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Abstract. In this paper, we considered a class of m-point boundary-value

problem of fractional differential equations at resonance with p-Laplacian op-
erator in the following:{

Dβ
0+
ϕp(Dα

0+
u(t)) = f(t, u(t), Dα−2

0+
u(t), Dα−1

0+
u(t), Dα

0+
u(t)), t ∈ (0, 1),

u(0) = u′(0) = Dα
0+
u(0) = 0, Dα−2

0+
u(1) =

∑m−2
i=1 aiD

α−2
0+

u(ηi),

where 2 < α ≤ 3, η1 < η2 < · · · < ηm−2, 0 < β ≤ 1, 3 < α + β ≤ 4,∑m−2
i=1 aiηi = 1, Dα

0+
denote the Riemann-Liouville fractional derivative,

ϕp(s) = |s|p−2s is p-Laplacian operator. The existence of solutions to above
problem is obtained by using the extension of Mawhin’s continuation theorem.

It is note that our method dropped a usual condition in the process of inves-

tigating above problem. So, in some sense, we got a new result under weaker
condition than previous ones[8].

1. Introduction

In the present paper, we investigated a fractional m-point boundary value prob-
lem with p-Laplacian operator in the following{

Dβ
0+ϕp(D

α
0+u(t)) = f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t)), t ∈ (0, 1),

u(0) = u′(0) = Dα
0+u(0) = 0, Dα−2

0+ u(1) =
∑m−2
i=1 aiD

α−2
0+ u(ηi),

(1.1)

where 2 < α ≤ 3, 0 < β ≤ 1, 3 < α + β ≤ 4, 0 < η1 < · · · < ηi < · · · < ηm−2 < 1,

ai ∈ R,
∑m−2
i=1 aiηi = 1, ϕp(s) = |s|p−2s, 1 < p, 1/p + 1/q = 1, ϕp is invertible

and ϕq is its inverse operator, Dα
0+ is Riemann-Liouville fractional derivative, f :

[0, 1] × R4 → R is continuous. Moreover, FBVP (1.1) happens to be at resonance
because the following problem{

Dβ
0+ϕp(D

α
0+u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = Dα
0+u(0) = 0, Dα−2

0+ u(1) =
∑m−2
i=1 aiD

α−2
0+ u(ηi)

has a solution x(t) = ctα−1, where c ∈ R. In the passing decades, fractional
calculus became a very important method for many fields such as control theory,
biology,etc(see [1, 3, 10, 11]). Many scholars have paid more attention to it and
gained a few achievement.

In addition, the turbulent flow in a porous medium is a very important mechanics
problem. Leibenson [4] firstly introduced the p-Laplacian equation which is

(φp(x
′(t)))′ = f(t, x(t), x′(t)), (1.2)
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where φp(s) = |s|p−2s, p > 1.
Furthermore, there are a few articles which consider fractional differential equa-

tion at resonance with p-Laplacian. For example, in [8], Shen and Liu considered
the following problem{

Dβ
0+ϕp(D

α
0+u(t)) = f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t)), t ∈ (0, 1),
u(0) = u′(0) = Dα

0+u(0) = 0, Dα−1
0+ u(1) =

∑m
i=1 σiD

α−1
0+ u(ηi),

(1.3)

where 2 < α ≤ 3, 0 < β ≤ 1, 3 < α + β ≤ 4, ηi ∈ (0, 1), σi ∈ R,
∑m
i=1 σi = 1,

1 < m,m ∈ N . The author[[8]] used the condition

∆ =
1

Γ(β + 1)q−1(qβ − β + 1)
(1−

m∑
i=1

σiη
qβ−β+1
i ) 6= 0.

It is the purpose of this paper to show that the assumption like above condition
1is not necessary for this class of differential equations. For the sake of better
illustrating the conclusion, we take the following boundary value problem (1.1)
which differ from (4.1). So, in some sense, our paper generalize some results(see[8]).

2. Preliminaries

Let X and Y be Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. We
call that a operator

M |domM∩X : X ∩ domM → Y,

is quasi-linear if

(i) ImM is a closed subset of Y ,
(ii) kerM := {u ∈ X ∩ domM : Mu = 0} is linearly homeomorphic to Rn,

n ∈ N.

