Reference
AIS SMWB: Automated information system for state monitoring of water
bodies, URL: https://gmvo.skniivh.ru,
reference date: 01.03.2018 (in Russian)
Ananicheva, M. (2005) Retreat of the glaciers of the northern and
southern massifs of the Suntar-Hayat Mountains and the Chersky Range. InMaterials of glaciological research (Eds. Ananicheva M.D. &
Koreisha M.M.), 99, pp. 18-25 (in Russian)
Bennett, J.R., Shaw, J.D., Terauds, A., Smol, J.P., Aerts, R.,
Bergstrom, D.M. … Possingham, H.P. (2015) Polar lessons learned:
long-term management based on shared threats in Arctic and Antarctic
environments. Frontiers in Ecology and the Environment, 13(6),
pp. 316–324, doi: 10.1890/140315
Carey, S.K., Woo, M.K. (2000) The role of soil pipes as a slope runoff
mechanism, subarctic Yukon, Canada. Journal of Hydrology , 233,
pp. 206–222
Dankers, R., Christensen, O.B. (2005) Climate change impact on snow
coverage, evaporation and river discharge in the sub-Arctic Tana Basin,
Northern Fennoscandia. Climate Change , 69, pp. 367–392
Dodds, K., Gan, I., Howkins, A. (2010) The IPY-3: The International
Geophysical Year (1957–1958). In The History of the International
Polar Years (IPYs), doi: 10.1007/978-3-642-12402-0_10.
Fang, X., Pomeroy, J. W., Ellis, C. R., MacDonald, M. K., DeBeer, C. M.,
Brown, T. (2013) Multi-variable evaluation of hydrological model
predictions for a headwater basin in the Canadian Rocky Mountains.Hydrology and Earth System Sciences , 17, pp. 1635-1659,
https://doi.org/10.5194/hess-17-1635-2013
Fang, X., Luo, S., Lyu, S. (2018). Observed soil temperature trends
associated with climate change in the Tibetan Plateau, 1960–2014.Theoretical and Applied Climatology . 10.1007/s00704-017-2337-9.
Garzman, B., Shamov, V. (2015) Field studies of runoff formation in the
Far Eastern region based on the modern observation. Water
resources management, 42, pp. 589-599. 10.7868/S0321059615060048 (in
Russian)
Geocryology of the USSR: Eastern Siberia and the Far East (1989)
Eds. Romanovsky, N.N., Gavrilov, A.V., Zaitsev, V.N. et. al. Nedra
publishers, Moscow, p.515 (in Russian)
GLIMS and NSIDC (2005, updated 2017): Global Land Ice Measurements from
Space glacier database. Compiled and made available by the international
GLIMS community and the National Snow and Ice Data Center, Boulder CO,
U.S.A. DOI:10.7265/N5V98602
Grave, N.A. (1959) Prior report on heat and moisture regimes of
soil and rocks and heat exchange between them, 1958, the site of
Suntar-Khayata , Obruchev Permafrost Institute of the Academy of
Sciences, North-West branch, Yakutsk (in Russian)
Grave, N.A., Gavrilova, M.K., Gravis, G.F., Katasonov, E.M., Kliukin,
N.K., Koreisha, G.F., Kornilov, B.A., Chistotinov, L.V. (1964)Freezing of the ground surface and glaciation of the Suntar-Hayat
Range (Eastern Yakutia) . Science, Moscow, 141 p. (in Russian)
Grave, N.A., Koreisha, M.M. (1957) Interim scientific report on
the work of the mountainous Suntar- Khayata glaciological and
geocryological Station (program 3 IHY). Obruchev Permafrost Institute
of the Academy of Sciences, North-West branch, Yakutsk (in Russian)
