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Abstract. The main goal of this paper is to study the asymptotic behavior of

a coupled Klein-Gordon-Schrödinger system in three dimensional unbounded
domain. We prove the existence of a global attractor of the systems of the
nonlinear Klein-Gordon-Schrödinger (KGS) equations in H

1(R3) × H
1(R3) ×

L
2(R3) and more particularly that this attractor is in fact a compact set of

H
2(R3)×H

2(R3)×H
1(R3).

1. INTRODUCTION. The dissipative Klein-Gordon-Schrödinger (KGS) system
take the following form:

iut +∆u+ iνu+ vu = f, (1)

vtt + γvt −∆v + v − |u|2 = g, (2)

where u (respectively,v)is a complex ( respectively, real ) valued function,ν and
γ are positive parameters, f and g are driving terms. This system describes the
interaction of a nucleon field u and a meson field v through the Yukawa coupling.
The terms νu and γvt model the dissipative effect. The global well-posedness of
system (1)-(2) was studied by several authors. For instance, one can see the works
of Fukuda and Tsutsumi [8, 9], Bachelot [3], Hayashi and von Wahl [13]. The
long time behavior was studied by Biler [4], Lu and Wang [14], Guo and Li [11]
where the authors proved the existence of a global attractor in different phase
spaces. These results were improved by Abounouh and al. [2] , where the authors
have established the so called asymptotic smoothing effect of dynamical system
of (1)-(2) on H1(R3) × H1(R3) × L2(R3). That is, they obtained that the global
attractor in H1(R3) × H1(R3) × L2(R3); is in fact a compact set embedded into
H2(R3) × H2(R3) × H1(R3). The same kind of results was firstly established by
Goubet in [12] for Nonlinear Schrödinger equations .

2010 Mathematics Subject Classification. Primary: 37L30,37L50 ; Secondary: 35 A01 .
Key words and phrases. Klein-Gordon-Schrödinger equation; Global Attractor; Asymptotic

Compactness .
.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 SALAH MISSAOUI

In this paper, we are going to study the long-time behavior of solutions for the
nonlinear generalized dissipative Klein-Gordon-Schrödinger systems (NLKGS) in
the whole space R

3. This model reads,

iut +∆u+ iνu+ i|u|2u+ vu = f, (3)

vtt + γvt −∆v + v + v2 − |u|2 = g. (4)

We supplement (3)-(4) with initial data

(u(0), v(0), vt(0)) = (u0, v0, v1) ∈ H1(R3)×H1(R3)× L2(R3), (5)

and we suppose that the driving terms f, g ∈ L2
x(R

3) are time independent. The
global well-posedness in H1(R3) × H1(R3) × L2(R3) of (3)-(5) can be obtained
in a standard way as in [3]. It’s worth to signal that M.M. Cavalcanti and V.N.
Domingos Cavalcanti [7] studied the existence,uniqueness and the uniform decay
for the solutions of the homogenous system associate to (3)-(5).

The existence of global attractor A for (3)-(5) (in H1(R3) ×H1(R3) × L2(R3))
can be obtained by proceeding like in [14] for (1)-(2).

In this article, we aim to prove that this global attractor is in fact included and
compact in H2(R3)×H2(R3)×H1(R3).

The issue of the regularity of the attractor is classical in the study of infinite-
dimensional dissipative systems. We refer to [21] for the general framework and for
numerous applications.

Our main task here is to establish that this attractor A is regular. Namely, we
prove the following

Theorem 1.1. The semigroup (S(t))t associated to the system (3)-(5), has a global
attractor A in H1(R3)×H1(R3)× L2(R3).
Moreover, A is a compact set of H2(R3)×H2(R3)×H1(R3).

Throught this article, we refer to H1 or H1
x for the usual Sobolev spaces H1(R3),

for x ∈ R
3. Lp or Lp

x stand also for the space of measurable functions u such that
up is integrable over R3

x (p < +∞) and L∞ or L∞
x is the usual space of (essentially)

bounded functions, we set

E1 = H1(R3)×H1(R3)× L2(R3), E2 = H2(R3)×H2(R3)×H1(R3),

and we denote by (u, v) = Re

∫

R3

u(x)v(x)dx, the usual inner product on L2(R3).