Let X1 = kerM , X2 be the complement space of X1 in X, i.e., X = X1 ⊕X2.
Similarly, suppose Y1 be a subspace of Y , and Y2 a complement space of Y1 in Y .
Suppose P : X → X1 be a projector, Q : Y → Y1 be a semi-projector.

Let Nλ : Ω → Y , λ ∈ [0, 1] is a continuous operator. Let Σλ = {u ∈ Ω : Mu =
Nλu}. Nλ is said to be M -compact in Ω if there is a Y1 ⊂ Y with dimY1 = dimX1

and an operator R : Ω× [0, 1]→ X continuous and compact such that for λ ∈ [0, 1],

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Y, (2.1)

QNλx = θ, λ ∈ (0, 1)⇔ QNx = θ, (2.2)

R(·, λ) |Σλ= (I − P ) |Σλ (2.3)

and R(·, 0) is the zero operator,

M [P +R(·, λ)] = (I −Q)Nλ. (2.4)

Lemma 2.1. [6] Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two Banach spaces, and Ω ⊂ X
an open and bounded nonempty set. Suppose M : X∩domM → Y be a quasi-linear
operator and Nλ : Ω→ Y , λ ∈ [0, 1] be M -compact in Ω. Moreover, if the following
conditions hold

(i) Mu 6= Nλu for all (u, λ) ∈ (domM ∩ ∂Ω)× (0, 1),
(ii) QNu 6= 0 for all u ∈ ∂Ω ∩ kerM ,

(iii) deg(JQN, kerM ∩Ω, 0) 6= 0, where J : ImQ→ kerM is a homeomorphism
with J(θ) = θ and N = N1,

then the equation Mu = Nu has at least one solution in domM ∩ Ω.
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Definition 2.2. [6] Let X be a Banach space and X1 ⊂ X is a subspace. A mapping
Q : X → X1 is a semi-projector, if Q satisfies

(i)Q2x = Qx, ∀x ∈ X,
(ii)Q(µx) = µQx, ∀x ∈ X, µ ∈ R.

Definition 2.3. [10] The Riemann-Liouville fractional integral of order α > 0 of a
function u is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided that the right side integral is point-wise defined on (0,+∞).

Definition 2.4. [10] The Riemann-Liouville fractional derivative of order α > 0 of
a function u is given by

Dα
0+u(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

u(s)

(t− s)α−n+1
ds,

provided that the right side integral is pointwise defined on (0,+∞), here n is the
smallest integer greater than or equal to α.

Lemma 2.5. [10] Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative
of order α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where

ci =

(
In−α0+ x(t)

)(n−i)∣∣
t=0

Γ(α− i+ 1)
,

here n is the smallest integer greater than or equal to α.

Lemma 2.6. [10] Suppose u(t) ∈ C[0, 1] and 0 ≤ β ≤ α, then Dβ
0+I

α
0+u(t) =

Iα−β0+ u(t).

Lemma 2.7. [10] Let α > 0 and u ∈ C(0, 1) ∩ L1(0, 1). Then the differential
equation

Dα
0+u(t) = 0

has a solution u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, . . . , n, where

n− 1 < α < n.

Lemma 2.8. There exists k ∈ {0, 1, . . . ,m−2} satisfies
∑m−2
i=1 aiη

c+k(q−1)
i 6= 1 for

∀ c > 0 and q > 1.

Proof. Suppose the conclusion is not true, firstly, we have
ηc1 ηc2 . . . ηcm−2

η
c+(q−1)
1 η

c+(q−1)
2 . . . η

c+(q−1)
m−2

...
...

...

η
c+(m−2)(q−1)
1 η

c+(m−2)(q−1)
2 . . . η

c+(m−2)(q−1)
m−2




a1

a2

...
am−2

 =


1
1
...
1

.
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It is equal to
ηc1 ηc2 . . . ηcm−2 1

η
c+(q−1)
1 η

c+(q−1)
2 . . . η

c+(q−1)
m−2 1

...
...

...
...

η
c+(m−3)(q−1)
1 η

c+(m−3)(q−1)
2 . . . η

c+(m−3)(q−1)
m−2 1

η
c+(m−2)(q−1)
1 η

c+(m−2)(q−1)
2 . . . η

c+(m−2)(q−1)
m−2 1




a1

a2

...
am−2

−1

 =


0
0
...
0
0

.
(2.5)

Secondly, ∣∣∣∣∣∣∣∣∣∣∣∣

ηc1 ηc2 . . . ηcm−2 1

η
c+(q−1)
1 η

c+(q−1)
2 . . . η

c+(q−1)
m−2 1

...
...

