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Abstract. This paper is concerned with a class of singular prey-taxis models in a smooth
bounded domain under homogeneous Neumann boundary conditions. The main challenge of
analysis is the possible singularity as the prey density vanishes. Employing the technique of a
priori assumption, the comparison principle of differential equations and semigroup estimates, we
show that the singularity can be precluded if the intrinsic growth rate of prey is suitably large and
hence obtain the existence of global classical bounded solutions. Moreover, the global stability of
co-existence and prey-only steady states with convergence rates is established by the method of
Lyapunov functionals.
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1. Introduction and main results

Prey-taxis, a widespread biological phenomenon, describes the movement of predators towards
higher density concentrations of prey. It plays important roles in biological control and ecological
balance such as regulating prey (pest) population to avoid incipient outbreaks of prey or forming
large-scale aggregation for survival (cf. [4, 23, 25]). The prototypical prey-taxis model was
proposed by Kareiva and Odell in [11] to interpret the field experimental patterns formed by
individual ladybugs (predators) and aphids (prey), which reads as (see equations (55)-(56) in
[11]): {

∂tu = ∇ · (d(w)∇u)−∇ · (uχ(w)∇w) + γuF (w)− uh(u),
∂tw = D∆w − uF (w) + f(w),

(1.1)

where u = u(x, t) and w = w(x, t) denote the population densities of predator and prey at position
x and time t, respectively, and D > 0 is a constant denoting the prey diffusivity. The term ∇ ·
(d(w)∇u) describes the predator diffusion with coefficient d(w), and −∇·(uχ(w)∇w) accounts for
the prey-taxis with coefficient χ(w), where both diffusion and prey-taxis coefficients depending the
prey density relating to individual foraging behaviors (see some explicit examples in [11]). F (w) is
called the functional response function - the predator’s intake rate as a function of prey density.
There are various possible functional response functions (cf. [9, 22]) among which the most
well-known are the so-called Holling type I (i.e. Lotka-Volterra), II and III. h(u) = 1 + αu with
α ≥ 0 denotes the predator’s mortality rate including natural death and intra-specific competition
(if α > 0). f(w) is the birth-death function of prey and its typical forms include f(w) =
µw(1 − w/K) (Logistic type) or f(w) = µw(1 − w/K)(w/k − 1) (Bistable or Allee effect type)
for 0 < k < K with intrinsic growth rate µ > 0 and carrying capacity K > 0.

The prey-taxis model (1.1) proposed in [11] with non-constant d(w) and χ(w) was first studied
in [7] on the global existence of solutions and pattern formations for the Holling type I and II
functional response functions. When d(w) is constant and χ(w) = 1

(1+w)σ (σ = 1, 2), the traveling

wave solution of (1.1) was investigated in [15]. When both d(w) and χ(w) are constant, the
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prey-taxis model (1.1) has been widely studied in recent years (cf. [7, 8, 16, 26, 28, 29, 34]).
The numerous variants of (1.1) have also been studied, such as indirect prey-taxis (cf. [1, 21,
27]), three-species prey-taxis (cf. [20, 30]), predator-taxis (cf. [3, 35]). We remark that in the
original prey-taxis model (1.1) proposed in [11], both diffusion and prey-taxis coefficients are
non-constant. This seems to be a common feature for taxis models, like the original Keller-Segel
chemotaxis derived in [6, 12, 13] and density-suppressed motility models (cf. [5, 17, 18]) where
both diffusion and chemotaxis coefficients depend on the chemical concentration. Amongst many
possible mechanisms, one important class is the singular taxis response χ(w) = 1

w based on the
Weber-Fechner law, which has many prominent applications (cf. [10, 12]). Though the works
[7, 15] consider prey-dependent coefficient χ(w), the singular case was ruled out to overcome the
technical obstacle by assuming that 0 < χ(0) < ∞. The purpose of this paper is to study the
prey-taxis model (1.1) with singular prey-taxis coefficient χ(w) = 1

w . Specifically we consider the
following prey-taxis model

ut = ∆u− χ∇ ·
(
u∇w

w

)
+ αuF (w)− au− buσ, x ∈ Ω, t > 0,

wt = ∆w − uF (w) + βw
(
1− w

K

)
, x ∈ Ω, t > 0,

∇u · ν = ∇w · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.2)

where

• Ω ⊂ Rn is a bounded domain (habitat of species) with smooth boundary ∂Ω and ν is the
unit outer normal vector of ∂Ω. All parameters χ, α, β, σ, a, b and K are positive, where
χ is the prey-taxis coefficient, α is the conversion rate, a is the natural death rate of the
predator, b denotes the death rate of the predator due to intra-specific competition, β is
the intrinsic growth rate of the prey and K is the environmental carry capacity.

• The functional response function satisfies

F ∈ C2([0,∞)), F (0) = 0, F (w) > 0 in (0,∞) and F ′(w) > 0 in [0,∞), (1.3)

which covers a wide class of functions including but not limited to Holling type I, II, III.
• The initial data satisfy

u0 ∈ C0(Ω), w0 ∈ C1(Ω), u0 ≥ 0, u0 ̸≡ 0 and w0 > 0 in Ω. (1.4)

The goal of this paper is to investigate the global existence and asymptotic behaviors of so-
lutions to (1.2). The main challenge encountered in our analysis is the possible singularity at
w = 0. Hence to establish the global well-posedness of (1.2), the key is to rule out the possibility
that w = 0 (i.e. to prove w has a positive lower bound) in finite time. This is, however, obscure
from the governing equation of w (i.e. second equation of (1.2)). Indeed, to prove that w may
have a positive lower bound, we need the a priori bound of u which in turn relies on a priori
estimate that w has a positive lower bound. How to untie such a tangling to prove that w is away
from zero is the crucial ingredient in our analysis. In this paper, we shall employ the technique
of a priori assumption and show that w could be strictly positive for all t > 0 if β > 0 is suitably
large. Precisely we have the following results on the global boundedness of solutions to (1.2).