We recall the following Gagliardo-Nirenberg inequalities which will be used fre-
quently later:

‖Dju‖p ≤ C‖u‖1−a
q ‖Dm‖ar , u ∈ Lp(Rn) ∩Hm,r(Rn),

where
1

p
=

j

n
+ a(

1

r
−

m

n
) +

1− a

q
,

1 ≤ q, r ≤ ∞, j is an integer, 0 ≤ j ≤ m, j
m

≤ a ≤ 1.

If m− j − n
r
is a nonnegative integer, then the inequality holds for j

m
≤ a < 1.

Hereafter, we denote by C and K any positive constants which may change from
one line to another.

This article is organized as follows:in Section 2, we derive a priori estimates on the
solutions of system (3)-(4) which will be useful for constructing a bounded absorbing
set and to justify the existence of the global attractor. Section 3 is devoted to proof
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the main theorem, following the idea of [2] we show the regularity of the attractor
where we will prove the result thus reported in a few steps.

2. Existence of a global attractor.

2.1. A priori estimates. The aim of this section is to derive a priori estimates of
solutions for (3)-(5), that are essential to establish a bounded absorbing set in E1.
We set w = vt + δv and change (3)-(5) equivalently to the following

iut + iνu+∆u+ i|u|2u+ vu− = f (6)

vt + δv = w , (7)

wt + (γ − δ)w −∆v + (1− δ(γ − δ))v + v2 − |u|2 = g, (8)

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ R
3, (9)

where δ is a small positive constant which will be specified later. We are now in a
position to derive the estimates for regular solutions of problem (6)-(9). We start
with the first estimate on u in L2(R3).

Proposition 1. Let R > 0.There exists C0 = C0(ν, ‖f‖2) and t0 = t0(ν,R, ‖f‖2)
such that

‖u(t)‖2 ≤ C0, ∀t ≥ t0, (10)

whenever ‖u0‖2 ≤ R.

Proof. Multiplying (6) by u, integrating over R
3 and then taking imaginary

parts, we obtain

1

2

d

dt
‖u‖22 + ν‖u‖22 + ‖u‖44 = Im

∫
fu. (11)

Obviously, in the right-hand side of (11) we use the Cauchy-Schwarz and the Young
inequalities to get

d

dt
‖u‖22 + ν‖u‖22 ≤

1

ν
‖f‖22. (12)

Applying Gronwall lemma in (12), we obtain

‖u(t)‖22 ≤ ‖u(0)‖22e
−νt +

1

ν2
‖f‖22(1− e−νt) ≤ e−νtR2 +

1

ν2
‖f‖22.

It’s easy to see that for t ≥ t0 = 1
ν
log( ν

2R2

‖f‖2

2

), we get

‖u(t)‖22 ≤
2

ν2
‖f‖22. (13)

which concludes the proof of the Proposition 1. �
In the following we give the second estimate on solutions (u, v, w) of (6)-(9) in E1.

Proposition 2. Let R > 0.There exists M = M(ν, γ, δ, f, g), t1 = t1(R) ≥ t0 and
δ1 > 0 such that for all 0 < δ ≤ δ1

‖u(t)‖H1 + ‖v(t)‖H1 + ‖w(t)‖2 ≤ M, ∀t ≥ t1, (14)

whenever ‖(u0, v0, w0)‖E1
≤ R.
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Proof. Multiplying (6) by ∆u, integrating over R
3, using the Green formula

and then taking imaginary parts, we obtain

1
2

d
dt
‖∇u(t)‖22 + ν‖∇u(t)‖22 − Re

∫
|u|2u∆udx− Im

∫
vu∆udx = −Im

∫
f∆udx, (15)

Using,

−Re

∫
|u|2u∆udx = 2

∫
|∇u|2|u|2dx+Re

∫
(∇u)2(u)2dx, (16)

so we get

−Re

∫
|u|2u∆udx =

∫
|∇u|2|u|2dx+ 2

∫
[Re(∇uu)]2dx, (17)

since 2[Re(z1z2)]
2 = |z1|

2|z2|
2 +Re[(z1z2)

2].
By (6) a gain, we have on one hand,

−Im

∫
f∆udx = Im

∫
∆ufdx

= −Re

∫
utfdx− νRe

∫
ufdx− Re

∫
|u|2ufdx

−Im

∫
vufdx,

(18)

and on the other hand,

1
4

d
dt
‖u(t)‖44 + ν‖u(t)‖44 + ‖u(t)‖66 + Im

∫
∆u|u|2udx = Im

∫
f |u|2udx. (19)