...
...

η
c+(m−3)(q−1)
1 η

c+(m−3)(q−1)
2 . . . η

c+(m−3)(q−1)
m−2 1

η
c+(m−2)(q−1)
1 η

c+(m−2)(q−1)
2 . . . η

c+(m−2)(q−1)
m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Then, one has∣∣∣∣∣∣∣∣∣∣∣∣

ηc1 ηc2 . . . ηcm−2 1

η
c+(q−1)
1 η

c+(q−1)
2 . . . η

c+(q−1)
m−2 1

...
...

...
...

η
c+(m−3)(q−1)
1 η

c+(m−3)(q−1)
2 . . . η

c+(m−3)(q−1)
m−2 1

η
c+(m−2)(q−1)
1 η

c+(m−2)(q−1)
2 . . . η

c+(m−2)(q−1)
m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣

= ηc1η
c
2 . . . η

c
m−2

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1

ηq−1
1 ηq−1

2 . . . ηq−1
m−2 1

...
...

...
...

η
(m−3)(q−1)
1 η

(m−3)(q−1)
2 . . . η

(m−3)(q−1)
m−2 1

η
(m−2)(q−1)
1 η

(m−2)(q−1)
2 . . . η

(m−2)(q−1)
m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

So, ∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1

ηq−1
1 ηq−1

2 . . . ηq−1
m−2 1

...
...

...
...

η
(m−3)(q−1)
1 η

(m−3)(q−1)
2 . . . η

(m−3)(q−1)
m−2 1

η
(m−2)(q−1)
1 η

(m−2)(q−1)
2 . . . η

(m−2)(q−1)
m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣
is Vandermonde Determinant and 0 < ηq−1

1 < ηq−1
1 < · · · < ηq−1

m−2 < 1 , it is well
known that the Vandermonde Determinant is not equal to zero, then∣∣∣∣∣∣∣∣∣∣∣∣

ηc1 ηc2 . . . ηcm−2 1

η
c+(q−1)
1 η

c+(q−1)
2 . . . η

c+(q−1)
m−2 1

...
...

...
...

η
c+(m−3)(q−1)
1 η

c+(m−3)(q−1)
2 . . . η

c+(m−3)(q−1)
m−2 1

η
c+(m−2)(q−1)
1 η

c+(m−2)(q−1)
2 . . . η

c+(m−2)(q−1)
m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0

by a similar way. This is a contradiction with (2.5), so we get the conclusion. �
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Remark. When q = 2, we can see that Lemma 3.2 in [9] is a particular result
of Lemma 2.8.

In the following, let X = {u|u,Dα−2
0+ u,Dα−1

0+ u,Dα
0+u ∈ C[0, 1]} with the usual

norm ‖u‖X = max{‖u‖∞, ‖Dα−2
0+ u‖∞ ‖Dα−1

0+ u‖∞, ‖Dα
0+u‖∞}, where ‖u‖∞ = maxt∈[0,1]

|u(t)|, and Y = C[0, 1] with the usual norm ‖y‖Y = ‖y‖∞.
Define the operator M : domM ⊂ X → Y by

Mu = Dβ
0+ϕp(D

α
0+u(t)), (2.6)

domM =
{
u ∈ X : Dβ

0+ϕp(D
α
0+u) ∈ Y, u(0) = u′(0) = Dα

0+u(0) = 0,

Dα−2
0+ u(1) =

m−2∑
i=1

aiD
α−2
0+ u(ηi)

}
.

(2.7)

Define the operator Nλ : X → Y , λ ∈ [0, 1],

Nλu(t) = λf(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)), t ∈ [0, 1],

so, FBVP(1.1) is equivalent to the abstract equation Mu = Nu, where N = N1.

3. Main result

In this section, we give the main results of this paper. First of all, we list the
following hypotheses.