Theorem 1.1 (Global boundedness). Let Ω ⊂ Rn(1 ≤ n ≤ 7) be a bounded domain with smooth
boundary and let assumptions (1.3)-(1.4) hold. Then for any initial data (u0, w0) satisfying con-
dition (1.4), there is a number β0 ≥ 1 such that the problem (1.2) with β ≥ β0 admits a unique
classical solution (u,w) satisfying

u, w ∈ C0(Ω× [0,+∞)) ∩ C2,1(Ω× (0,+∞))

and u > 0, w > 0 in Ω× (0,+∞). Moreover, there exists a constant C > 0 independent of time t
such that

∥u(·, t)∥L∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) +
∥∥∥ 1

w(·, t)

∥∥∥
L∞(Ω)

≤ C for all t > 0.
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With the global existence of solutions, we next explore the asymptotic behavior of solutions.
To this end, we define the function

ϕ(w) =
βw
(
1− w

K

)
F (w)

(1.5)

and assume

ϕ ∈ C1(0,+∞), ϕ(0) = lim
w→0

ϕ(w) > 0 and ϕ′(w) < 0 in [0,+∞). (1.6)

The assumption on ϕ can be satisfied by many types of functional response function. For example,
if F (w) = w is of Holling Type I, then (1.6) is automatically fulfilled and if F (w) = w

λ+w is of

Holling Type II, then (1.6) is satisfied under the restriction λ > K.
By simple calculations, we find that (1.2) has three possible homogeneous steady states (us, ws):

(us, ws) =

{
(0, 0) or (0,K), if αF (K) ≤ a,

(0, 0) or (0,K) or (u∗, w∗), if αF (K) > a,

where (u∗, w∗) > 0 is the unique positive solution of the following equations (details are shown
in the appendix):

αF (w∗)− a− buσ−1
∗ = 0, u∗F (w∗)− βw∗

(
1− w∗

K

)
= 0. (1.7)

The trivial equilibrium (0, 0) is called the extinction steady state, the semi-trivial equilibrium
(0,K) is called the prey-only steady state and the positive equilibrium (u∗, w∗) is called the
co-existence steady state.

For the convenience of presentation, we let

w =
1

2
min

{
inf
x∈Ω

w0(x),
K

2

}
, w = max

{
∥w0∥L∞(Ω),K

}
.

Then the global stability theorem is stated below.

Theorem 1.2 (Global stability). Let the assumptions in Theorem 1.1 and (1.6) hold. Then the
following results hold.

(1) If the parameters satisfy αF (K) > a and

χ2 <
4αF (w∗)w

2

u∗F 2(w)
min

w≤w≤w
F ′(w), (1.8)

then there exist some constants C, λ1, λ2, T1 > 0 such that the solution (u,w) obtained in
Theorem 1.1 satisfies for all t > T1 that

∥u(·, t)− u∗∥L∞(Ω) + ∥w(·, t)− w∗∥L∞(Ω) ≤

{
Ce−λ1t if σ ≥ 2,

C(t+ 1)−λ2 if 1 < σ < 2.

(2) If the parameters satisfy αF (K) ≤ a, then there exist some constants C, λ3, λ4, T2 > 0
such that the solution (u,w) obtained in Theorem 1.1 satisfies for all t > T2 that

∥u(·, t)∥L∞(Ω) + ∥w(·, t)−K∥L∞(Ω) ≤

{
Ce−λ3t if αF (K) < a,

C(t+ 1)−λ4 if 0 < αF (K) = a.

The rest of this paper is organized as follows. In Section 2, we prove the global boundedness
of solutions of (1.2) and prove Theorem 1.1. Then, we show the large time behaviour of solutions
for (1.2) and prove Theorem 1.2 in Section 3.
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2. Global existence

In this section, we establish the global boundedness of solutions to system (1.2). In what
follows, we shall use Ci(i = 1, 2, · · · ) to denote a generic positive constant which may vary in

the context. For simplicity, we abbreviate
∫ t
0

∫
Ω f(·, s)dxds and

∫
Ω f(·, t)dx as

∫ t
0

∫
Ω f and

∫
Ω f ,

respectively. We start with the local existence of solutions and extensibility of global solutions
for system (1.2).

Lemma 2.1 (Local existence and extensibility). Let the assumptions in Theorem 1.1 hold. If
the initial data satisfy the condition (1.4), then there exist Tmax ∈ (0,∞] and a pair (u,w) of
functions

u, w ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

which solves (1.2) in the classical sense such that u > 0, w > 0 in Ω × (0, Tmax). Moreover, we
have

either Tmax = +∞ or lim sup
t↗Tmax

(∥u(·, t)∥L∞ + ∥w(·, t)∥W 1,∞) = +∞.

Now, we prove a basic property of w, i.e., the uniform L∞−norm of w.

Lemma 2.2. Let (u,w) be a solution of (1.2) and denote w = max
{
∥w0∥L∞(Ω),K

}
> 0. Then

it follows that

∥w∥L∞(Ω) ≤ w for all t ∈ [0, Tmax).

