Reference
Aagaard, K., Carmack, E. C. (1989) The role of sea ice and other fresh water in the arctic circulation. Journal of Geophysical Research , 94, pp. 14485–14498.
AIS SMWB: Automated information system for state monitoring of water bodies, URL: https://gmvo.skniivh.ru, reference date: 01.03.2018 (in Russian)
Ananicheva, M. (2005) Retreat of the glaciers of the northern and southern massifs of the Suntar-Hayat Mountains and the Chersky Range. InMaterials of glaciological research (Eds. Ananicheva M.D. & Koreisha M.M.), 99, pp. 18-25 (in Russian)
Arnell, N. W. (2005) Implications of climate change for freshwater inflows to the Arctic Ocean. Journal of Geophysical Research: Atmospheres , 110(D7), D07105, doi: 10.1029/2004JD005348
Bennett, J.R., Shaw, J.D., Terauds, A., Smol, J.P., Aerts, R., Bergstrom, D.M. … Possingham, H.P. (2015) Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Frontiers in Ecology and the Environment, 13(6), pp. 316–324, doi: 10.1890/140315
Bowling, L. C., Lettenmaier D. P. (2010) Modeling the effects of lakes and wetlands on the water balance of arctic environments. Journal of Hydrometeorology , 11, pp. 276–295.
Carey, S.K., Woo, M.K. (2000) The role of soil pipes as a slope runoff mechanism, subarctic Yukon, Canada. Journal of Hydrology , 233, pp. 206–222
Dankers, R., Christensen, O.B. (2005) Climate change impact on snow coverage, evaporation and river discharge in the sub-Arctic Tana Basin, Northern Fennoscandia. Climate Change , 69, pp. 367–392
Dodds, K., Gan, I., Howkins, A. (2010) The IPY-3: The International Geophysical Year (1957–1958). In The History of the International Polar Years (IPYs), doi: 10.1007/978-3-642-12402-0_10.
Endalamaw, A., Bolton, W. R., Young-Robertson, J. M., Morton, D., Hinzman, L., and Nijssen, B. (2017) Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem. Hydrology and Earth System Sciences , 21, pp. 4663-4680, https://doi.org/10.5194/hess-21-4663-2017
Fang, X., Pomeroy, J. W., Ellis, C. R., MacDonald, M. K., DeBeer, C. M., Brown, T. (2013) Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains.Hydrology and Earth System Sciences , 17, pp. 1635-1659,https://doi.org/10.5194/hess-17-1635-2013
Fang, X., Pomeroy, J. (2020). Diagnosis of future changes in hydrology for a Canadian Rockies headwater basin. Hydrology and Earth System Sciences , 24, pp. 2731-2754. 10.5194/hess-24-2731-2020.
Fang, X., Luo, S., Lyu, S. (2018). Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014.Theoretical and Applied Climatology . 10.1007/s00704-017-2337-9.
Garzman, B., Shamov, V. (2015) Field studies of runoff formation in the Far Eastern region based on the modern observation. Water resources management, 42, pp. 589-599. 10.7868/S0321059615060048 (in Russian)
Geocryology of the USSR: Eastern Siberia and the Far East (1989) Eds. Romanovsky, N.N., Gavrilov, A.V., Zaitsev, V.N. et. al. Nedra publishers, Moscow, p.515 (in Russian)
GLIMS and NSIDC (2005, updated 2017): Global Land Ice Measurements from Space glacier database. Compiled and made available by the international GLIMS community and the National Snow and Ice Data Center, Boulder CO, U.S.A. DOI:10.7265/N5V98602
Grave, N.A. (1959) Prior report on heat and moisture regimes of soil and rocks and heat exchange between them, 1958, the site of Suntar-Khayata , Obruchev Permafrost Institute of the Academy of Sciences, North-West branch, Yakutsk (in Russian)
Grave, N.A., Gavrilova, M.K., Gravis, G.F., Katasonov, E.M., Kliukin, N.K., Koreisha, G.F., Kornilov, B.A., Chistotinov, L.V. (1964)Freezing of the ground surface and glaciation of the Suntar-Hayat Range (Eastern Yakutia) . Science, Moscow, 141 p. (in Russian)