(H1) There exist nonnegative functions a, b, c, d, e ∈ Y satisfying

|f(t, u, v, w, z))| ≤ a(t) + b(t)|u|p−1 + c(t)|v|p−1 + d(t)|w|p−1 + e(t)|z|p−1,

for all t ∈ [0, 1], (u, v, w, z) ∈ R4.
(H2) There exists a constant A > 0 satisfying∫ 1

0

(1− s)ϕq
( 1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, u, v, w, z)dτ
)
ds

−
m∑
i=1

ai

∫ ηi

0

(ηi − s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, u, v, w, z)dτ)ds 6= 0,

for all t ∈ [0, 1], (u, v, w, z) ∈ R4, |v|+ |w| > A.
(H3) There exists a constant B > 0 satisfying

c(1− λ)
C(f(t, ctα−1, cΓ(α)t, cΓ(α), 0)

C0
< 0, (3.1)

or

c(1− λ)
C(f(t, ctα−1, cΓ(α)t, cΓ(α), 0)

C0
> 0, (3.2)

for all |c| > B, c ∈ R. Where C(y) and C0 are defined in (3.7).

We give the main result of this paper.

Theorem 3.1. Let f : [0, 1]×R4 → R be continuous and the condition (H1)–(H3)
hold, then BVP (1.1) has at least one solution provided that

1

Γ(β + 1)

( (α+ 1)p−1

Γ(α+ 1)
p−1D‖b‖∞ +D‖c‖∞ +D‖d‖∞ + ‖e‖∞

)
< 1. (3.3)



6

To get the conclusion, we need the following Lemmas.

Lemma 3.2. The operator M : domM ∩X → Y is a quasi-linear, and

kerM = {u ∈ X : u(t) = ctα−1, ∀t ∈ [0, 1], c ∈ R}, (3.4)

ImM =
{
y ∈ Y :

∫ 1

0

(1− s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds

−
m−2∑
i=1

ai

∫ ηi

0

(ηi − s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds = 0
}
.

(3.5)

Proof. By Lemma 2.5 and Dβ
0+ϕp(D

α
0+u(t)) = 0, then

Dα
0+u(t) = ϕq(c0t

β−1).

so c0 = 0. Thus,

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3.

Combining with u(0) = u′(0) = 0 , we have c2 = c3 = 0. So, u(t) = c1t
α−1, c1 ∈ R.

i.e., (3.4) is satisfied.
Suppose y ∈ ImM , then there exists u ∈ domM satisfying

y(t) = Dβ
0+ϕp(D

α
0+u(t)).

Again, by Lemma 2.5, one has

u(t) = Iα0+ϕq(I
β
0+y(s)) + c1t

α−1

and

Dα−2
0+ u(t) = Dα−2

0+ Iα0+ϕq(I
β
0+y(s)) + c1Γ(α)t.

Combining with
∑m−2
i=1 aiηi = 1, one has∫ 1

0

(1− s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds

−
m−2∑
i=1

ai

∫ ηi

0

(ηi − s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds = 0. (3.6)

On the other hand, suppose y ∈ Y and satisfies (3.6). Let u(t) = Iα0+ϕq(I
β
0+y(t)),

we have u ∈ domM and Mu(t) = Dβ
0+ϕp(D

α
0+u(t)) = y(t). So y ∈ ImM , i.e. (3.5)

holds. From above statements, we know M is a quasi-linear operator. �

Lemma 3.3. Suppose Ω ⊂ X be an open and bounded set, then Nλ is M -compact
in Ω.

Proof. Define the projectors P : X → X1 and Q : Y → Y1 respectively by

Pu(t) = 1
Γ(α)D

α−1
0+ u(0)tα−1, t ∈ [0, 1],

Qy(t) = C(y)
C0

tk, t ∈ [0, 1],

where X1 = kerM,Y1 = {c tk, c ∈ R},
and we define a functional

C(y) = ϕp

(∫ 1

0

(1− s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds
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−
m−2∑
i=1

ai

∫ ηi

0

(ηi − s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds)
)

(3.7)

and a constant

C0 = ϕp

(∫ 1

0

(1− s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1τkdτ)ds

−
m−2∑
i=1

ai

∫ ηi

0

(ηi − s)ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1τkdτ)ds)
)

=
k!

Γ(β + k + 1)
·

(
1−

∑m−2
i=1 aiη

β(q−1)+2+k(q−1)
i

)p−1

((β + k)(q − 1) + 2)p−1((β + k)(q − 1) + 1)p−1
.