Proof. The result is a direct consequence of the maximum principle applied to the second equation
in (1.2). Indeed with w(x, t) := max

{
∥w0∥L∞(Ω),K

}
, owing to the nonnegativity of u and F , we

find that 
wt = 0 ≥ ∆w − uF (w) + βw

(
1− w

K

)
x ∈ Ω, t > 0,

∇w · ν = 0 x ∈ ∂Ω, t > 0,

w(x, 0) ≥ w0(x) x ∈ Ω.

Hence the comparison principle of parabolic equations implies w ≤ w on Ω× [0, Tmax). �
An application of Lemma 2.2 and Young’s inequality yields the uniform L1−norm of u.

Lemma 2.3. Let (u,w) be a solution of (1.2). Then there exists a constant C > 0 such that∫
Ω
u ≤ C for all t ∈ [0, Tmax).

Proof. Integrating the first equation of (1.2) over Ω by parts and using the boundary condition,
we get

d

dt

∫
Ω
u = −a

∫
Ω
u+ α

∫
Ω
uF (w)− b

∫
Ω
uσ. (2.1)

Due to Lemma 2.2 and the assumption on F , we can find a constant C1 > 0 such that

F (w) ≤ C1,

which along with Young’s inequality yields a constant C2 > 0 such that

α

∫
Ω
uF (w)− b

∫
Ω
uσ ≤ αC1

∫
Ω
u− b

∫
Ω
uσ ≤ C2. (2.2)

Therefore, inserting (2.2) into (2.1), we find

d

dt

∫
Ω
u ≤ −a

∫
Ω
u+ C2.

This alongside the Grönwall inequality finishes the proof. �
In order to extend the local solution obtained in Lemma 2.1 to be global, it suffices to derive

that ∥u(·, t)∥L∞ + ∥w(·, t)∥W 1,∞ is uniformly bounded in time using the extensibility condition in
Lemma 2.1. This requires, from the governing equation of u (i.e. the first equation of (1.2)), that
w has a positive lower bound for all t > 0 to avoid the possible singularity. In what follows, we
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shall employ the technique of a priori assumption (cf. [19, 31]) to achieve this goal. That is, we
first assume that the solution (u,w) of (1.2) satisfies

inf
x∈Ω

w(x, t) ≥ w, for all t ∈ [0, Tmax) (2.3)

where w is a positive number to be determined later. Then, under the a priori assumption (2.3),
we derive the priori uniform-in-time estimates of solutions to obtain the global solution. Finally
we close the a priori assumption by showing that global solution we obtain indeed satisfies (2.3).

With the a priori assumption (2.3) and the semigroup theory of parabolic equations, we first
derive the upper bound for u.

Lemma 2.4. Let (u,w) be a solution of (1.2). Then there is a constant β0 ≥ 1 such that for all
β ≥ β0 it holds that

∥u∥L∞(Ω) ≤
w

2F (w)
β and ∥∇w∥L∞(Ω) ≤ C for any t ∈ [0, Tmax),

where C > 0 is a constant independent of t.

Proof. Given any T ∈ (0, Tmax), we let

M :=M(T ) = sup
t∈[0,T )

∥u∥L∞(Ω).

Step 1: We claim that there exists a constant C1 > 0 such that

∥∇w∥L∞(Ω) ≤ C1

(
∥w0∥W 1,∞(Ω) +M + β

)
for any t ∈ [0, T ). (2.4)

Indeed, due to Lemma 2.2 and the assumption on F , we can find a constant C2 > 0 such that

F (w) ≤ C2. (2.5)

Let
(
et∆
)
t≥0

be the Neumann heat semigroup defined in Ω. Then by the variation-of-constants

formula for the second equation of (1.2), we have

w = et∆w0 −
∫ t

0
e(t−s)∆uF (w)ds+ β

∫ t

0
e(t−s)∆w

(
1− w

K

)
ds.

Let µ1 > 0 denote the first nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions.
An application of the smoothing estimates for the Neumann heat semigroup [32, Lemma 1.3] and
(2.5) yields some constants C3, C4 > 0 such that

∥∇w∥L∞(Ω) ≤∥∇et∆w0∥L∞(Ω) +

∫ t

0
∥∇e(t−s)∆(uF (w))∥L∞(Ω)ds

+ β

∫ t

0

∥∥∥∇e(t−s)∆
[
w
(
1− w

K

)]∥∥∥
L∞(Ω)

ds

≤C3∥w0∥W 1,∞(Ω) + C3

∫ t

0
(1 + (t− s)−

1
2 )e−µ1(t−s)∥uF (w)∥L∞(Ω)ds

+ C3β

∫ t

0
(1 + (t− s)−

1
2 )e−µ1(t−s)

∥∥∥w (1− w

K

)∥∥∥
L∞(Ω)

ds

≤C3∥w0∥W 1,∞(Ω) + C2C3M

∫ t

0
(1 + (t− s)−

1
2 )e−µ1(t−s)ds

+ C3β

(
w +

w2

K

)∫ t

0
(1 + (t− s)−

1
2 )e−µ1(t−s)ds

≤C4(∥w0∥W 1,∞(Ω) +M + β).

(2.6)

Thus the claim is proved.
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Step 2: With the variation-of-constants formula for the first equation of (1.2), we get for any
t ∈ (0, T )

u =et(∆−a)u(·, 0)− χ

∫ t

0
e(t−s)(∆−a)∇ ·

(
u
∇w
w

)
ds

+ α

∫ t

0
e(t−s)(∆−a)uF (w)ds− b

∫ t

0
e(t−s)(∆−a)uσds

which implies

∥u∥L∞(Ω) ≤
∥∥∥et(∆−a)u(·, 0)

∥∥∥
L∞(Ω)

+ χ

∫ t

0

∥∥∥∥e(t−s)(∆−a)∇ ·
(
u
∇w
w

)∥∥∥∥
L∞(Ω)

ds

+ α

∫ t

0

∥∥∥e(t−s)(∆−a)uF (w)
∥∥∥
L∞(Ω)

ds

:=I1 + I2 + I3.

