References
- Ai S, Zheng MY, Jiang Y, Yang XF, Li XS, Pang JF, Sebastian J, Li WZ,
Wang AQ, Wang XD, Zhang T. Selective removal of 1,2-propanediol and
1,2-butanediol from bio-ethylene glycol by catalytic reaction. AIChE
Journal. 2017; 63: 4032-4042.
- Tian YJ, Liu H, Wang L, Zhang XW, Liu GZ. Controllable fabrication and
catalytic performance of nanosheet HZSM-5 films by vertical secondary
growth. AIChE Journal. 2018; 64: 1923-1927.
- Corma A. From microporous to mesoporous molecular sieve materials and
their use in catalysis. Chemical Reviews. 1997; 97: 2373-2420.
- Quan YH, Li SY, Wang S, Li ZK, Dong M, Qin ZF, Chen G, Wei ZH, Fan WB,
Wang JG. Synthesis of chainlike ZSM‑5 zeolites: determination of
synthesis parameters, mechanism of chainlike morphology formation, and
their performance in selective adsorption of xylene isomers. ACS
Applied Materials & Interfaces. 2017; 9: 14899-14910.
- Gao P, Xu GD, Wang C, Wang Q, Zhao YX, Zhang YH, Feng ND, Zhao XL, Li
JL, Deng F. A mechanistic study of methanol-to-aromatics reaction over
Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process.
ACS Catalysis. 2018; 8: 9809-9820.
- Liang TY, Chen JL, Qin ZF, Li JF, Wang PF, Wang S, Wang GF, Dong M,
Fan WB, Wang JG. Conversion of methanol to olefins over H‑ZSM‑5
zeolite: reaction pathway is related to the framework aluminum siting.
ACS Catalysis. 2016; 6: 7311-7325.
- Martínez C, Corma A. Inorganic molecular sieves: Preparation,
modification and industrial application in catalytic processes.
Coordination Chemistry Reviews. 2011; 255: 1558-1580.
- Subhan F, Aslam S, Yan ZF, Liu Z, Etim UJ, Wadood A, Ullah R.
Confinement of mesopores within ZSM-5 and functionalization with Ni
NPs for deep desulfurization. Chemical Engineering Journal. 2018; 354:
706-715.
- Jang HG, Min HK, Lee JK, Hong SB, Seo G. SAPO-34 and ZSM-5
nanocrystals’ size effects on their catalysis of methanol-to-olefin
reactions. Applied Catalysis A: General. 2012; 437-438: 120-130.
- Zholobenko VL, Kustov LM, Kazansky VB, Loeffler E, Lohser U, Peuker
Ch, Oehlmann G. On the possible nature of sites responsible for the
enhancement of cracking activity of HZSM-5 zeolites dealuminated under
mild steaming conditions. Zeolite. 1990; 10: 304-306.
- Hong Y, Gruver V, Fripiat JJ. Pentane Conversion on Dealuminated H-Y
and HZSM-5. Journal of Catalysis. 1996; 161: 766-775.
- Niwa M, Katada N, Murakami Y. Generation of acid sites by
SiO2 deposition on groups IVB metal oxides. Journal of
Catalysis. 1992; 134: 340-348.
- Ghosh AK, Kydd RA. Acidity and activity of fluorinated mordenites.
Journal of Catalysis. 1987; 103: 399-406.
- Zhao TT, Li FW, Yu HC, Ding SL, Li ZX, Huang XY, Li X, Wei XH, Wang
ZL, Lin HF. Synthesis of mesoporous ZSM-5 zeolites and catalytic
cracking of ethanol and oleic acid into light olefins. Applied
Catalysis A: General. 2019; 575: 101-110..
- Xu DD, Abdelrahman O, Ahn SH, Guefrachi Y, Kuznetsov A, Ren LM, Hwang
SJ, Khaleel M, Hassan SA, Liu DX, Hong SB, Dauenhauer P. Tsapatsis M.
A quantitative study of the structure–activity relationship in
hierarchical zeolites using liquid-phase reactions. AIChE Journal.
2018; 65: 1067-1075.
- Kim S, Shah J, Pinnavaia T. Colloid-imprinted carbons as templates for
the nanocasting synthesis of mesoporous ZSM-5 zeolite. Chemistry of
Materials. 2003; 15: 1664-1668.