Grave, N.A., Koreisha, M.M. (1959) Report on the research of the
Suntar-Khayata station, Part II. Obruchev Permafrost Institute of the
Academy of Sciences, North-West branch, Yakutsk (in Russian)
Groisman, P. Ya., Bogdanova, E. G., Alexeev, V. A., Cherry, J. E.,
Bulygina, O. N. (2014) Impact of snowfall measurement deficiencies on
quantification of precipitation and its trends over Northern Eurasia,Ice and Snow Journal , 2, pp. 29–43
Hinzman, L., Bettez, N., Bolton, W., Chapin III, F.S., Dyurgerov, M.,
Fastie, C., …Yoshikawa, K. (2005) Evidence and implications of
recent climate change in Northern Alaska and other Arctic regions.Climatic Change , 72, pp. 251-298. doi:10.1007/s10584-005-5352-2
Hopkinson, C., Young, G.J. (1998) The effect of glacier wastage on the
flow of the Bow River at Banff, Alberta, 1951-93. Hydrological
Processes, 12, pp. 1745-62
Hudson, C. E., Thompson, J. R. (2019) Hydrological modelling of climate
change impacts on river flows in Siberia’s Lena River Basin and
implications for the Atlantic Meridional Overturning Circulation.Hydrology Research , doi:10.2166/nh.2019.151
Hydrological Yearbook. Volume 8. Issue. 0-7. The basin of the
Laptev and East-Siberian seas to the Kolyma river. Yakutsk Department
of Hydrometeorology, 1983 (in Russian)
IPCC: Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, IPCC (2014) Geneva,
Switzerland, 151 pp.
Janowicz, J. R., Hedstrom, N., Pomeroy, J. W., Granger, R., Carey S. K.
(2004) Wolf Creek Research basin water balance studies. InNorthern Research Basins Water Balance , Eds. Kane, D.L., D. Yang,
IAHS Publication, 290, IAHS Press, Wallingford, pp. 195-204
Kendall, M. G. (1975) Rank Correlation Methods , Griffin, London
Koreisha, M.M. (1963) Materials of Glaciological Investigation.
Suntar- Khayata. Obruchev Permafrost Institute of the Academy of
Sciences, North-West branch, Yakutsk (in Russian)
Krogh, S. A., Pomeroy, J. W. (2018) Impact of future climate and
vegetation on the hydrology of an Arctic headwater basin at the
Tundra-Taiga transition. Journal of Hydrometeorology ,
doi:10.1175/jhm-d-18-0187.1
Landscape map of the USSR (1985). Ed. Gudilin I. S. Ministry of
Geology of the USSR. Scale 1:2500000 (in Russian)
Lebedeva, L. S., Semenova, O. M., Vinogradova, T. A. (2015) Calculation
of the seasonal thawing depth in different landscapes of the Kolyma
water-balance station by means of hudrological model “Hydrograph”.
Part 2. Earth’s cryosphere , 19 (2), pp. 35-44
Lebedeva, L. S., Makarieva, O. M., Vinogradova, T. A. (2017)
Peculiarities of water balance formation in mountain catchments of
Northeastern Russia (a case study for the Kolyma water balance station),Russian Meteorology and hydrology , 4, pp. 90-101
Lytkin, V.M. (2016) Dynamics of glaciers and rock glaciers in the
Suntar-Khayata Range in the late Holocene. Ph.D Thesis. Melnikov
Permafrost Institute Yakutsk (in Russian)
Makarieva О.М., Lebedeva L.S., Vinogradova T.A. (2020) Modelling of
runoff formation processes at small mountain watersheds in the
permafrost zone (by the data of the Kolyma Water Balance Station).