(2.7)

Now, we estimate the right hand side of the above inequality. By the maximum principle of
parabolic equations, we directly have

I1 ≤ ∥u0∥L∞(Ω). (2.8)

Let n < q < n + 1
2 and p = 4q

n+1 . Since 1 ≤ n ≤ 7, it holds that p > n
2 . By the smoothing

estimates for the Neumann heat semigroup [14, Lemma 3.1], Lemma 2.3, the priori assumption
(2.3) and (2.4), we find some constant C5 > 0 such that

I2 ≤C5

∫ t

0

(
1 + (t− s)

− 1
2
− n

2q

)
e−a(t−s)

∥∥∥∥u∇ww
∥∥∥∥
Lq(Ω)

ds

≤C5

w

∫ t

0

(
1 + (t− s)

− 1
2
− n

2q

)
e−a(t−s)∥u∥

1
2

L2q(Ω)
∥∇w∥

1
2

L2q(Ω)
ds.

(2.9)

By the Gagliardo-Nirenberg inequality, there are constants C6, C7 > 0 such that

∥u∥
1
2

L2q(Ω)
≤ C6∥u∥

2q−1
4q

L∞(Ω)∥u∥
1
4q

L1(Ω)
and ∥∇w∥

1
2

L2q(Ω)
≤ C7

(
∥∇w∥

2q−n
4q

L∞(Ω)∥w∥
n
4q

L∞(Ω) + ∥w∥
1
2

L∞(Ω)

)
.

Substituting the above inequalities into (2.9) gives a constant C8 > 0 such that

I2 ≤
C8

w
M

4q−1−n
4q +

C8

w
β

2q−n
4q M

2q−1
4q +

C8

w
M

2q−1
4q . (2.10)

Similarly, we may find some constants C9, C10, C11 > 0 such that

I3 ≤C9

∫ t

0

∥∥∥(−∆+ a)re(t−s)(∆−a)uF (w)
∥∥∥
Lp(Ω)

ds

≤C10

∫ t

0
(t− s)−re−a(t−s)∥u∥Lp(Ω)ds

≤C10

∫ t

0
(t− s)−re−a(t−s)∥u∥

p−1
p

L∞(Ω)∥u∥
1
p

L1(Ω)
ds

≤C11M
p−1
p ,

(2.11)

where p > n
2 and n

2p < r < 1. According to the definition of p, we have

4q − 1− n

4q
=
p− 1

p
.

Therefore, substituting (2.8), (2.10), (2.11) into (2.7), we get some constant C12 > 1 independent
of M and t > 0 such that

M ≤ C12M
2q−1
4q + C12M

4q−1−n
4q + C12β

2q−n
4q M

2q−1
4q . (2.12)
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Now we define

β0 = max


(
2(3C12)

4q
n+1F (w)

w

) n+1
2n−2q+1

, 1

 .

Note that 4q−1−n
4q > 2q−1

4q and 2q−n
n+1 < 1. Then if β ≥ β0, we can directly derive from (2.12) that

M ≤ max
{
1, (3C12)

4q
n+1β

2q−n
n+1

}
≤ (3C12)

4q
n+1β

2q−n
n+1 ≤ w

2F (w)
β, (2.13)

which along with (2.6) completes the proof. �

Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into two steps.
Step 1: Under the a priori assumption (2.3), by Lemma 2.4, we find a constant C1 > 0 such

that

∥u∥L∞(Ω) + ∥∇w∥L∞(Ω) 6 C1 for all t ∈ (0, Tmax)

which alongside the extensibility condition in Lemma 2.1 yields the global existences of solutions.
To complete the proof, it remains only to show that there is some constant w > 0 such that the
global solution we obtain satisfies the a priori assumption (2.3). This will be shown in the next
step.

Step 2: Thanks to Lemma 2.4 and the second equation of (1.2), we find

wt = ∆w +

(
β − F (w)

w
u

)
w − β

K
w2 ≥ ∆w +

β

2
w − β

K
w2. (2.14)

We consider the following initial value problem of ordinary differential equation{
gt(t) =

β
2 g(t)−

β
K g

2(t) t > 0,

g(0) = infx∈Ωw0(x),

which has the explicit solution

g(t) =

{
2

K
+

[
1

g(0)
− 2

K

]
e−

β
2
t

}−1

.

This implies

g(t) > min

{
g(0),

K

2

}
. (2.15)

Therefore, g(t) is a lower solution of the following partial differential equation
Gt = ∆G+ β

2G− β
KG

2 x ∈ Ω, t > 0,

∇G · ν = 0, x ∈ ∂Ω, t > 0,

G(0) = w0(x), x ∈ Ω.

(2.16)

Then we have

G(x, t) ≥ g(t), for all (x, t) ∈ Ω× [0, Tmax).

Combining (2.14), (2.15) and (2.16), and using the comparison principle of parabolic equations,
one has

w(x, t) ≥ G(x, t) > min

{
inf
x∈Ω

w0(x),
K

2

}
for any (x, t) ∈ Ω× [0, Tmax).

Clearly if we simply take w = 1
2 min

{
inf
x∈Ω

w0(x),
K
2

}
, then the a priori assumption (2.3) is fulfilled.

This completes the proof. �
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3. Stability and decay rate

In this section, we are devoted to studying the large time behavior of solutions to the problem
(1.2). To this end, we first improve the regularity of u and w.