After substituting (17) and (18) in (15), and adding the resulting equation to
(19) we obtain

1
2

d
dt
{‖∇u(t)‖22 + 2Re

∫
fudx+

1

2
‖u(t)‖44}

+ν{‖∇u(t)‖22 +Re

∫
fudx+ ‖u(t)‖44}

+‖u(t)‖66 +

∫
|∇u|2|u|2dx+ 2

∫
[Re(∇uu)]2dx

= Im

∫
fvudx+ Im

∫
∇v.∇uudx+ Im

∫
(∇uu)2dx

+Im

∫
f |u|2udx− Re

∫
f |u|2udx.

(20)

Taking the inner product of (8) with w in L2(R3), we have

1
2

d
dt
{‖w(t)‖22 + (γ − δ)‖w(t)‖22 −

∫

R3

w∆v + (1− δ(γ − δ))

∫

R3

vw +

∫

R3

v2w

=

∫

R3

|u|2w +

∫

R3

gw.

(21)
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Using (9), we get from (21) that

1
2

d
dt
{‖w(t)‖22 + (1− δ(γ − δ))‖v(t)‖22 + ‖∇v(t)‖22 +

2
3‖v(t)‖

3
3}+ (γ − δ)‖w(t)‖22

+δ(1− δ(γ − δ))‖v(t)‖22 + δ‖∇v(t)‖22 + δ‖v(t)‖33 =

∫

R3

|u|2w +

∫

R3

gw.

(22)

Adding (20) to (22), we obtain after making some arrangements

d

dt
E(t) + δE(t) = F (t), (23)

where

E(t) = ‖w(t)‖22 + (1− δ(γ − δ))‖v(t)‖22 + ‖∇v(t)‖22 + δ‖∇u(t)‖22

+2δRe

∫

R3

fudx+
δ

4
‖u(t)‖44,

(24)

and

F (t) = 2

∫

R3

gw + 2

∫

R3

w|u|2 + 2δIm

∫

R3

fvudx+ 2δIm

∫

R3

∇v.∇uudx

+δIm

∫

R3

f |u|2udx− 2δRe

∫

R3

f |u|2udx+ δIm

∫

R3

(∇uu)2dx

−[δ(2ν − δ)‖∇u‖22 + 2δ(ν − δ)Re

∫

R3

fudx+ (2γ − 3δ)‖w‖22

+δ(ν − δ
4 )‖u‖

4
4 + δ‖u‖66 + 2δ

∫

R3

|∇u|2|u|2dx+ 4δ

∫

R3

[Re(∇uu)]2dx

+δ(1− δ(γ − δ))‖v(t)‖22 + δ‖∇v(t)‖22 +
4δ
3 ‖v(t)‖33].

(25)

In order to to establish an upper bound for E(t) we estimate the last terms of F (t).
Using Cauchy-Schwarz and Young inequalities, we have

|

∫

R3

gw| ≤ ‖g‖2‖w‖2

≤ Kǫ +
ǫ
2‖w‖

2
2,

(26)

where ǫ > 0 to be chosen later.By Hölder inequality, the Proposition 1, the Gagliardo-
Nirenberg and Young inequalities, we get,

|

∫

R3

w|u|2| ≤ ‖w‖2‖u‖3‖u‖6

≤ C‖w‖2‖∇u‖
1

2

2 ‖∇u‖
1

2

2 ‖u‖6

≤ Kǫ +
ǫ
2‖w‖

2
2 + ǫ‖∇u‖22 +

ǫ
6‖u‖

6
6.

(27)
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Using again Cauchy-Schwarz and Young inequalities, we obtain

|Im

∫

R3

∇v∇uudx| ≤

∫
|∇v||∇u||u|dx

≤ 1
2‖∇v‖22 +

1
2

∫
|∇u|2|u|2dx,

(28)

and

|δIm

∫

R3

f |u|2udx− 2δRe

∫

R3

f |u|2udx| ≤ 3‖f‖2‖u‖
3
6

≤ Kǫ +
ǫ
3‖u‖

6
6.

