘9(1 - 77)9(9’930("5)’6 Dvx(e))de
>1pg[ ]
ING))
fo (1= 0)P16(1 — n)g(8, z4(-, €),c DV(6))db
>l T3 ] >0, (7)
and
I o
o) = @ /0 (t — n)* k(n)ds
L@ kpdn —e [fOA = m) T Repdy 1t
_ hche el AT
o (=) k(m)dy — [5(t = n)* k(n)dn
['(a)
fo ) k(n)dn — fo )*~k(n)dn)
(1- C)F(a)

> 0,

Therefore, z(t) is nonnegative.

Lemma 2.4 Suppose that z(t) is a solution of equation (1), then there exists ¢ > 0 such that

(o —7)
<o D7 = 0.
o [2(0)] < o max [FD72(0)], 0= G550 >
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Proof: From (3), We calculate that

e 1 t A
D7a(t) = ~gra=sy [, (=0 k),
ax [D7a(t)] > D 7a(1)] = ———— / (1 k()
tgl[oflc] TN = v - T(a—7) Jo ! e
Thus
1 ! o
ggﬁlm(t)! < (1—C)F(04)/0(1_n) "k(n)dn

a— 1
< Ae ATy f, 4T

< max |*D7z(t)].
< o [Ds(0)

The conclusion has been proved.

Lemma 2.5([16]) Let P is a cone of U, u, v be nonnegative continuous convex functional on P, w be
a nonnegative continuous concave functional on P, and @w be a nonnegative continuous functional

on P. For I, m,n,r > 0, define the following sets:
P(p,r) ={z € P | p(z) <r},
P(u,w,m,r) ={x € P|w(x) >m,pu(x) <r},
P(p,v,w,m,n,r) ={x € P|w(x) >m,v(x) <n,u(x) <r},
and
Qi@ 1,r) = {z € P | w() > L u(x) < r}.
If the functionals p, v, w, w satisfying w(ez) < ew(x), 0 < e < 1, such that for some R, 7 > 0,

w(z) <w(z), |l < Ryu(z),

for all x € P(u,r). If T': P(u,r) — P(p,r) is completely continuous and there exist [,m,n > 0
with [ < m such that

(S1) {zx € P(p,v,w,m,n,r) : w(x) >m} # @ and w(Tx) > m for x € P(u,v,w,m,n,r);
(S2) w(Tx) > m for x € P(u,w,m,r) and v(Tx) > n;

(S3) 0 ¢ Q(p,w,l,r) and w(Tz) < for z € Q(u, w,l,r) with w(x) = .
Then T has at least exist three fixed point x1,x9, x3 € P(u,r) as following

M(.I‘Z) <r, i=1,23;
m < w(ry);

| < w(z2),w(x2) < m;

and
w(xg) <.



3 Main results

Next, the problem of positive solutions for equations (1) are studied. For convenience, some nota-

tions and hypotheses are presented as following

Ny =T(a =+ D[ = Hr(g + 1))

(1—ol(@B+2))"
(1-MNB(a+q—1,8+q—-1)’

Ny = (1—c)D(a+1)[(1 -t Hrp+ 1))t

N, =

and
(C1) € € C(1=7,01,[0, +00));
(C2) g € C(]0,1] x [0, —i—oo) (—00,0],[0,400)) and ¢(t,0,0) # 0 for all ¢ € [0, 1];
(C5) gt.y,2) < (PNDP~Y, - (ty,2) €[0,1] x [0, o] x [=r,7];
(C4) gty 2) > (MNP, (t,y,2) € [0,1] x [m,n] x [=r,7];
(C5) g(t.y,2) < (INs)P~, (t,,2) €[0,1] x [0,1] x [=r,7].

1) x
Let the Banach space U = {z € C|0, 1], D7z(t) € C]0, 1]} with the norm

cnY
el = ma{ s 2(8)], ma [*D(0)])

and define the cone P by

P={zxeUlxr >0, max |z(t)| < o max [*D7xz(t)|, t € [0,1]}.
tel0 t€[0,1]

)

Lemma 3.1 Let the operator T': P — U is define as

! ) /0 (t — ) k(n)dn,

Tz(t) =a; — (o)

Then T : P — P is completely continuous.
Proof: Obviously T'(P) C P and T is continuous by using the continuity of g(¢, z¢,* DVx(t)).
Assume that H be a bounded subset in P, which is to say exists M > 0 such that ||z| < M for all

r € H, let

L= sup |g(t,2," D7x(1))| + 1,
te[0,1],z€[0,M]



Then for Vo € H, we have

k(n) =

Jo ln(L = )1~ g(0. 29(- ) £ D(6))d — &~ [F{n(C — )7~ g(6,xo(-, &) DIx(6))do

(1= ¢F=tar=)I(P)

1 B .
~ i | 0= 0 a6 .0 D70t

(fol (1 — 0)]P~1g(0,29(-,€),° DVx(0))do

<4 (1— CBTar—1)T(B)
L L -

§¢q((1 — (F1gr—I (B + 1)) - ((1 — (A-ldr—1HT(B + 1)) E

So one get
1 . Jo (1= )~ tk(n)dn
Tz(t)] = a1— F(a)/o (t —m)*k(n)dn < = (1= oT(a)
it
= T—ol(at D1 - P ldrNT(@ 1 D1’
and
DT = prmy [ (=) k)
Lt
<

T Dla—y+ DA = ¢Ftar=HI(B + 1]t

Hence, T'(H) is uniformly bounded.
For Vx € H and 0 < t; <ty < 1, one has

1

Ta(ts) = Ta(t)] = |- {5 /0 (b — )™ k(n)dn + F(la) /0 (b — ) Yk(n)d)

t1

= Fl [ =k man = [ = k)

0
La—1

S Tar D= @+ e 2 1)

and

D7 (Ta(t2)) = DY (Ta(n))]
I Jy (a0 ko gy [ =0
ra-t
Pla—v+1)[(1 - ¢t~ (B + 1))t

IN

(5" =677).
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Therefore, T'(H) is equicontinuous. We conclude that T'(H) is relatively compact on the basis

of Ascoli — Arzela theorem. The conclusion has been proved.