Cryosphere of the Earth, XXIV, 1, pp. 43-56 DOI:
10.21782/KZ1560-7496-2020-1(43-56)
Makarieva, O., Nesterova, N., Lebedeva, L., Sushansky, S. (2017)
Water-balance and hydrology database for a mountainous permafrost
watershed in the up-streams of the Kolyma River, Russia - the Kolyma
Water-Balance Station, 1948-1997. PANGAEA ,
https://doi.org/10.1594/PANGAEA.881731
Makarieva, O., Nesterova, N., Lebedeva, L., Sushansky, S. (2018a) Water
balance and hydrology research in a mountainous permafrost watershed in
upland streams of the Kolyma River, Russia: a database from the Kolyma
Water-Balance Station, 1948–1997, Earth System Science Data , 10,
pp. 689-710. https://doi.org/10.5194/essd-10-689-2018
Makarieva, O., Nesterova, N., Sherstyukov, A. (2018b) Monthly
hydro-climate database for the Yana and Indigirka Rivers basins,
Northern Eurasia. PANGAEA , https://doi.org/10.1594/PANGAEA.892775
Makarieva, O., Shikhov, A., Ostashov, A., Nesterova, N. (2018c) Aufeis
(naleds) of the North-East of Russia: GIS catalogue for the Indigirka
River
basin. PANGAEA, https://doi.org/10.1594/PANGAEA.891036
Makarieva, O., Nesterova, N., Post, D. A., Sherstyukov, A., Lebedeva, L.
(2019a) Warming temperatures are impacting the hydrometeorological
regime of Russian rivers in the zone of continuous permafrost. The
Cryosphere , 13(6), pp. 1635–1659. doi: 10.5194/tc-13-1635-2019
Makarieva, O., Shikhov, A., Nesterova, N., Ostashov, A. (2019b)
Historical and recent aufeis in the Indigirka River basin (Russia),Earth System Science Data , 11, pp. 409-420.
https://doi.org/10.5194/essd-11-409-2019
Makarieva O.M., Nesterova N.V. (2020) Phase State of Precipitation as a
Factor of Low Flow in the Yana and Indigirka River Basins. Russian
Meteorology and Hydrology , 45 (4), pp. 276–282. DOI:
10.3103/S1068373920040081
Marsh, C. B., Pomeroy, J. W., Wheater, H. S. (2020). The Canadian
Hydrological Model (CHM) v1.0: a multi-scale, multi-extent,
variable-complexity hydrological model – design and overview.Geoscientific Model Development , 13(1), 225–247.
doi:10.5194/gmd-13-225-2020
Mann, H. B. (1945) Nonparametric tests against trend.Econometrica , 13, pp. 245–259
McCartney, S.E., Carey, S.K., Pomeroy, J.W. (2006) Intra-basin
variability of snowmelt water balance computations in a subarctic
catchment. Hydrological Processes , 20, pp. 1001–1016.
doi:10.1002/hyp.6125
Mikhailov, V. M. (2013) Floodplain taliks of North-East of
Russia , Novosibirsk. Geo., 244 p. (in Russian)
Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., Lettenmaier, D.
P. (2014) Modeling the effect of glacier recession on streamflow
response using a coupled glacio-hydrological model. Hydrology and
Earth System Sciences , 18, pp. 787-802. doi:10.5194/hess-18-787-2014
Nijssen, B., O’Donnell, G. M., Hamlet, A. F., Lettenmaier, D. P. (2001)
Hydrologic Sensitivity of Global Rivers to Climate Change.Climatic Change , 50(1/2), pp. 143–175.
doi:10.1023/a:1010616428763
Nesterova, N., Makarieva, O., Post, D. (2019) Understanding hydrological
processes at a remote mountainous continuous permafrost watershed in a
changing environment. In 23rd International Congress on Modelling
and Simulation , Canberra, ACT, Australia, 1 to 6 December 2019
mssanz.org.au/modsim2019, pp. 1181-1187
Ohmura, A. (1982) Evaporation from the surface of the Arctic Tundra on
Axel Heiberg Island. Water Resources Research , 18(2), pp. 291–
300, doi:10.1029/WR018i002p00291
Pettitt, A. N. (1979) A non-parametric approach to the change-point
problem. Journal of the Royal Statistical Society: Series C , 28,
pp. 126–135
Pohl, S., Marsh, P., Bonsal, B.R. (2006) Modeling the Impact of Climate
Change on Runoff and Annual Water Balance of an Arctic Headwater Basin.Arctic , 60, pp. 173-186
Pomeroy, J.W., Essery, R.H., Toth, B. (2004) Implications of spatial
distributions of snow mass and melt rate for snow-cover depletion:
observations in a subarctic mountain catchment. Annals of
Glaciology , 38, pp. 195–201
Rasouli, K., Pomeroy, J. W., Whitfield, P. H. (2019) Are the effects of
vegetation and soil changes as important as climate change impacts on
hydrological processes? Hydrology and Earth System Sciences ,
23(12), pp. 4933–4954. doi:10.5194/hess-23-4933-2019
Rasouli, K., Pomeroy, J. W., Janowicz, J. R., Carey, S. K., Williams, T.