(29)

Moreover, for the same reasons, we get

|δIm

∫

R3

fvudx| ≤ C‖f‖2‖v‖3‖u‖6

≤ Kǫ +
ǫ
2‖v‖

3
3 +

ǫ
6‖u‖

6
6,

(30)

where the constant Kǫ = K(f, g, γ, ν, δ, ǫ). Let δ small enough such that

δ < min(γ, 2ν), γ −
3

2
δ > 0, 1− δ(γ − δ) > 0, (31)

and then consider ǫ > 0 also small enough such that

ǫ < min(γ −
3

2
δ,
δ

2
(2ν − δ), δ). (32)

Finally, using again Cauchy-Schwarz inequality and Proposition 1 we obtain

|δ(ν − δ)Re

∫

R3

fudx| ≤ C‖f‖2‖u‖2

≤ K,
(33)

where K = K(f, ν, δ).
Moreover, for the same reasons and thanks to (33), we get ∀ t ≥ t0,

E(t) ≤ C‖(u(t), v(t), w(t))‖E1
+K. (34)

With the choices (31)-(32) and using (26)-(30) and (33) in (25), we obtain ∀ t ≥ t0,
F (t) ≤ Kǫ and hence (23) becomes

d

dt
E(t) + δE(t) ≤ Kǫ,

which yields by Gronwall Lemma, for all t ≥ t0,

E(t) ≤ e−δ(t−t0)E(t0) +
Kǫ

δ
(1− e−δ(t−t0)). (35)

Thus, from (34) and (35), we deduce that there exist t1 ≥ t0 andM = M(ν, γ, δ, f, g) >
0 such that ∀ t ≥ t1

E(t) ≤ M, (36)
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whenever ‖(u(t0), v(t0), w(t0))‖E1
≤ R.

For a lower bound to E(t); we use

2δRe

∫

R3

fudx ≥ −K, (37)

and hence we get

E(t) ≥ C[‖∇u(t)‖22 + (1− δ(γ − δ))‖v(t)‖22 + ‖∇v(t)‖22 + ‖w(t)‖22]−K. (38)

Gathering (36) and (38) together, we easily get (14). �

2.2. Global attractor. For the global well-posedness of (3)-(5), one can obtain the
existence and uniqueness of solutions in H1(R3)×H1(R3)×L2(R3) from standard
method using the Propositions 1 and 2. The continuity property of solutions with
respect to initial data is rather long to establish and can be obtained in a similar
way as in the work of Lu and Wang [14] , so we omit it here. Hence, we can define
a dynamical system S(t) on H1 ×H1 × L2. Again, thanks to Proposition 2, there
exists a bounded absorbing set B ⊂ H1(R3) × H1(R3) × L2(R3) for (S(t))t, that
is, for all R > 0, there exists t1 > 0 such that if ‖(u(0), v(0), vt(0))‖E1

≤ R then
for all t ≥ t1, (u(t), v(t), vt(t)) ∈ E1. By proceeding as in [14], the asymptotic
compactness of S(t) can be achieved essentially by energy equation method and
hence the existence of the global attractor

A = ω(B) = ∩t∪s≥tS(s)B
E1

follows accordingly to an abstract theorem [21, Theorem 1.4].

3. Proof of the main theorem.

3.1. Asymptotic smoothing effect for dissipative wave equation. Introduce
Λ = Id −∆ in L2 whose domain is H2(R3). Let a be a nonnegative real number.
Define X2a = Cb(R, D(Λa)) as the set of continuous and bounded function into the
domain of Λa. Let us set H2a = D(Λa).
We consider the following problem

φtt + γφt −∆φ+ φ = f, (39)

(φ(0, x), φt(0, x)) = (φ0(x), φ1(x)). (40)

Then we recall from [10]

Proposition 3. Let T > 0. If (φ0, φ1) ∈ H1(R3) × L2(R3), then ∃!(φ, φt) ∈
C([0, T ];H1(R3)× L2(R3)) a solution of (39)-(40)

In the following we will establish the smoothing effect for the dissipative wave
equation (39).

Proposition 4. If the function f = f(t, x) belongs to Xa. Then every solution
(φ, φt) ∈ Xa ×Xa−1 of (39)-(40) belongs to Xa+1 ×Xa.

For demonstrations and some details, we refer to [10] and to the references
therein.
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3.2. An iteration argument: first step. The objective of this step is to establish
that,

(v, vt) ∈ X 3

2

×X 1

2

,

In order to obtain this, we will use the following lemma that was stated and proved
by T. Runst and W. Sickel in their paper [19].