Lemma 3.1. There exist some constants θ1, θ2 ∈ (0, 1) and C > 0 such that

∥u∥
C2+θ1,1+

θ1
2 (Ω×[t,t+1])

+ ∥w∥
C2+θ2,1+

θ2
2 (Ω×[t,t+1])

6 C for all t > 1.

In particular, one can find C > 0 such that

∥∇u∥L∞(Ω) + ∥∇w∥L∞(Ω) ≤ C for all t > 1.

Proof. Thanks to Theorem 1.1, we get some constants C1, C2 > 0 such that

0 ≤ u(x, t) ≤ C1, C2 ≤ w(x, t) ≤ C1 and |∇w(x, t)| ≤ C1 for all x ∈ Ω, t > 0. (3.1)

We can rewrite the first equation of system (1.2) as

ut = ∇ · a(x, t, u,∇u) + b(x, t, u,∇u) for all x ∈ Ω, t > 0, (3.2)

where

a(x, t, u,∇u) = ∇u− u
∇w
w

and b(x, t, u,∇u) = αuF (w)− au− buσ.

This along with (1.3), (3.1) and Young’s inequality gives some constants C3, C4, C5 > 0 such that

a(x, t, u,∇u)∇u = |∇u|2 − u

w
∇w · ∇u ≥ 1

2
|∇u|2 − C3,

|a(x, t, u,∇u)| ≤ |∇u|+ C4, |b(x, t, u,∇u)| ≤ C5.

Applying the regularity result in [24] to (3.2), we get some constants ϑ1 ∈ (0, 1) and C6 > 0 such
that

∥u∥
Cϑ1,

ϑ1
2 (Ω×[t,t+1])

6 C6 for all t >
1

2
.

Similarly, the regularity of w can be obtained. This combined with the Schauder estimate yields
the desired result on u and w. �

Our proof is based on the Lyapunov functional method. For clarity, we define two functionals
and analyze their basic properties which shall be used later.

Given a positive number ϖ, let ψϖ : (0,∞) → R defined by

ψϖ(η) :=

∫ η

ϖ

F (s)− F (ϖ)

F (s)
ds, η > 0. (3.3)

Then ψϖ is convex with ψϖ(ϖ) = ψ′
ϖ(ϖ) = 0, which implies ψϖ(η) ≥ 0 for all η > 0. Choosing

F (s) = s for any s ≥ 0 in (3.3), we obtain

φϖ(η) := ψϖ(η) = η −ϖ −ϖ ln
η

ϖ
, η > 0. (3.4)

Similarly, it holds that φϖ is convex with φϖ(ϖ) = φ′
ϖ(ϖ) = 0, which implies φϖ(η) ≥ 0 for all

η > 0.
To study the large time behavior of solutions, we split our analysis into two cases: αF (K) > a

and αF (K) ≤ a below.

3.1. Case of co-existence: αF (K) > a. As mentioned above, there exist three possible ho-
mogeneous steady states (0, 0), (0,K) and (u∗, w∗), where u∗ and w∗ are defined in (1.7). In
this situation, we shall prove the co-existence steady state (u∗, w∗) is global asymptotically stable
under some extra conditions. We further show the convergence rate is exponential if σ ≥ 2 and
algebraic if 1 ≤ σ < 2. To this end, we present an inequality below which is a direct consequence
of [33, Lemma 3.5].
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Lemma 3.2. Let

m :=

{
2

3−σ , if σ ∈ (1, 2),

2, if σ ∈ [2,+∞).

If u ∈ L1(Ω), then for any constant u∗ > 0, there exist a constant C > 0 such that

∥u− u∗∥2Lm(Ω) ≤ C

∫
Ω

(
uσ−1 − uσ−1

∗
)
(u− u∗) for all t > 0.

For any nonnegative continuous functions u,w : Ω → (0,∞), we define an energy functional of
(1.2) as follows:

F(u,w) =

∫
Ω
φu∗(u) + α

∫
Ω
ψw∗(w), (3.5)

where φu∗(u) is defined in (3.4) and ψw∗(w) is given in (3.3). Simple calculus implies F is
non-increasing in t as shown in the following lemma.

Lemma 3.3. If αF (K) > a, β > β0 and (1.8) holds, then there exists a constant C > 0 such
that

d

dt
F(u,w) + C

{(∫
Ω
(u− u∗)

m

) 2
m

+

∫
Ω
(w − w∗)

2

}
≤ 0 for all t > 0, (3.6)

where F is defined in (3.5) and m is defined in Lemma 3.2. Moreover, there exists a constant
C > 0 such that ∫ +∞

0

(∫
Ω
(u− u∗)

m

) 2
m

+

∫ +∞

0

∫
Ω
(w − w∗)

2 ≤ C. (3.7)

Proof. Using equations in (1.2) and integration by parts yield

d

dt
F(u,w) =

∫
Ω
ut − u∗

∫
Ω

ut
u

+ α

∫
Ω
wt − αF (w∗)

∫
Ω

wt

F (w)

=

∫
Ω
u
(
αF (w)− a− buσ−1

)
+ α

∫
Ω

(
−uF (w) + βw

(
1− w

K

))
− u∗

∫
Ω

|∇u|2

u2
+ χu∗

∫
Ω

∇u · ∇w
uw

− u∗

∫
Ω

(
αF (w)− a− buσ−1

)
− αF (w∗)

∫
Ω

F ′(w)|∇w|2

F 2(w)
− αF (w∗)

∫
Ω

(
−u+

βw
(
1− w

K

)
F (w)

)

=

∫
Ω
(u− u∗)

(
αF (w)− a− buσ−1

)
+ α

∫
Ω
(F (w)− F (w∗))