Grave, N.A., Koreisha, M.M. (1957) Interim scientific report on the work of the mountainous Suntar- Khayata glaciological and geocryological Station (program 3 IHY). Obruchev Permafrost Institute of the Academy of Sciences, North-West branch, Yakutsk (in Russian)
Grave, N.A., Koreisha, M.M. (1959) Report on the research of the Suntar-Khayata station, Part II. Obruchev Permafrost Institute of the Academy of Sciences, North-West branch, Yakutsk (in Russian)
Groisman, P. Ya., Bogdanova, E. G., Alexeev, V. A., Cherry, J. E., Bulygina, O. N. (2014) Impact of snowfall measurement deficiencies on quantification of precipitation and its trends over Northern Eurasia,Ice and Snow Journal, 2, pp. 29–43
Gusev E. M., Nasonova O. N., Jogan L. Ya., Kovalev E. E. (2008) Using the SWAP model of interaction between the underlying land surface and the atmosphere for calculating river runoff at high latitudes.Water resources , 35 (1), pp. 1-15 (in Russian)
Hinzman, L., Bettez, N., Bolton, W., Chapin III, F.S., Dyurgerov, M., Fastie, C., …Yoshikawa, K. (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions.Climatic Change , 72, pp. 251-298. doi:10.1007/s10584-005-5352-2
Hopkinson, C., Young, G.J. (1998) The effect of glacier wastage on the flow of the Bow River at Banff, Alberta, 1951-93. Hydrological Processes, 12, pp. 1745-62
Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Pang Q, Xiao Y, Li W, Qiao Y (2015) Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Science China Earth Sciences , 58(12), pp. 2309–2326
Hudson, C. E., Thompson, J. R. (2019) Hydrological modelling of climate change impacts on river flows in Siberia’s Lena River Basin and implications for the Atlantic Meridional Overturning Circulation.Hydrology Research , doi:10.2166/nh.2019.151
Hydrological Yearbook. Volume 8. Issue. 0-7. The basin of the Laptev and East-Siberian seas to the Kolyma river. Yakutsk Department of Hydrometeorology, 1983 (in Russian)
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (2014) Geneva, Switzerland, 151 pp.
Janowicz, J. R., Hedstrom, N., Pomeroy, J. W., Granger, R., Carey S. K. (2004) Wolf Creek Research basin water balance studies. InNorthern Research Basins Water Balance , Eds. Kane, D.L., D. Yang, IAHS Publication, 290, IAHS Press, Wallingford, pp. 195-204
Kendall, M. G. (1975) Rank Correlation Methods , Griffin, London
Koreisha, M.M. (1963) Materials of Glaciological Investigation. Suntar- Khayata. Obruchev Permafrost Institute of the Academy of Sciences, North-West branch, Yakutsk (in Russian)
Krogh, S. A., Pomeroy, J. W. (2019) Impact of future climate and vegetation on the hydrology of an Arctic headwater basin at the Tundra-Taiga transition. Journal of Hydrometeorology , 20, pp. 197-215, doi:10.1175/jhm-d-18-0187.1
Kuchment L. S., Gelfan A. N., Demidov A. I. (2000) The flow formation model for the catchments of the permafrost zone (on the example of the upper Kolyma River basin), Water resources , 27 (4), pp. 435-444 (in Russian)
Landscape map of the USSR (1985). Ed. Gudilin I. S. Ministry of Geology of the USSR. Scale 1:2500000 (in Russian)
Lebedeva, L. S., Semenova, O. M., Vinogradova, T. A. (2015) Calculation of the seasonal thawing depth in different landscapes of the Kolyma water-balance station by means of hudrological model “Hydrograph”. Part 2. Earth’s cryosphere , 19 (2), pp. 35-44
Lebedeva, L. S., Makarieva, O. M., Vinogradova, T. A. (2017) Peculiarities of water balance formation in mountain catchments of Northeastern Russia (a case study for the Kolyma water balance station),Russian Meteorology and hydrology , 4, pp. 90-101
Li, Z., Xu, Z., Shao, Q., Yang, J. (2009) Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrological Processes , 23, pp. 2744 - 2753. 10.1002/hyp.7371.