Lemma 3.1. Let s1, s2 < d
2 . If u1 ∈ Hs1(Rd), u2 ∈ Hs2(Rd) then u1u2 ∈

Hs1+s2−
d

2 (Rd).

Thanks to Lemma 3.1 and (u, v) ∈ (H1(R3))2, we get

Corollary 1. There exist C1 and C2 such that

‖uu‖
H

1

2

≤ C1‖u‖
2
H1 , ‖v2‖

H
1

2

≤ C1‖v‖
2
H1 . (41)

We consider a complete trajectory (u(t), v(t), vt(t)) that belongs to the global
attractor A. So we have the following result

Lemma 3.2. Let (u, v, vt) a complete trajectory of A, then we have

(v, vt) ∈ X 3

2

×X 1

2

. (42)

Proof. If (u, v, vt) is a complete trajectory of A, then (u, v, vt) ∈ Cb(R+, H1 ×
H1 × L2) so (u, v) ∈ X2

1 = (Cb(R+, H1))2.
Since g ∈ L2 is known to exist v∗ as

v∗ −∆v∗ = g. (43)

If we set ṽ = v − v∗, then from (3) and (43) we obtain

ṽtt + γṽt −∆ṽ + ṽ = |u|2 − v2. (44)

Through Corollary 1 we apply Proposition 3 in (44), we obtain

(ṽ, ṽt) ∈ X 3

2

×X 1

2

. (45)

So we conclude the proof of the Corollary 1 since v∗ ∈ H2. �

3.3. An iteration argument: second step. Let (u, v, vt) a complete trajectory
of A, we know that the Lemma 3.2 gives a sort of reguilarity for v. In this step we
will show that u is more regular, for this we will approximate u the solution of (3)
per um (m a natural integer) solution of:

ium
t + iνum + i|um|2um +∆um + vum = f, (46)

under the initial condition (at t = −m)

um(−m) = 0. (47)

First we have the estimates of um

Proposition 5. It exists C1 = C1(ν, f) such that, for all t ≥ −m, we have

‖um(t)‖2 ≤ C1. (48)

Moreover, for all ǫ > 0 there exists C2 = C2(f, ν, ǫ) such that, for all t ≥ −m, we
have

‖∇um(t)‖2 ≤ C2. (49)
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Proof. On one hand it is easy to prove (48), indeed it is a classic result, for
example we can repeat the proof of Proposition 1 (associated with um). On the
other hand using the same approach in the proof of Proposition 2 (associated with
the problem (46)-(47)), we obtain after making some arrangements

1
2

d
dt
{‖∇um(t)‖22 + 2Re

∫
fumdx+

1

2
‖um(t)‖44 −

∫
v|um|2dx}

+ν{‖∇um(t)‖22 +Re

∫
fumdx+ ‖um(t)‖44 −

∫
v|um|2dx}

=

∫
v|um|4dx+ Im

∫
f |um|2umdx− Re

∫
f |um|2umdx

−‖um‖66 −

∫
|∇um|2|um|2dx− 2

∫
[Re(∇umum)]2dx,

(50)

and hence, we have

1

2

d

dt
Em(t) +

ν

2
Em(t) = Fm(t), (51)

where

Em(t) = ‖∇um(t)‖22 + 2Re

∫
fumdx+

1

2
‖um(t)‖44 −

∫
v|um|2dx, (52)

and

Fm(t) = ν
2

∫
v|um|2dx+

1

2

∫
vt|u

m|2dx+

∫
v|um|4dx+ Im

∫
f |um|2umdx

−Re

∫
f |um|2umdx−

3

4
ν‖um(t)‖44 − ‖um‖66 −

∫
|∇um|2|um|2dx

−2

∫
[Re(∇umum)]2dx.