(
−u+

βw
(
1− w

K

)
F (w)

)

− u∗

∫
Ω

|∇u|2

u2
+ χu∗

∫
Ω

∇u · ∇w
uw

− αF (w∗)

∫
Ω

F ′(w)w2

F 2(w)

|∇w|2

w2

=−b
∫
Ω
(u− u∗)(u

σ−1 − uσ−1
∗ )︸ ︷︷ ︸

I1

+α

∫
Ω
(F (w)− F (w∗))

(
βw
(
1− w

K

)
F (w)

−
βw∗

(
1− w∗

K

)
F (w∗)

)
︸ ︷︷ ︸

I2

− u∗

∫
Ω

|∇u|2

u2
+ χu∗

∫
Ω

∇u · ∇w
uw

− αF (w∗)

∫
Ω

F ′(w)w2

F 2(w)

|∇w|2

w2︸ ︷︷ ︸
I3

.

(3.8)

We first estimate I3 which can be written as I3 = XAXT with X =
(∇u

u ,
∇w
w

)
and matrix A

defined by

A =

[
u∗ −χu∗

2

−χu∗
2 αF (w∗)

F ′(w)w2

F 2(w)

]
.
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Noting (1.8), we have

αu∗F (w∗)
F ′(w)w2

F 2(w)
− χ2u2∗

4
≥ 0,

which ensures A is semi-positive definite. Now, we estimate the terms I1 and I2. Thanks to
Lemma 3.2, we find a constant C1 > 0 such that

I1 ≤ − b

C1
∥u− u∗∥2Lm(Ω) . (3.9)

By the mean value theorem, we have

I2 = α

∫
Ω
F ′(ξ1)ϕ

′(ξ2)(w − w∗)
2 ≤ α min

w≤s≤w
F ′(s) max

w≤s≤w
|ϕ′(s)|

∫
Ω
(w − w∗)

2, (3.10)

where ξ1 and ξ2 are between w and w∗ and ϕ is defined in (1.5). Substituting (3.9) and (3.10)
into (3.8) and using the semi-positive definite property of A, we get (3.6). Moreover, (3.7) is an
immediate consequence of integrating (3.6) with respect to time. �

Now we are ready to prove Theorem 1.2-(1).

Proof of Theorem 1.2-(1). We divide the proof into four steps.
Step 1: We claim

∥u(·, t)− u∗∥L∞(Ω) → 0 and ∥w(·, t)− w∗∥L∞(Ω) → 0 as t→ +∞.

Indeed, according to Lemma 3.1, ∥u(·, t)− u∗∥Lm(Ω) and ∥w(·, t)− w∗∥L2(Ω) are uniformly con-

tinuous. Thus from (3.7) in Lemma 3.3 and Barbǎlet’s Lemma [2], we get

∥u(·, t)− u∗∥Lm(Ω) → 0 and ∥w(·, t)− w∗∥L2(Ω) → 0 as t→ +∞. (3.11)

Invoking Lemma 3.1 again, we can choose C1 > 0 such that

∥u− u∗∥W 1,∞(Ω) + ∥w − w∗∥W 1,∞(Ω) ≤ C1 for all t > 1, (3.12)

which along with the Gagliardo-Nirenberg inequality provides a constant C2 > 0 such that

∥u− u∗∥L∞(Ω) ≤C2∥u− u∗∥
n

n+m

W 1,∞(Ω)
∥u− u∗∥

m
n+m

Lm(Ω) ≤ C2C
n

n+m

1 ∥u− u∗∥
m

n+m

Lm(Ω).

Noticing (3.11), we get ∥u−u∗∥L∞(Ω) → 0 as t→ +∞. Similarly, it follows that ∥w−w∗∥L∞(Ω) →
0 as t→ +∞.

Step 2: We assert that there exist some constants C3, C4 > 0 and T ∗ > 1 satisfying

C3

∫
Ω
(u− u∗)

2 ≤
∫
Ω
φu∗(u) ≤ C4

∫
Ω
(u− u∗)

2 (3.13)

and

C3

∫
Ω
(w − w∗)

2 ≤
∫
Ω
ψw∗(w) ≤ C4

∫
Ω
(w − w∗)

2, for all t > T ∗. (3.14)

Actually, noting the definition of ψw∗(w), we use L’Hôpital’s rule to get

lim
w→w∗

ψw∗(w)

(w − w∗)2
= lim

w→w∗

ψ′
w∗(w)

2(w − w∗)
= lim

w→w∗

ψ′′
w∗(w)

2
=
ψ′′
w∗(w∗)

2
=
F ′(w∗)

2F (w∗)
,

which gives a constant ε > 0 such that for all |w − w∗| 6 ε

F ′(w∗)

4F (w∗)
(w − w∗)

2 6 ψw∗(w) 6
F ′(w∗)

F (w∗)
(w − w∗)

2. (3.15)

Utilizing the claim in step 1, we get some constant T ∗ > 1 satisfying

∥w − w∗∥L∞(Ω) < ε for all t > T ∗

which along with (3.15) implies (3.14). Similarly, we can get (3.13).
Step 3: If σ ≥ 2, then m = 2. From (3.13) and (3.14), it follows that 1

C4
min{1, 1α}F(u,w) ≤∫

Ω(u− u∗)
2 +

∫
Ω(w−w∗)

2. Then by (3.6), we have d
dtF(u,w) + C

C4
min{1, 1α}F(u,w) ≤ 0, which

alongside the Grönwall inequality yields some constants C5, C6 > 0 such that

F(u,w) ≤ C5e
−C6t for all t > T ∗.
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This together with (3.13) and (3.14) gives a constant C7 > 0 fulfilling∫
Ω
(u− u∗)

2 +

∫
Ω
(w − w∗)

2 ≤ C7e
−C6t for all t > T ∗.