In fact, C0 = C(tk). Here k ∈ {0, 1, . . . ,m−2} satisfies
∑m−2
i=1 aiη

β(q−1)+2+k(q−1)
i 6=

1 which be as in lemma 2.8. Obviously, X1 = kerM = ImP and Y1 = ImQ. Thus,
we have dimY1 = dimX1 = 1. For any y ∈ Y , we get

Q2y =
C(Qy)

C0
tk =

C(y)

C2
0

C(tk)tk =
C(y)

C0
tk = Qy.

Hence, Q2 = Q, Q is a semi-projector and kerQ = ImM .

Let Ω ⊂ X be an open and bounded set with θ ∈ Ω. For each u ∈ Ω, we have
Q[(I − Q)Nλ(u)] = 0. Thus, (I − Q)Nλ(u) ∈ ImM = kerQ. Next, taking any
y ∈ ImM and noting Qy = 0, one get y ∈ (I −Q)Y . So, (2.2) holds.

Define R : Ω× [0, 1]→ X2 by

R(u, λ)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕq

( 1

Γ(β)

∫ s

0

(s− τ)β−1((I −Q)Nλu(τ))dτ
)
ds.

Firstly, We know R(u, λ) is continuous on Ω × [0, 1]. Moreover, for all u ∈ Ω,

there exists a constant L > 0 such that |Iβ0+(I −Q)Nλu(τ))| ≤ L, so R(Ω, λ),

Dα−2
0+ R(Ω, λ), Dα−1

0+ R(Ω, λ) and Dα
0+R(Ω, λ) are equicontinuous and uniformly

bounded. Thus, R : Ω× [0, 1]→ X2 is compact.
In fact, for u ∈ Ω, 0 < t1 < t2 ≤ 1, 2 < α ≤ 3, 0 < β ≤ 1, 3 < α+ β ≤ 4, we have

|R(u, λ)(t2)−R(u, λ)(t1)|

=
1

Γ(α)
|
∫ t2

0

(t2 − s)α−1ϕq(I
β
0+((I −Q)Nλu(τ)))ds

−
∫ t1

0

(t1 − s)α−1ϕq(I
β
0+((I −Q)Nλu(τ)))ds|

≤ ϕq(L)

Γ(α)
(

∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1)ds+

∫ t2

t1

(t2 − s)α−1ds)

=
ϕq(L)

Γ(α+ 1)
(tα2 − tα1 ),

∣∣Dα−2
0+ R(u, λ)(t2)−Dα−2

0+ R(u, λ)(t1)
∣∣
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= |
∫ t2

0

(t− s)ϕq(Iβ0+((I −Q)Nλu(τ)))ds−
∫ t1

0

(t− s)ϕq(Iβ0+((I −Q)Nλu(τ)))ds|

≤ ϕq(L)(

∫ t1

0

(t2 − s)− (t1 − s)ds+

∫ t2

t1

(t2 − s)ds)

=
ϕq(L)

2
(t22 − t21)

and

|Dα−1
0+ R(u, λ)(t2)−Dα−1

0+ R(u, λ)(t1)|

= |
∫ t2

0

ϕq(I
β
0+((I −Q)Nλu(τ)))ds−

∫ t1

0

ϕq(I
β
0+((I −Q)Nλu(τ)))ds|

≤ ϕq(L)(t2 − t1).

Since tα is uniformly continuous on [0, 1], soR(Ω, λ), Dα−2
0+ R(Ω, λ) andDα−1

0+ R(Ω, λ)

are equicontinuous. Similarly, Iβ0+((I −Q)Nλu(τ)) ⊂ C[0, 1] is equicontinuous

too. Because ϕq(s) is uniformly continuous on [−T, T ], we have Dα
0+R(Ω, λ) =

Iβ0+((I −Q)Nλ(Ω)) is equicontinuous. Thus, R : Ω× [0, 1]→ X2 is compact.

For each u ∈ Σλ, we have Dβ
0+ϕp(D

α
0+u(t)) = Nλ(u(t)) ∈ ImM . Thus,

R(u, λ)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1((I −Q)Nλu(τ))dτ)ds

=
1

Γ(α)

∫ t

0

(t− s)α−1ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1Dβ
0+ϕp(D

α
0+u(τ))dτ)ds,

Furthermore, one has

R(u, λ)(t) = u(t)− 1

Γ(α)
Dα−1

0+ u(0)tα−1 = (I − P )u(t).