(53)

In order to establish an upper bound of Em, we estimate the last terms of Fm.
Using Hölder, Gagliardo-Nirenberg and Young inequalities, we have

| ν2

∫
v|um|2dx| ≤ C‖v‖2‖u

m‖24

≤ C‖um‖24 (thanks to (42))

≤ ε‖um‖44 + Cε,

(54)

| 12

∫
vt|u

m|2dx| ≤ C‖vt‖3‖u
m‖23

≤ C‖vt‖3‖u
m‖2‖∇um‖2

≤ C‖∇um‖2 (thanks to (42) and (48))

≤ ε‖∇um‖22 + Cε,

(55)
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|

∫
v|um|4dx| ≤ C‖v‖3‖u

m‖46

≤ C‖um‖46 (thanks to (42))

≤ ε‖um‖66 + Cε,

(56)

and

|Im

∫
f |um|2umdx− Re

∫
f |um|2umdx| ≤ C‖f‖2‖u

m‖36

≤ C‖um‖36

≤ ε‖um‖66 + Cε,

(57)

where Cε = C(ε, ν, f). Then we have

1
2

d
dt
Em(t) + ν

2Em(t) + ν
2 (1− 2ε)‖∇um(t)‖22 +

3ν
4 (1− 4ε

3 )‖u
m(t)‖44

+(1− 2ε)‖um‖66 +

∫
|∇um|2|um|2dx+ 2

∫
[Re(∇umum)]2dx ≤ C.

(58)

Finally, if we consider ε > 0 small enough such that ε < 1
2 we obtain from (58)

d

dt
(eνtEm(t)) ≤ Ceνt, (59)

then integrating (60) on [−m, t], we have for all t ≥ −m

Em(t) ≤ C(1− e−ν(m+t)) ≤ C. (60)

A gain thanks to previous estimates, we can conclude

Em(t) ≥ (
1

2
− ε)‖um(t)‖44 − C. (61)

Gathering (60) and (61) we deduce (48) which concludes the proof of the Proposition
5.

�

Now we will show that (um)m is bounded in X2 and for all T > 0 it converges
strongly to u in L∞(0;T ;L2(R3)). To show this result, we will establish the following
lemma.

Lemma 3.3. There exists a numerical constant C > 0 such that for all t ≥ −m

‖um(t)− u(t)‖2 ≤ C exp(−ν(t+m)), (62)

where C = C(ν, f, u0).

Proof. Subtract (46) from (3) and multiply the equation obtained by um − u

and integrate the imaginary part on R
3 we obtain

1

2

d

dt
‖um(t)− u(t)‖22 + ν‖um(t)− u(t)‖22 +Re

∫
(|um|2um − |u|2u)(um − u)dx = 0. (63)
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Then, using the fact that

Re[(|z1|
2z1 − |z2|

2z2)(z1 − z2)]

= [|z1|
4 + |z2|

4 − (|z1|
2 + |z2|

2)Re(z1z2)]

≥ [|z1|
4 + |z2|

4 − (|z1|
3|z2|+ |z2|

3|z1|)]

= (|z1|
3 − |z2|

3)(|z1| − |z2|)

≥ (|z1| − |z2|)
2(|z1|

2 + |z1||z2|+ |z2|
2),

(64)

we obtain

1

2

d

dt
‖um(t)− u(t)‖22 + ν‖um(t)− u(t)‖22 ≤ 0, (65)

which equivalent to

d

dt
(‖um(t)− u(t)‖22e

2νt) ≤ 0. (66)

Then we integrate (66) between −m and t we get for all t ≥ −m

‖um(t)− u(t)‖2 ≤ ‖u(−m)‖2 exp(−ν(m+ t)) ≤ C exp(−ν(m+ t)), (67)

from where you get (62).�

Proposition 6. The sequence (um)m is bounded uniformly in X2.

Proof. According to (46), we have

∆um = −ium
t +R(um, f, v), (68)

where R(um, f, v) = f − vum − iνum − i|um|2um.
So, as R(um, f, v) belongs to L2 it is enough to find an estimate of um

t in L2. For
this, we see that U = um

t is solution of

iUt +∆U + iνU + vU + vtu
m + 2i|um|2U + i(um)2U = 0, (69)

U(−m) = um
t (−m) = −if ∈ L2. (70)

Multiplying (69) by U , integrating over R3 and taking the imaginary part to obtain

1

2

d

dt
‖U‖22 + ν‖U‖22 + 2

∫
|um|2|U|2dx− Re

∫
(umU)2dx = −Im

∫
vtu

mUdx. (71)

Using 2[Re(z1z2)]
2 = |z1|

2|z2|
2 +Re[(z1z2)

2] in (71), we have

1

2

d

dt
‖U‖22 + ν‖U‖22 + 3

∫
|um|2|U|2dx− 2

∫
[Re(umU)]2dx = −Im

∫
vtu

mUdx, (72)

and thanks to [Re(z1z2)]
2 ≤ |z1|

2|z2|
2, we get

1

2

d

dt
‖U‖22 + ν‖U‖22 ≤ −Im

∫
vtu

mUdx. (73)
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Thanks to Hölder and Young inequalities, the Sobolev injections H
1

2 ⊂ L3, H1 ⊂
L6, Lemma 3.3 and the Proposition 6 we have

|Im

∫
vtu

mUdx| ≤ ‖vt‖3‖u
m‖6‖U‖2

≤ C‖U‖2

≤ ν
2‖U‖

2
2 + C.