Applying the Gagliardo-Nirenberg inequality and (3.12), one can find a constant C8 > 0 such
that

∥u− u∗∥L∞(Ω) ≤ C8∥u− u∗∥
n

n+2

W 1,∞(Ω)
∥u− u∗∥

2
n+2

L2(Ω)
≤ C8C

n
n+2

1 C
1

n+2

7 e−
C6
n+2

t.

which gives the decay rate of ∥u− u∗∥L∞(Ω). Similarly, the decay rate of ∥w − w∗∥L∞(Ω) can be
obtained.

Step 4: If 1 < σ < 2, then 1 < m < 2. By (3.12), (3.13) and (3.14), we have

F
2
m (u,w) ≤C

2
m
4

{∫
Ω
(u− u∗)

2 + α

∫
Ω
(w − w∗)

2

} 2
m

≤2
2
mC

2
m
4 (1 + α

2
m )

{(∫
Ω
(u− u∗)

2

) 2
m

+

(∫
Ω
(w − w∗)

2

) 2
m

}

≤2
2
mC

2
m
4 (1 + α

2
m )C

2(2−m)
m

1

(
1 + |Ω|

2−m
m

){(∫
Ω
(u− u∗)

m

) 2
m

+

∫
Ω
(w − w∗)

2

}
which along with (3.6) gives some constant C9 > 0 such that

d

dt
F(u,w) + C9F

2
m (u,w) ≤ 0. (3.16)

Due to 2
m > 2, applying the comparison of ordinary differential inequality to (3.16), we find some

constant C10 > 0 such that

F(u,w) ≤ C10(t+ 1)−
m

2−m for all t > T ∗,

which along with (3.13) and (3.14) yields a constant C11 > 0 so that∫
Ω
(u− u∗)

2 +

∫
Ω
(w − w∗)

2 ≤ C11(t+ 1)−
m

2−m for all t > T ∗.

Similarly, utilizing the Gagliardo-Nirenberg inequality and (3.12) as in step 3, we get the decay
rates of ∥u− u∗∥L∞(Ω) and ∥w − w∗∥L∞(Ω). �

3.2. Case of prey-only: αF (K) ≤ a. In this case, we know there exist two possible homoge-
neous steady states (0, 0) and (0,K). In this section, we shall show that the steady state (0,K)
is global asymptotically stable, where the convergence rate is exponential if αF (K) < a and
algebraic if αF (K) = a. For any nonnegative continuous functions u,w : Ω → (0,∞), we define
an energy functional of system (1.2):

Gξ(u,w) =

∫
Ω
u+ ξ

∫
Ω
ψK(w), (3.17)

where ξ > 0 is a constant satisfying{
α < ξ < a

F (K) , if αF (K) < a

ξ = α, if αF (K) = a

and ψK(w) is given in (3.3). We show Gξ is non-increasing in t.

Lemma 3.4. Let β > β0. If αF (K) < a, then there exist some constant C > 0 such that

d

dt
Gξ(u,w) + C

{∫
Ω
u+

∫
Ω
uσ +

∫
Ω
(w −K)2

}
≤ 0 for all t > 0. (3.18)

If αF (K) = a, then we can find a constant C > 0 such that

d

dt
Gα(u,w) + C

{∫
Ω
uσ +

∫
Ω
(w −K)2

}
≤ 0 for all t > 0, (3.19)
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where Gα is defined in (3.17). Moreover, there exists a constant C > 0 such that∫ +∞

0

∫
Ω
uσ +

∫ +∞

0

∫
Ω
(w −K)2 ≤ C. (3.20)

Proof. If αF (K) < a, we can choose ξ > α such that

αF (K) < ξF (K) < a. (3.21)

Using equations in (1.2) alongside integration by parts, we have

d

dt
Gξ(u,w) =

∫
Ω
ut + ξ

∫
Ω
wt − ξF (K)

∫
Ω

wt

F (w)

=

∫
Ω
u(αF (w)− a− buσ−1) + ξ

∫
Ω

(
−uF (w) + βw

(
1− w

K

))
− ξF (K)

∫
Ω

F ′(w)|∇w|2

F 2(w)
− ξF (K)

∫
Ω

(
−u+

β
(
1− w

K

)
F (w)

)

=− (ξ − α)

∫
Ω
uF (w) + ξ

∫
Ω
(F (w)− F (K))

β
(
1− w

K

)
F (w)

− (a− ξF (K))

∫
Ω
u− b

∫
Ω
uσ − ξF (K)

∫
Ω

F ′(w)|∇w|2

F 2(w)
.

(3.22)

By the mean value theorem, we have

ξ

∫
Ω
(F (w)− F (K))

β
(
1− w

K

)
F (w)

=− ξβ

K

∫
Ω

F ′(ζ)(w −K)2

F (w)

≤− ξβ

KF (w)
min

w≤s≤w
F ′(s)

∫
Ω
(w −K)2,

(3.23)

where ζ is between w and K. Inserting (3.23) into (3.22), utilizing ξ −α > 0 and a− ξF (K) > 0
due to (3.21) and noticing (1.3), we obtain (3.18). If αF (K) = a, then we can choose ξ = α to
obtain (3.19) similarly. Furthermore, (3.20) can be derived by integrating (3.18) and (3.19) with
respect to time. �

Now, using Lemma 3.4, we are in a position to prove Theorem 1.2-(2).