J. (2014) Hydrological sensitivity of a northern mountain basin to
climate change. Hydrological Processes , 28(14), pp. 4191–4208.
doi:10.1002/hyp.10244
Rawlins, M.A., Steele, M., Holland, M.M., Adam, J.C., Cherry, J.E.,
Francis, J.A., … Zhang, T. (2010) Analysis of the Arctic System
for Freshwater Cycle Intensification: Observations and Expectations.Journal of Climate , 23, pp. 5715–5737,
doi:10.1175/2010JCLI3421.1
Reference Book on the Climate of the USSR. Issue 24. Yakut ASSR.
Part IV. Humidity, atmospheric precipitation, snow cover (1968) Yakutsk
Department for Hydrometeorology, Leningrad, Gidrometeoizdat, 352 p. (in
Russian)
Vinogradov, Yu. The results of observations on Kureyka River
basin, 1988-1990 (1990) Technical report for expedition, 2, Leningrad
(in Russian)
Schramm, I., Boike, J., Bolton, W. R., Hinzman, L. D. (2007) Application
of TopoFlow, a spatially distributed 24 hydrological model, to the
Imnavait Creek watershed, Alaska. Journal of Geophysical
Research , 112, doi:10.1029/2006JG000326
Semenova, O., Beven, K. (2015) Barriers to progress in distributed
hydrological modelling. Hydrological Processes , 29, pp.
2074–2078
Semenova, O., Lebedeva, L., Vinogradov, Y. (2013) Simulation of
subsurface heat and water dynamics, and runoff generation in mountainous
permafrost conditions, in the Upper Kolyma River basin, Russia.Hydrogeology Journal , 21(1), pp. 107–119.
doi:10.1007/s10040-012-0936-1
Semenova, O., Lebedeva, L., Volkova, N., Korenev, I., Forkel, M.,
Eberle, J., Urban, M. (2015) Detecting immediate wildfire impact on
runoff in a poorly-gauged mountainous permafrost basin.Hydrological Sciences Journal , 60.
doi:10.1080/02626667.2014.959960
Semenova, O.,Vinogradov, Y., Vinogradova, T., Lebedeva, L. (2014)
Simulation of Soil Profile Heat Dynamics and their Integration into
Hydrologic Modelling in a Permafrost Zone. Permafrost and
Periglacial Processes , 25 (4), pp. 257–269, doi:10.1002/ppp.1820
Shiklomanov, A. I., Lammers, R. B. (2013) Changing Discharge Patterns of
High-Latitude Rivers. In Climate Vulnerability: Understanding and
Addressing Threats to Essential Resources , 5, pp. 161–175,
doi:10.1016/B978-0-12-384703-4.00526-8
Sokolov, B.L. (1975) Aufeises (naleds) and river runoff .
Leningrad, Gidrometeoizdat, 190 p. (in Russian)
Spence, C., Kokelj, S. V., Ehsanzadeh E. (2011) Precipitation Trends
Contribute to Streamflow Regime Shifts in Northern Canada, Cold Region
Hydrology in a Changing Climate, IAHS Publication , 346
State Water Cadastre: Main hydrological characteristics (for
1971–1975 and the whole period of observation until 2007), Volume 17,
Leno-Indigirsky district, Leningrad, Gidrometeoizdat (in Russian)
Stuefer, S. L., Arp, C. D., Kane, D. L., Liljedahl, A. K. (2017) Recent
extreme runoff observations from coastal arctic watersheds in Alaska.Water Resources Research , 53, pp. 9145–9163.
https://doi.org/10.1002/2017WR020567
Tarbeeva, A., Lebedeva, L., Efremov, V., Shamov, V., Makarieva, O.