(74)

According to (73) and (74), the lemma of Gronwall can be applied in the resulting
equation to have for all t ≥ −m

‖U(t)‖22 ≤ C(1− e−ν(m+t)) ≤ C, (75)

where C is m independent, which completes the proof of the Proposition 6. �

3.4. Conclusion.

Proposition 7.

u ∈ X2. (76)

Proof. On the one hand, thanks to the Proposition 6 there exist a subsequence
still noted (um)m which converge weak - star to ũ in X2. On the other hand by
lemma 3.3, we have

um → u in L∞(0, T ;L2). (77)

By uniqueness of the limit we deduce that u ∈ X2. �

Proposition 8.

(v, vt) ∈ X2 ×X1. (78)

Proof. On the one hand, as a consequence of Proposition 7, we have

|u|2 ∈ X2, (79)

because H2(R3) is an algebra. On the other hand, by Lemma 3.1 and Lemma 3.2
we get

v2 ∈ X 3

2

− . (80)

Using (79) and (80) we deduce

|u|2 − v2 ∈ X 3

2

− , (81)

which allows us to use Proposition 4 to

(ṽ, ṽt) ∈ X 5

2

− ×X 3

2

− . (82)

Then we can easily obtain (78). �

From Proposition 7 and Proposition 8 it is deduced that A is a subset of E2.
The remainder of the proof (of the main theorem) is devoted to establishing the
compactness of A into E2.

Proposition 9. A is a compact subset of E2.
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Proof. Let (un, vn, vnt )n is a sequence of the attractor A. On one hand there
exist a subsequence again noted (un, vn, vnt )n which converges (strongly) towards
(u; v; vt) in E1 (since A is an attractor in E1). On the other hand, the fact that A
is bounded in E2 even if to extract a subsequence (of the previous subsequence) we
can assume that (un, vn, vnt )n converges weakly towards (u; v; vt) in E2 (by unique-
ness of the limit).

Based on the proof of Proposition 8 we have (vn − ṽ; vnt ) ∈ X 5

2

− × X 3

2

− , then

by interpolation we obtain the strong convergence of (vn; vnt ) in H2 ×H1.

Either T > 0 and either 0 ≤ t ≤ T , lets show that un(t) converges strongly to-
wards u(t) in H2 which is equivalent to showing that

‖un
t (t)‖2 → ‖ut(t)‖2. (83)

Next, we differentiate the analogous equation of (3) (verified by un and vn ) and
we multiply the resulting equation by un

t then we integrate the imaginary part on
R

3 and proceeding as above , we get

d
dt
‖un

t (t)‖
2
2 + 2ν‖un

t (t)‖
2
2 ≤ −2Im

∫

R3

vnt (t)u
n(t)un

t (t)dx. (84)

So we integrate (84) on [0, t], we’ll have

‖un
t (t)‖

2
2 =≤ ‖un

t (0)‖
2
2e

−2νt − 2Im

∫ t

0

∫

R3

e2ν(s−t)vnt (s)u
n(s)un

t (s)dxds. (85)

By analogy we have

‖ut(t)‖
2
2 ≤ ‖ut(0)‖

2
2e

−2νt − 2Im

∫ t

0

∫

R3

e2ν(s−t)vt(s)u(s)ut(s)dxds. (86)

The same goes for

‖un
t (t)‖

2
2 ≤ ‖un

t (t− T )‖22e
−2νT

−2Im

∫ T

0

∫

R3

e2ν(s−T )vnt (s− T )un(s− T )un
t (s− T )dxds.

(87)

‖ut(t)‖
2
2 ≤ ‖ut(t− T )‖22e

−2νT

−2Im

∫ T

0

∫

R3

e2ν(s−T )vt(s− T )u(s− T )ut(s− T )dxds.