Proof of Theorem 1.2-(2). We shall prove the assertion in three steps.
Step 1: We claim

∥u(·, t)∥L∞(Ω) → 0 and ∥w(·, t)−K∥L∞(Ω) → 0 as t→ +∞.

Indeed, by Lemma 3.1, we see ∥u(·, t)∥Lσ(Ω) and ∥w(·, t)−K∥L2(Ω) are uniformly continuous.

Thus we get from (3.20) in Lemma 3.4 and Barbǎlet’s Lemma [2]

∥u(·, t)∥Lσ(Ω) → 0 and ∥w(·, t)−K∥L2(Ω) → 0 as t→ +∞. (3.24)

Invoking Lemma 3.1, we can choose C1 > 0 such that

∥u∥W 1,∞(Ω) + ∥w −K∥W 1,∞(Ω) ≤ C1 for all t > 1, (3.25)

which along with the Gagliardo-Nirenberg inequality provides a constant C2 > 0 such that

∥u∥L∞(Ω) ≤C2∥u∥
n

n+σ

W 1,∞(Ω)
∥u∥

σ
n+σ

Lσ(Ω) ≤ C2C
n

n+σ

1 ∥u∥
σ

n+σ

Lσ(Ω).

Thanks to (3.24), we prove the convergence of ∥u∥L∞(Ω). Similarly, the convergence of ∥w −
K∥L∞(Ω) can be gained.

Step 2: If αF (K) < a, then similar to Step 2 in the proof of Theorem 1.2-(1), we obtain some
constants C3, C4 > 0 and T∗ > 1 satisfying

C3

∫
Ω
(w −K)2 ≤

∫
Ω
ψK(w) ≤ C4

∫
Ω
(w −K)2, for all t > T∗, (3.26)
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which along with Lemma 3.4 yields a constant C5 > 0 such that

d

dt
Gξ(u,w) + C5Gξ(u,w) ≤ 0.

Therefore, by the Grönwall inequality, we can find a constant C6 > 0 such that

Gξ(u,w) ≤ C6e
−C5t,

which together with (3.26) yields a constant C7 > 0 fulfilling∫
Ω
u+

∫
Ω
(w −K)2 ≤ C7e

−C3t for all t > T∗.

By the Gagliardo-Nirenberg inequality and (3.25), we find a constant C8 > 0 such that

∥u∥L∞(Ω) ≤ C8∥u∥
n

n+1

W 1,∞(Ω)
∥u∥

1
n+1

L1(Ω)
≤ C8C

n
n+1

1 C
1

n+1

7 e−
C3
n+1

t (3.27)

and

∥w −K∥L∞(Ω) ≤C8∥w −K∥
n

n+2

W 1,∞(Ω)
∥w −K∥

2
n+2

L2(Ω)

≤C8C
n

n+2

1 C
1

n+2

7 e−
C3
n+2

t for all t > T∗.

(3.28)

Therefore, the convergence rates of u and w are obtained.
Step 3: If αF (K) = a, thanks to the Hölder inequality and (3.25), we find∫

Ω
u ≤ |Ω|

σ−1
σ

(∫
Ω
uσ
) 1

σ

and ∫
Ω
(w −K)2 ≤ C

2(σ−1)
σ

1 |Ω|
σ−1
σ

(∫
Ω
(w −K)2

) 1
σ

.

This along with the fact (3.26) implies that for any t > T∗

Gσ
α(u,w) ≤

(∫
Ω
u+ αC4

∫
Ω
(w −K)2

)σ

≤2σ
(∫

Ω
u

)σ

+ 2σασCσ
4

(∫
Ω
(w −K)2

)σ

≤2σ|Ω|σ−1(1 + ασCσ
4C

2(σ−1)
1 )

(∫
Ω
uσ +

∫
Ω
(w −K)2

)
.

Hence, noting Lemma 3.4, we get some constant C9 > 0 so that

d

dt
Gα(u,w) + C9Gσ

α(u,w) ≤ 0,

which subject to the fact σ > 1 gives some constant C10 > 0 satisfying

Gα(u,w) ≤ C10(t+ 1)−
1

σ−1 for all t > T∗. (3.29)

Similar to the derivation of (3.27) and (3.28), we use (3.26), (3.29) and the Gagliardo-Nirenberg
inequality to get some constants C11, C12 > 0 so that

∥u(·, t)∥L∞(Ω) + ∥w(·, t)−K∥L∞(Ω) ≤ C11(t+ 1)−C12 for all t > T∗.

This finishes the proof of Theorem 1.2-(2). �
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Appendix

We show there exists a unique solution (x, y) solving the following equations:{
αF (y)− a− bxσ−1 = 0,

xF (y)− βy
(
1− y

K

)
= 0,

(A.1)

where the function F and parameters are the same as those in (1.2).
Step 1: Existence. We define a function G : [0,K] → R by

G(y) = αF (y)− a− bϕσ−1(y),

where ϕ is defined in (1.5). ThenG is continuous in [0,K] which along with the simple observations

G(0) = −a− bϕσ−1(0) < 0, G(K) = αF (K)− a > 0

gives some constant y0 ∈ (0,K) such that G(y0) = 0. Let

x0 =
βy0

(
1− y0

K

)
F (y0)

, (A.2)

then (x0, y0) satisfies (A.1).
Step 2: Uniqueness. Simple calculus implies for any y ∈ (0,K)

G′(y) = αF ′(y)− b(σ − 1)ϕσ−2(y)ϕ′(y).

Together with assumption (1.6), this implies for any y ∈ (0,K)

G′(y) > 0.

Therefore, we get the uniqueness of y0. The uniqueness of x0 is obvious by (A.2).
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