Lytkin, V.M. (2016) Dynamics of glaciers and rock glaciers in the Suntar-Khayata Range in the late Holocene. Ph.D Thesis. Melnikov Permafrost Institute Yakutsk (in Russian)
Makarieva О.М., Lebedeva L.S., Vinogradova T.A. (2020) Modelling of runoff formation processes at small mountain watersheds in the permafrost zone (by the data of the Kolyma Water Balance Station). Cryosphere of the Earth, XXIV, 1, pp. 43-56 DOI: 10.21782/KZ1560-7496-2020-1(43-56)
Makarieva, O., Nesterova, N., Lebedeva, L., Sushansky, S. (2017) Water-balance and hydrology database for a mountainous permafrost watershed in the up-streams of the Kolyma River, Russia - the Kolyma Water-Balance Station, 1948-1997. PANGAEA , https://doi.org/10.1594/PANGAEA.881731
Makarieva, O., Nesterova, N., Lebedeva, L., Sushansky, S. (2018a) Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948–1997, Earth System Science Data , 10, pp. 689-710. https://doi.org/10.5194/essd-10-689-2018
Makarieva, O., Nesterova, N., Sherstyukov, A. (2018b) Monthly hydro-climate database for the Yana and Indigirka Rivers basins, Northern Eurasia. PANGAEA , https://doi.org/10.1594/PANGAEA.892775
Makarieva, O., Shikhov, A., Ostashov, A., Nesterova, N. (2018c) Aufeis (naleds) of the North-East of Russia: GIS catalogue for the Indigirka River basin. PANGAEA,  https://doi.org/10.1594/PANGAEA.891036
Makarieva, O., Nesterova, N., Post, D. A., Sherstyukov, A., Lebedeva, L. (2019a) Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost. The Cryosphere , 13(6), pp. 1635–1659. doi: 10.5194/tc-13-1635-2019
Makarieva, O., Shikhov, A., Nesterova, N., Ostashov, A. (2019b) Historical and recent aufeis in the Indigirka River basin (Russia),Earth System Science Data , 11, pp. 409-420. https://doi.org/10.5194/essd-11-409-2019
Makarieva O.M., Nesterova N.V. (2020) Phase State of Precipitation as a Factor of Low Flow in the Yana and Indigirka River Basins. Russian Meteorology and Hydrology , 45 (4), pp. 276–282. DOI: 10.3103/S1068373920040081
Marsh, C. B., Pomeroy, J. W., Wheater, H. S. (2020). The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview.Geoscientific Model Development , 13(1), 225–247. doi:10.5194/gmd-13-225-2020
Mann, H. B. (1945) Nonparametric tests against trend.Econometrica , 13, pp. 245–259
McCartney, S.E., Carey, S.K., Pomeroy, J.W. (2006) Intra-basin variability of snowmelt water balance computations in a subarctic catchment. Hydrological Processes , 20, pp. 1001–1016. doi:10.1002/hyp.6125
Mikhailov, V. M. (2013) Floodplain taliks of North-East of Russia , Novosibirsk. Geo., 244 p. (in Russian)
Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., Lettenmaier, D. P. (2014) Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrology and Earth System Sciences , 18, pp. 787-802. doi:10.5194/hess-18-787-2014
Nijssen, B., O’Donnell, G. M., Hamlet, A. F., Lettenmaier, D. P. (2001) Hydrologic Sensitivity of Global Rivers to Climate Change.Climatic Change , 50(1/2), pp. 143–175. doi:10.1023/a:1010616428763
Nesterova, N., Makarieva, O., Post, D. (2019) Understanding hydrological processes at a remote mountainous continuous permafrost watershed in a changing environment. In 23rd International Congress on Modelling and Simulation , Canberra, ACT, Australia, 1 to 6 December 2019 mssanz.org.au/modsim2019, pp. 1181-1187
Ohmura, A. (1982) Evaporation from the surface of the Arctic Tundra on Axel Heiberg Island. Water Resources Research , 18(2), pp. 291– 300, doi:10.1029/WR018i002p00291
Pettitt, A. N. (1979) A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C , 28, pp. 126–135
Pohl, S., Marsh, P., Bonsal, B.R. (2006) Modeling the Impact of Climate Change on Runoff and Annual Water Balance of an Arctic Headwater Basin.Arctic , 60, pp. 173-186
Pomeroy, J.W., Essery, R.H., Toth, B. (2004) Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment. Annals of Glaciology , 38, pp. 195–201
Pomeroy J.W., Gray D.M., Brown T. et al. ( 2007) The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence. Hydrological Processes , 21, pp. 2650–2667.