- Narayanan S, Vijaya JJ, Sivasanker S, Kennedy LJ, Jesudoss SK.
Structural, morphological and catalytic investigations on hierarchical
zeolite ZSM-5 hexagonal cubes by surfactant assisted hydrothermal
method. Powder Technology. 2015; 274: 338-348.
- Dong A, Wang Y, Tang Y, Zhang Y, Ren N, Gao Z. Mechanically stable
zeolite monoliths with three‐dimensional ordered macropores by the
transformation of mesoporous silica spheres. Advanced Materials. 2002;
14: 1506-1510.
- Xu R, Pang W, Yu J, Huo Q, Chen J. Chemistry of Zeolite and Related
Porous Materials. Singapore: Wiley-VCH., 2007.
- Askari S, Alipour SM, Halladj R, Hossein DAFM. Effects of ultrasound
on the synthesis of zeolites: a review. Journal of Porous Materials.
2013; 20: 285-302.
- Yin X, Sun Q, Wang D, Routh AF, Le Y, Wang JX, Chen JF.
High-gravity-assisted synthesis of aqueous nanodispersions of organic
fluorescent dyes for counterfeit labeling. AIChE Journal. 2019; 65.
- Sun Q, Chen B, Wu X, Wang M. Zhang C, Zheng XF, Wang JX, Chen JF.
Preparation of transparent suspension of lamellar magnesium hydroxide
nanocrystals using a high-gravity reactive precipitation combined with
surface modification. Industrial & Engineering Chemistry Research.
2015; 54: 666-671.
- Zheng XH, Chu GW, Kong DJ, Luo Y, Zhang JP, Zou HK, Zhang LL, Chen JF.
Mass transfer intensification in a rotating packed bed with
surface-modified nickel foam packing. Chemical Engineering Journal.
2016; 285: 236-242.
- Chen JF, Wang YH, Guo F, Wang XM, Zheng C. Synthesis of nanoparticles
with novel technology: high-gravity reactive precipitation. Industrial
& Engineering Chemistry Research. 2000; 39: 948-954.
- Guo K, Zhang ZZ, Luo HJ, Dang JX, Qian Z. An innovative approach of
the effective mass transfer area in the rotating packed bed.
Industrial & Engineering Chemistry Research. 2014; 53: 4052-4058.
- Rao DP, Bhowal A, Goswami PS. Process intensification inrotating
packed beds (HIGEE): anappraisal. Industrial & Engineering Chemistry
Research. 2004; 43: 1150-1162.
- Biligetu T, Wang Y, Nishitoba T, Otomo R, Park S, Mochizuki H, Kondo
JN, Tatsumi T, Yokoi T. Al distribution and catalytic performance of
ZSM-5 zeolites synthesized with various alcohols. Journal of
Catalysis. 2017; 353: 1-10.
- Itani L, Liu Y, Zhang WP, Bozhilov KN, Delmotte L, Valtchev V.
Investigation of the physicochemical changes preceding zeolite
nucleation in a sodium-rich aluminosilicate gel. Journal of the
American Chemical Society. 2009; 131: 10127–10139.
- Kosanović C, Bosnar S, Subotić B, Svetlicic V, Radić TM, Dražić G,
Havancsák K. Study of the microstructure of amorphous aluminosilicate
gel before and after its hydrothermal treatment. Microporous and
Mesoporous Materials. 2008; 110: 177–185.
- Valtchev VP, Bozhilov KN. Transmission electron microscopy study of
the formation of FAU-type zeolite at room temperature. The Journal of
Physical Chemistry B. 2004; 108: 15587-15598.
- Yang SY, Navrotsky A, Phillips BL. An in situ calorimetric study of
the synthesis of FAU zeolite. Microporous and Mesoporous Materials.
2001; 46: 137-151.
- Bauer F, Geidel E, Peuker Ch, Pilz W. Vibrational spectra of18O-exchanged NaZSM-5 and HZSM-5. Zeolite. 1996; 17:
278-282.
- Mintova S, Olson NH, Valtchev V, Bein T. Mechanism of zeolite A
nanocrystal growth from colloids at room temperature. Science. 1999;
283: 958-960.