Because R(u, 0)(t) is zero operator, so (2.3) holds. Moreover, for any u ∈ Ω,

M [Pu+R(u, λ)](t)

= M [
1

Γ(α)

∫ t

0

(t− s)α−1ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1((I −Q)Nλu(τ))dτ)ds

+
1

Γ(α)
Dα−1

0+ u(0)tα−1]

= (I −Q)Nλu(t),

which implies (2.4). So Nλ is M -compact in Ω. �

Lemma 3.4. Suppose (H1), (H2) hold, then the set

Ω1 =
{
u ∈ domM \ kerM : Mu = λNu, λ ∈ (0, 1)}

is bounded.

Proof. By lemma 2.5, one has

u(t) = Iα0+Dα
0+u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3,

where

ci =

(
In−α0+ x(t)

)(n−i)∣∣
t=0

Γ(α− i+ 1)
, i = 1, 2, 3.



9

Combining this with u(0) = u′(0) = 0, we get c1 = c2 = 0 and

c1 =
Dα−1

0+ x(0)

Γ(α)
.

‖u‖∞ = ‖Iα0+Dα
0+u+

Dα−1
0+ x(0)

Γ(α)
tα−1‖∞

≤ 1

Γ(α)

∫ t

0

(t− s)α−1ds|‖Dα
0+u‖∞ +

|Dα−1
0+ x(0)|
Γ(α)

≤ 1

Γ(α)
‖Dα−1

0+ u‖∞ +
1

Γ(α+ 1)
‖Dα

0+u‖∞.

Take any u ∈ Ω1, then Nu ∈ ImM = kerQ and QNu = 0 for all t ∈ [0, 1]. By
using (H2), there exists t0 ∈ [0, 1] such that |Dα−2

0+ u(t0)|+ |Dα−1
0+ u(t0)| ≤ A. Thus

Dα−1
0+ u(t) = Dα−1

0+ u(t0) +

∫ t

t0

Dα
0+u(t)dt, (3.8)

Dα−2
0+ u(t) = Dα−2

0+ u(t0) +

∫ t

t0

Dα−1
0+ u(t)dt, (3.9)

‖Dα−1
0+ u‖∞ ≤ A+ ‖Dα

0+u‖∞, (3.10)

‖Dα−2
0+ u‖∞ ≤ A+ ‖Dα−1

0+ u‖∞ ≤ 2A+ ‖Dα
0+u‖∞, (3.11)

‖u‖∞ ≤
1

Γ(α+ 1)
(α+ 1)‖Dα

0+u‖∞ + C̄, (3.12)

where C = A
Γ(α) . Combining with Mu = λNu and Dα

0+u(0) = 0, we obtain

ϕp(D
α
0+u(t)) = λIβ0+Nu(t).

From (H1) and λ ∈ (0, 1), one has

|ϕp(Dα
0+u(t))| ≤ 1

Γ(β)

∫ t

0

(t− s)β−1|f(s, u(s), Dα−2
0+ u(s), Dα−1

0+ u(s), Dα
0+u(s))|ds

+ d(s)|Dα−1
0+ u(s)|p−1 + e(s)|Dα

0+u(s)|p−1)ds

≤ 1

Γ(β + 1)
(‖a‖∞ + ‖b‖∞‖u‖p−1

∞ + ‖c‖∞‖Dα−2
0+ u‖p−1

∞

+ ‖d‖∞‖Dα−1
0+ u‖p−1

∞ + ‖e‖∞‖Dα
0+u‖p−1

∞
), ∀t ∈ [0, 1].