Rasouli, K., Pomeroy, J. W., Whitfield, P. H. (2019) Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes? Hydrology and Earth System Sciences , 23(12), pp. 4933–4954. doi:10.5194/hess-23-4933-2019
Rasouli, K., Pomeroy, J. W., Janowicz, J. R., Carey, S. K., Williams, T. J. (2014) Hydrological sensitivity of a northern mountain basin to climate change. Hydrological Processes , 28(14), pp. 4191–4208. doi:10.1002/hyp.10244
Rawlins, M.A., Steele, M., Holland, M.M., Adam, J.C., Cherry, J.E., Francis, J.A., … Zhang, T. (2010) Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations.Journal of Climate , 23, pp. 5715–5737, doi:10.1175/2010JCLI3421.1
Reference Book on the Climate of the USSR. Issue 24. Yakut ASSR. Part IV. Humidity, atmospheric precipitation, snow cover (1968) Yakutsk Department for Hydrometeorology, Leningrad, Gidrometeoizdat, 352 p. (in Russian)
Schramm, I., Boike, J., Bolton, W. R., Hinzman, L. D. (2007) Application of TopoFlow, a spatially distributed 24 hydrological model, to the Imnavait Creek watershed, Alaska. Journal of Geophysical Research , 112, doi:10.1029/2006JG000326
Semenova, O., Beven, K. (2015a) Barriers to progress in distributed hydrological modelling. Hydrological Processes , 29, pp. 2074–2078
Semenova, O., Lebedeva, L., Vinogradov, Y. (2013) Simulation of subsurface heat and water dynamics, and runoff generation in mountainous permafrost conditions, in the Upper Kolyma River basin, Russia.Hydrogeology Journal , 21(1), pp. 107–119. doi:10.1007/s10040-012-0936-1
Semenova, O., Lebedeva, L., Volkova, N., Korenev, I., Forkel, M., Eberle, J., Urban, M. (2015b) Detecting immediate wildfire impact on runoff in a poorly-gauged mountainous permafrost basin.Hydrological Sciences Journal , 60. doi:10.1080/02626667.2014.959960
Semenova, O.,Vinogradov, Y., Vinogradova, T., Lebedeva, L. (2014) Simulation of Soil Profile Heat Dynamics and their Integration into Hydrologic Modelling in a Permafrost Zone. Permafrost and Periglacial Processes , 25 (4), pp. 257–269, doi:10.1002/ppp.1820
Shiklomanov, A. I., Lammers, R. B. (2013) Changing Discharge Patterns of High-Latitude Rivers. In Climate Vulnerability: Understanding and Addressing Threats to Essential Resources , 5, pp. 161–175, doi:10.1016/B978-0-12-384703-4.00526-8
Sokolov, B.L. (1975) Aufeises (naleds) and river runoff . Leningrad, Gidrometeoizdat, 190 p. (in Russian)
Spence, C., Kokelj, S. V., Ehsanzadeh E. (2011) Precipitation Trends Contribute to Streamflow Regime Shifts in Northern Canada, Cold Region Hydrology in a Changing Climate, IAHS Publication , 346
State Water Cadastre: Main hydrological characteristics (for 1971–1975 and the whole period of observation until 2007), Volume 17, Leno-Indigirsky district, Leningrad, Gidrometeoizdat (in Russian)
Stuefer, S. L., Arp, C. D., Kane, D. L., Liljedahl, A. K. (2017) Recent extreme runoff observations from coastal arctic watersheds in Alaska.Water Resources Research , 53, pp. 9145–9163. https://doi.org/10.1002/2017WR020567
Tarbeeva, A., Lebedeva, L., Efremov, V., Shamov, V., Makarieva, O. (2020) Water tracks in the lower Lena River basin. E3S Web Conferences , 163 04007, DOI: 10.1051/e3sconf/202016304007
Tananaev, N. I., Makarieva, O. M., Lebedeva, L. S. (2016) Trends in annual and extreme flows in the Lena River basin, Northern Eurasia.Geophysical Research Letters , 43, 20136, doi:10.1002/2016GL070796
Tetzlaff, D., Buttle, J., Carey, S., McGuire, K., Laudon, H. (2014) Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: A review. Hydrological Processes , 29, 10.1002/hyp.10412.