- Aiello R, Crea F, Nastro A, Subotić B, Testa F. Influence of cations
on the physicochemical and structural properties of aluminosilicate
gel precursors. Part 1. Chemical and thermal properties. Zeolite.
1991; 11: 767-775.
- Shirazi L, Jamshidi E, Ghasemi MR. The effect of Si/Al ratio of ZSM-5
zeolite on its morphology, acidity and crystal size. Crystal Research
and Technology. 2008; 43: 1300-1306.
- Fu DL, Schmidt J, Ristanović Z, Chowdhury AD, Meirer F, Weckhuysen BM.
Highly oriented growth of catalytically active zeolite ZSM-5 films
with a broad range of Si/Al ratios. Angewandte Chemie International
Edition. 2017; 129: 11369 –11373.
- Malfait WJ, Xue XY. The nature of hydroxyl groups in aluminosilicate
glasses: Quantifying Si–OH and Al–OH abundances along the
SiO2–NaAlSiO4 join by1H, 27Al–1H and29Si–1H NMR spectroscopy.
Geochimica et Cosmochimica Acta. 2010; 74: 719-737.
- Dib E, Mineva T, Veron E, Sarou-Kanian V, Fayon F, Alonso B. ZSM-5
zeolite: complete al bond connectivity and implications on structure
formation from solid-state NMR and quantum chemistry calculations. The
Journal of Physical Chemistry Letters. 2018; 9: 19-24.
- Valtchev VP, Bozhilov KN. Evidences for zeolite nucleation at the
solid-liquid interface of gel cavities. Journal of the American
Chemical Society. 2005; 127: 16171-16177.
- Wang YX, Song JJ, Baxter NC, Kuo GT, Wang SN. Synthesis of
hierarchical ZSM-5 zeolites by solid-state crystallization and their
catalytic properties. Journal of Catalysis. 2017; 349: 53-65.
- Wang YQ, Wu QM, Meng XJ, Xiao FS. Insights into the
organotemplate-free synthesis of zeolite catalysts. Engineering, 2017;
3: 567-574.
- Liu BY, Xie KH, Oh SC, Sun DL, Fang YX, Xi HX. Direct synthesis of
hierarchical USY zeolite for retardation of catalyst deactivation.
Chemical Engineering Science. 2016; 153: 374-381.
- Yang ZX, Xia YD, Mokaya R. Zeolite ZSM-5 with unique supermicropores
synthesized using mesoporous carbon as a template. Advanced Materials.
2004; 16: 727-732.
- Xing AH, Yuan DL, Tian DY, Sun Q. Controlling acidity and external
surface morphology of SAPO-34 and its improved performance for
methanol to olefins reaction. Microporous and Mesoporous Materials.
2019; 288: 109562.
- Rodríguez-González L, Hermes F, Bertmer M, Rodríguez-Castellón E,
Jiménez-López A, Simon U. The acid properties of H-ZSM-5 as studied by
NH3-TPD and 27Al-MAS-NMR
spectroscopy. Applied Catalysis A: General. 2007; 328: 174-182.
- Na K, Alayoglu S, Ye R, Somorjai GA. Effect of acidic properties of
mesoporous zeolites supporting Pt nanoparticles on hydrogenative
conversion of methylcyclopentane. Journal of the American Chemical
Society. 2014; 136: 17207-17212.
- Wang N, Hou YL, Sun WJ, Cai DL, Chen ZH, Liu LM, Ge BH, Hu L, Qian WZ,
Wei F. Modulation of b-axis thickness within MFI zeolite: Correlation
with variation of product diffusion and coke distribution in the
methanol-to-hydrocarbons conversion. Applied Catalysis B:
Environmental. 2019; 243: 721-733.
- Lou Y, Ma J, Hu WD, Dai QG, Wang L, Zhan WC, Guo YL, Cao XM, Guo Y, Hu
P, Lu GZ. Low-temperature methane combustion over Pd/H-ZSM-5: active
Pd sites with specific electronic properties modulated by acidic sites
of H‑ZSM‑5. ACS Catalysis. 2016; 6: 8127−8139.
- Shi J, Zhao GL, Teng JW, Wang YD, Xie ZK. Morphology control of ZSM-5
zeolites and their application in Cracking reaction of C4 olefin.
Inorganic Chemistry Frontiers. 2018; 5: 2734-2738.