(88)

Lemma 3.4.
∫ T

0

∫

R3

e2ν(s−T )vnt (s− T )un(s− T )un
t (s− T )dxds

−−−−−−→
n → +∞

∫ T

0

∫

R3

e2ν(s−T )vnt (s− T )un(s− T )un
t (s− T )dxds.

(89)

Proof. First of all we notice that
∫

R3

vnt u
nun

t −

∫

R3

vtuut =

∫

R3

vnt u
nun

t −

∫

R3

e2ν(s−T )vtuu
n
t +

∫

R3

vtuu
n
t −

∫

R3

vtuut.
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On one hand, by Proposition 6 and the Sobolev embedding H1
x ⊂ L4

x we have

|

∫

R3

vnt u
nun

t −

∫

R3

vtuu
n
t | ≤ ‖vnt u

n − vtu‖2‖u
n
t ‖2

≤ C(‖vnt u
n − vtu

n‖2 + ‖vtu
n − vtu‖2)

≤ C(‖vnt − vt‖4‖u
n‖4 + ‖vt‖4‖u

n − u‖4)

≤ C(‖vnt − vt‖H1 + ‖un − u‖H1),

(90)

hence by the strong convergence un → u and vnt → vt (in H1), we get

|

∫

R3

vnt u
nun

t −

∫

R3

vtuu
n
t |

−−−−−−→
n → +∞ 0. (91)

On the other hand, by the weak convergence (un, vn, vnt ) ⇀ (u, v, vt) in E2,we obtain

un
t ⇀ ut inL

2, (92)

so we get
∫

R3

vtuu
n
t

−−−−−−→
n → +∞

∫

R3

vtuut. (93)

Thanks to (91) and (93), we obtain
∫

R3

vnt u
nun

t

−−−−−−→
n → +∞

∫

R3

vtuut. (94)

Thanks to the dominated convergence theorem and (93) one deduces (89) and the
proof Lemma 3.4 will be completed. �

The weak convergence (92) makes it possible to have

lim inf
n→+∞

‖un
t (t)‖

2
2 ≥ ‖ut(t)‖

2
2. (95)

To finish the proof we w’ll establish that

lim sup
n→+∞

‖un
t (t)‖

2
2 ≤ ‖ut(t)‖

2
2. (96)

At this stage, the classical argument of J. Bull is used (see [22] and the references
therein). By (87), lemma 3.4 and Lebesgue’s convergence theorem we have

lim supn→+∞ ‖un
t (t)‖

2
2

≤ lim supn→+∞ ‖un
t (t− T )‖22e

−2νT

−2Im

∫ T

0

∫

R3

e2ν(s−T )vnt (s− T )un(s− T )un
t (s− T )dxds

≤ lim supn→+∞ ‖un
t (t− T )‖22e

−2νT

+2|

∫ T

0

∫

R3

e2ν(s−T )vnt (s− T )un(s− T )un
t (s− T )dxds|.

(97)
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Thanks to (88), we have

2|

∫ T

0

∫

R3

e2ν(s−T )vnt (s− T )un(s− T )un
t (s− T )dxds|

≤ |‖ut(t− T )‖22e
−2νT − ‖ut(t)‖

2
2|

≤ ‖ut(t− T )‖22e
−2νT + ‖ut(t)‖

2
2.

(98)

By substituting (98) in (97), we will have

2 lim supn→+∞ ‖un
t (t)‖

2
2 ≤ lim supn→+∞ ‖un

t (t− T )‖22e
−2νT

+‖ut(t− T )‖22e
−2νT + ‖ut(t)‖

2
2

≤ (lim supn→+∞ ‖un
t (t− T )‖22

+‖ut(t− T )‖22)e
−2νT + ‖ut(t)‖

2
2.

(99)

As un
t (t−T ) is bounded in L2 and ut(t−T ) in L2, then there exist C (independent

of n and T ) such that

lim sup
n→+∞

‖un
t (t)‖

2
2 ≤ Ce−2νT + ‖ut(t)‖

2
2. (100)

Letting T → +∞ into (100). Using the resulting inequality, it is easy to prove that
in fact

lim sup
n→+∞

‖un
t (t)‖

2
2 ≤ ‖ut(t)‖

2
2, (101)

which finish the proof of the Proposition 9. �
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