Theorem 3.1 Assume that there exists constants 0 < [ < m < n < r and ll:f\m < n. If the

assumptions (C7) — (C5) holds, then equation (1) has at least three positive solutions x, 2 and

x3 with
wlxy) <r, 1=1,2,3;
m < w(r);
| < w(ze),w(z2) < My
and
w(zs) <.
Proof: Let

w(z) = tggoig] lz(t)],  w(x)= e “DYx(t)], v(z)=w(z) = max |z ()],

Evidently, w(z) < w(z). By Lemmas 2.4, we know that

[zl < Ru(z), R = supfo,1}.

For x € P(u,r), in view of assumption (C3) and (8), we get

k( ) < TNl
V= Or@ + et
then
1 t 1
— DY (Tx(t))| = | =) k(n)d
() fél[%' (Tz(t))] %ﬁ?ﬁ' F(04_7)/0( n) (n)dn|
TNl
< <,

Pla—y+D[1 = ¢Ftar- (B + 1))t —

Hence, T': P(p,7) — P(u, 7).

Next, we prove conditions (S7) — (S3) are ture for operator T. First, for constant function

z(t) = £=$m € P(u,v,w,m,n,r), we have pu(z) = 0 < r, v(z) = =$m < nand w(z) = =$m > m,

which imply that {z € P(u,v,w,m,n,r) : w(x) > m} # @. From assumption (C4) and (7), we

have ) .
_ nﬁ+q7 (1 — 7)1

T(5 +2))r-!

k(n) > wq[mmwp‘l]

T(B+2) mNz.



For x € P(u,v,w,m,n,r), one get

w(Tr) = min |Te(t)] = [T(x(3)|

=) k(n)dn — O — 1) k()dn

(1—-c)'(w)
L@ =) Ry + 11— )27 = (A = ) k(n)dn
(1—-c)'(x)
> f,\ Y ke (n)dn — fo Y11 = \)k(n)dn
- (1—C)F(a)
1-A ' a—1
> O—C)F@/o (1= ) k(n)dn
mi(1 = A) ' Bra—2(1 _ pyata—2 g
- <1—0)F(a)[r(ﬁ+2)]q1/0 TR (1 =)t

mNo(1=NBla+q—1,+q-1) _
(1 = l()[L(B +2))e o

These the condition (S7) is satisfied.

Secondly, if z € P(u,w, m,r) and v(Tz) > n, then

w(Tr) = min |Te(t)] = [T(x(3)
1—2A

1
> U_CW/O (1 =)™ k(n)dn

1_)\1/(T$)> L=A

1-c 1-—c

\Y

n>m,

Thus, condition (S2) also hold.

Finally, from assumption (C5) and (8), we have

IN;
K0 < =g T o
then
B Jo (1 =) k(n)dn
w(Tz) = Bty Ta(t)] < = (1 =ol(e)
_ lNg =

(1 —c)l(a+1)[(1=¢Ftdr-HT(B+ 1)t 7

Therefore, all conditions of Lemma 2.5 are holds. The conclusion has been proved.



4 Some Examples

[\GI[V]

Example 4.1 For the equation (1), let « = 8 = %, v = %, A= %,C =1 c= %,d =
£(t) e Cr, 7> 0 and

35+ 1055 (5855) 0<t<1,0<y<1,
oty.z) = %+535(y—1)+15—05i?(ﬁ),2 0<t<1,1<y<2,

50 935+ 3(y — 2) + ggsin(sg), 0<t<1,2<y <6,

a5+ 54T + 1855in(s555), 0<t<1l,y>6

By simple computation, we obtain o = %,
Ny =T(a—~+ D[(1 - P 1aPHI(B+1)]97! ~ 0.11045,

_ QA=r@[C@E+2)17
Ny = (I—NB(atq—1,+q-1) ~ 265.868,

N3 = (1 —c)T(a+ D)[(1 - P tar~HI'(B +1)]97! =~ 0.098.
In addition, if we take [ = 1,m = 2,n = 6 and r = 5000, then ¢(¢,y, z) satisfies the following

conditions:

g(t,y,z) < (rNp)P~1 ~ 552.250, (t,y,2) € [0,1] x [0, 15&20] x [~5000, 5000],
g(t,y,z) > (mN2)P~1 ~ 531.736, (t,y,2) € [0,1] x [2,6] x [~5000, 5000,

g(t,y,z) < (IN3)P~1 ~ 0.098, (t,y,2) € [0,1] x [0,1] x [~5000,5000].

Then all conditions of Theorem 3.1 are satisfied. Thus problem (1) has at least exist three fixed
point x1(t), z2(t), z3(t) such that

2 <w(z);
1 < w(z2),w(z2) < 2;

and

w(iﬂg) < 1.

5 Conclusion

In this article, on the basis of the Avery-Peterson theorem, the sufficient conditions ensure that the
existence at least three positive solutions are obtained. This research method can be extended to
many fractional boundary value problems. It is worth noting that the equation involve time delay
and p-Laplacian operator, compare to many pervious works, which has never been considered.
In addition, our works is inspiring for future research as regards existence solutions of fractional

langevin equations with delay.
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