Tregubov, O., Gartsman, B., Lebedeva, L., Nuteveket, M., Tarbeeva, A., Uyagansky, K., Shekman, E., Shepelev, V. (2020) Landscape-permafrost conditions and factors of summer runoff formation of small coastal lowland rivers. E3S Web Conferences , 163 05015, DOI: 10.1051/e3sconf/202016305015
USSR surface waters resources. Vol. 17. The Far East, Issue 1. The Lena-Indigirka Region (1966) Ed. Muranov A.P., Hydrometeorological pbl. 646 p. (in Russian)
Vasiliev, I.S., Torgovkin, Ya.I. (2002) Spatial distribution of precipitation in Yakutia. Russian Meteorology and Hydrology , 6, pp. 23-32 (in Russian)
Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J.-M., Viney, N. and Teng, J. (2010) Climate non-stationarity - Validity of calibrated rainfall-runoff models for use in climate change studies. Journal of Hydrology . 394, pp. 447-457.
Vinogradov, Y.B. (1988) Mathematical Modelling of Runoff Formation: A Critical Analysis . Gidrometeoizdat: Leningrad (in Russian)
Vinogradov, Yu. The results of observations on Kureyka River basin, 1988-1990 (1990) Technical report for expedition, 2, Leningrad (in Russian)
Vinogradov, Y. B., Semenova, O. M., Vinogradova, T. A. (2011) An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system. Hydrological Processes , 25, pp. 1055–1073. doi: 10.1002/hyp.7901
Vinogradov, Y.B., Vinogradova, T.A. (2014) Applied Hydrology . Saint Petersburg State Forest Technical University, St.Petersburg (in Russian)
Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, …Woods, R. (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy, Hydrology and Earth System Sciences , 15, pp. 471–504,https://doi.org/10.5194/hess-15-471-2011
Walvoord, M., Kurylyk, B. (2016). Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone Journal . 15, 10.2136/vzj2016.01.0010.
Weatherly, J. W., Walsh, J. E. (1996) The effects of precipitation and river runoff in a coupled ice-ocean model of the Arctic.  Climate Dynamics, 12, pp. 785–798
WMO: Instruments and Observing Methods, Report No. 67. WMO Solid Precipitation Measurement Intercomparison, Final Report (1998) WMO/TD-No. 872, 212 p.
Yang, D., Goodison, B. E. (1995) Accuracy of Tretyakov Precipitation gauge: Results of WMO Intercomparison, Hydrological Processes , 9, pp. 877–895
Zhang, L., Jin, X., He, C., Zhang, B., Zhang, X., Li, J., … DeMarchi, C. (2016) Comparison of SWAT and DLBRM for Hydrological Modeling of a Mountainous Watershed in Arid Northwest China.Journal of Hydrologic Engineering , 21(5), 04016007.doi:10.1061/(asce)he.1943-5584.0001313
Zhang, Y., Carey, S. K., Quinton, W. L. (2008) Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. Journal of Geophysical Research , 113(D17). doi:10.1029/2007jd009343
Zhizhin V.I., Zheleznyak M.N., Pulyaev N.A. (2012) Cryogenic processes of the formation of the mountain relief of Suntar-Khayata Range.Vestnik of the M.K. Ammosov North-Eastern Federal University , 9, N 3, pp.73-79 (in Russian)
Zhuravin, S. (2004) Features of water balance for small mountainous basins in East Siberia: Kolyma Water Balance Station case study. IAHS Publ , 290, IAHS, Wallingford, UK, pp. 28–40