By the virtue of |ϕp(Dα
0+u(t))| = |Dα

0+u(t)|p−1 and the inequality (|a| + |b|)p ≤
B(|a|p + |b|p), where B = 2p−1 when p > 2 and B = 1 when 1 < p < 2, a, b ∈ R.
One has

‖Dα
0+u‖p−1

∞ ≤ 1

Γ(β + 1)
(‖a‖∞ + ‖b‖∞B

(α+ 1)p−1

Γ(α+ 1)p−1
‖Dα

0+u‖p−1
∞ + C1

+ ‖c‖∞B(C2 + ‖Dα
0+u‖p−1

∞ ) + ‖d‖∞B(C3 + ‖Dα
0+u‖p−1

∞ )

+ ‖e‖∞‖Dα
0+u‖p−1

∞ ),

where C1, C2, C3 are some constants. From (3.3), there exists a constant M1 > 0
satisfying

‖Dα
0+u‖∞ < M1. (3.13)
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Then, Ω1 is bounded. �

Lemma 3.5. Suppose (H2) holds, then the set Ω2 = {u ∈ kerM : Nu ∈ ImM} is
bounded.

Proof. For each u ∈ Ω2, we have u(t) = ctα−1 for all c ∈ R and QNu = 0. By using
(H2), there exists a t0 ∈ [0, 1] satisfying |Dα−1

0+ u(t0)| + |Dα−2
0+ u(t0)| ≤ A, which

implies |c| ≤ A
Γ(α)(1+t0) . Therefore, Ω2 is bounded. �

Define the isomorphism J : ImQ → kerM by J(ctk) = ctα−1, c ∈ R, for all
t ∈ [0, 1].

Lemma 3.6. Suppose (3.1) holds, then

Ω3 = {u ∈ kerM : −λu+ (1− λ)JQNu = 0, λ ∈ [0, 1]}

is bounded.

Proof. Suppose (3.1) holds, for u ∈ Ω3, we have u(t) = ctα−1 for c ∈ R. Then

λctα−1 = (1− λ)
C(f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)

C0
tα−1, (3.14)

where C(y) is defined in (3.7). If λ = 1, then c = 0. If λ 6= 1, in view of (3.1), one
has

c(1− λ)
C(f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)

C0
< 0, (3.15)

which contradicts to λc2 ≥ 0. i.e., Ω3 is bounded.
Suppose (3.2) holds, it is similar to proof

Ω3 = {u ∈ kerM : λu+ (1− λ)JQNu = 0, λ ∈ [0, 1]}

is bounded. �

Proof of Theorem 3.1. Assume that Ω is a bounded open set of X with ∪3
i=1Ωi ⊂ Ω.

By Lemma 3.3, Lemmas 3.4 and 3.5, we have N is M -compact on Ω,

(i) Mx 6= Nλx for each (u, λ) ∈ (domM ∩ ∂Ω)× (0, 1),
(ii) QNu 6= 0, for all u ∈ ∂Ω ∩ kerM .

Let H(u, λ) = λu+ (1− λ)JQN(u). By Lemma 3.6 we know H(u, λ) 6= 0 for each
u ∈ ∂Ω ∩ kerM. Thus, we have

deg(JQN |kerM ,Ω ∩ kerM, 0) = deg(H(·, 0),Ω ∩ kerM, 0)

= deg(H(·, 1),Ω ∩ kerM, 0)

= deg(I,Ω ∩ kerM, 0) 6= 0,

then (iii) of Lemma 2.1 is holds. Consequently, FBVP (1.1) have at least one
solution. �
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4. Conclusion

There are some articles which consider the boundary value problems of fractional
differential equation at resonance with p-Laplacian. For example, in [8], Shen and
Liu studied the following problem{

Dβ
0+ϕp(D

α
0+u(t)) = f(t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t), Dα

0+u(t)), t ∈ (0, 1),
u(0) = u′(0) = Dα

0+u(0) = 0, Dα−1
0+ u(1) =

∑m
i=1 σiD

α−1
0+ u(ηi),

(4.1)

where 2 < α ≤ 3, 0 < β ≤ 1, 3 < α + β ≤ 4, ηi ∈ (0, 1), σi ∈ R,
∑m
i=1 σi = 1,

1 < m,m ∈ N , ϕp(s) = |s|p−2s, 1 < p, 1/p + 1/q = 1. In this paper, the author
used the condition

∆ =
1

Γ(β + 1)q−1(qβ − β + 1)
(1−

m∑
i=1

σiη
qβ−β+1
i ) 6= 0.

Moreover, in other papers, the authors need the same assumption which similar to
above condition. In this paper, we considered the similar problems which do not
need the assumption like above condition. So, in some sense, our paper generalize
some results(see[8]).
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