(2020) Water tracks in the lower Lena River basin. E3S Web
Conferences , 163 04007, DOI: 10.1051/e3sconf/202016304007
Tananaev, N. I., Makarieva, O. M., Lebedeva, L. S. (2016) Trends in
annual and extreme flows in the Lena River basin, Northern Eurasia.Geophysical Research Letters , 43, 20136, doi:10.1002/2016GL070796
Tregubov, O., Gartsman, B., Lebedeva, L., Nuteveket, M., Tarbeeva, A.,
Uyagansky, K., Shekman, E., Shepelev, V. (2020) Landscape-permafrost
conditions and factors of summer runoff formation of small coastal
lowland rivers. E3S Web Conferences , 163 05015, DOI:
10.1051/e3sconf/202016305015
USSR surface waters resources. Vol. 17. The Far East, Issue 1. The
Lena-Indigirka Region (1966) Ed. Muranov A.P., Hydrometeorological pbl.
646 p. (in Russian)
Vasiliev, I.S., Torgovkin, Ya.I. (2002) Spatial distribution of
precipitation in Yakutia. Russian Meteorology and Hydrology , 6,
pp. 23-32 (in Russian)
Vinogradov, Y.B. (1988) Mathematical Modelling of Runoff
Formation: A Critical Analysis . Gidrometeoizdat: Leningrad (in Russian)
Vinogradov, Y. B., Semenova, O. M., Vinogradova, T. A. (2011) An
approach to the scaling problem in hydrological modelling: the
deterministic modelling hydrological system. Hydrological
Processes , 25, pp. 1055–1073. doi: 10.1002/hyp.7901
Vinogradov, Y.B., Vinogradova, T.A. (2014) Applied Hydrology .
Saint Petersburg State Forest Technical University, St.Petersburg (in
Russian)
Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G.
B., Hamlet, …Woods, R. (2011) Climate change and mountain water
resources: overview and recommendations for research, management and
policy, Hydrology and Earth System Sciences , 15, pp. 471–504,
https://doi.org/10.5194/hess-15-471-2011
WMO: Instruments and Observing Methods, Report No. 67. WMO Solid
Precipitation Measurement Intercomparison, Final Report (1998)
WMO/TD-No. 872, 212 p.
Yang, D., Goodison, B. E. (1995) Accuracy of Tretyakov Precipitation
gauge: Results of WMO Intercomparison, Hydrological Processes , 9,
p. 877–895
Zhang, L., Jin, X., He, C., Zhang, B., Zhang, X., Li, J., …
DeMarchi, C. (2016) Comparison of SWAT and DLBRM for Hydrological
Modeling of a Mountainous Watershed in Arid Northwest China.Journal of Hydrologic Engineering , 21(5),
04016007.doi:10.1061/(asce)he.1943-5584.0001313
Zhang, Y., Carey, S. K., Quinton, W. L. (2008) Evaluation of the
algorithms and parameterizations for ground thawing and freezing
simulation in permafrost regions. Journal of Geophysical
Research , 113(D17). doi:10.1029/2007jd009343
Zhizhin V.I., Zheleznyak M.N., Pulyaev N.A. (2012) Cryogenic processes
of the formation of the mountain relief of Suntar-Khayata Range.Vestnik of the M.K. Ammosov North-Eastern Federal University , 9,
N 3, pp.73-79 (in Russian)
Zhuravin, S. (2004) Features of water balance for small mountainous
basins in East Siberia: Kolyma Water Balance Station case study.
IAHS Publ , 290, IAHS, Wallingford, UK, pp. 28–40