References

  1. Ai S, Zheng MY, Jiang Y, Yang XF, Li XS, Pang JF, Sebastian J, Li WZ, Wang AQ, Wang XD, Zhang T. Selective removal of 1,2-propanediol and 1,2-butanediol from bio-ethylene glycol by catalytic reaction. AIChE Journal. 2017; 63: 4032-4042.
  2. Tian YJ, Liu H, Wang L, Zhang XW, Liu GZ. Controllable fabrication and catalytic performance of nanosheet HZSM-5 films by vertical secondary growth. AIChE Journal. 2018; 64: 1923-1927.
  3. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews. 1997; 97: 2373-2420.
  4. Quan YH, Li SY, Wang S, Li ZK, Dong M, Qin ZF, Chen G, Wei ZH, Fan WB, Wang JG. Synthesis of chainlike ZSM‑5 zeolites: determination of synthesis parameters, mechanism of chainlike morphology formation, and their performance in selective adsorption of xylene isomers. ACS Applied Materials & Interfaces. 2017; 9: 14899-14910.
  5. Gao P, Xu GD, Wang C, Wang Q, Zhao YX, Zhang YH, Feng ND, Zhao XL, Li JL, Deng F. A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process. ACS Catalysis. 2018; 8: 9809-9820.
  6. Liang TY, Chen JL, Qin ZF, Li JF, Wang PF, Wang S, Wang GF, Dong M, Fan WB, Wang JG. Conversion of methanol to olefins over H‑ZSM‑5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catalysis. 2016; 6: 7311-7325.
  7. Martínez C, Corma A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews. 2011; 255: 1558-1580.
  8. Subhan F, Aslam S, Yan ZF, Liu Z, Etim UJ, Wadood A, Ullah R. Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization. Chemical Engineering Journal. 2018; 354: 706-715.
  9. Jang HG, Min HK, Lee JK, Hong SB, Seo G. SAPO-34 and ZSM-5 nanocrystals’ size effects on their catalysis of methanol-to-olefin reactions. Applied Catalysis A: General. 2012; 437-438: 120-130.
  10. Zholobenko VL, Kustov LM, Kazansky VB, Loeffler E, Lohser U, Peuker Ch, Oehlmann G. On the possible nature of sites responsible for the enhancement of cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions. Zeolite. 1990; 10: 304-306.
  11. Hong Y, Gruver V, Fripiat JJ. Pentane Conversion on Dealuminated H-Y and HZSM-5. Journal of Catalysis. 1996; 161: 766-775.
  12. Niwa M, Katada N, Murakami Y. Generation of acid sites by SiO2 deposition on groups IVB metal oxides. Journal of Catalysis. 1992; 134: 340-348.
  13. Ghosh AK, Kydd RA. Acidity and activity of fluorinated mordenites. Journal of Catalysis. 1987; 103: 399-406.
  14. Zhao TT, Li FW, Yu HC, Ding SL, Li ZX, Huang XY, Li X, Wei XH, Wang ZL, Lin HF. Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins. Applied Catalysis A: General. 2019; 575: 101-110..
  15. Xu DD, Abdelrahman O, Ahn SH, Guefrachi Y, Kuznetsov A, Ren LM, Hwang SJ, Khaleel M, Hassan SA, Liu DX, Hong SB, Dauenhauer P. Tsapatsis M. A quantitative study of the structure–activity relationship in hierarchical zeolites using liquid-phase reactions. AIChE Journal. 2018; 65: 1067-1075.
  16. Kim S, Shah J, Pinnavaia T. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite. Chemistry of Materials. 2003; 15: 1664-1668.
  17. Narayanan S, Vijaya JJ, Sivasanker S, Kennedy LJ, Jesudoss SK. Structural, morphological and catalytic investigations on hierarchical zeolite ZSM-5 hexagonal cubes by surfactant assisted hydrothermal method. Powder Technology. 2015; 274: 338-348.
  18. Dong A, Wang Y, Tang Y, Zhang Y, Ren N, Gao Z. Mechanically stable zeolite monoliths with three‐dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials. 2002; 14: 1506-1510.
  19. Xu R, Pang W, Yu J, Huo Q, Chen J. Chemistry of Zeolite and Related Porous Materials. Singapore: Wiley-VCH., 2007.
  20. Askari S, Alipour SM, Halladj R, Hossein DAFM. Effects of ultrasound on the synthesis of zeolites: a review. Journal of Porous Materials. 2013; 20: 285-302.
  21. Yin X, Sun Q, Wang D, Routh AF, Le Y, Wang JX, Chen JF. High-gravity-assisted synthesis of aqueous nanodispersions of organic fluorescent dyes for counterfeit labeling. AIChE Journal. 2019; 65.
  22. Sun Q, Chen B, Wu X, Wang M. Zhang C, Zheng XF, Wang JX, Chen JF. Preparation of transparent suspension of lamellar magnesium hydroxide nanocrystals using a high-gravity reactive precipitation combined with surface modification. Industrial & Engineering Chemistry Research. 2015; 54: 666-671.
  23. Zheng XH, Chu GW, Kong DJ, Luo Y, Zhang JP, Zou HK, Zhang LL, Chen JF. Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing. Chemical Engineering Journal. 2016; 285: 236-242.
  24. Chen JF, Wang YH, Guo F, Wang XM, Zheng C. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Industrial & Engineering Chemistry Research. 2000; 39: 948-954.
  25. Guo K, Zhang ZZ, Luo HJ, Dang JX, Qian Z. An innovative approach of the effective mass transfer area in the rotating packed bed. Industrial & Engineering Chemistry Research. 2014; 53: 4052-4058.
  26. Rao DP, Bhowal A, Goswami PS. Process intensification inrotating packed beds (HIGEE): anappraisal. Industrial & Engineering Chemistry Research. 2004; 43: 1150-1162.
  27. Biligetu T, Wang Y, Nishitoba T, Otomo R, Park S, Mochizuki H, Kondo JN, Tatsumi T, Yokoi T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols. Journal of Catalysis. 2017; 353: 1-10.
  28. Itani L, Liu Y, Zhang WP, Bozhilov KN, Delmotte L, Valtchev V. Investigation of the physicochemical changes preceding zeolite nucleation in a sodium-rich aluminosilicate gel. Journal of the American Chemical Society. 2009; 131: 10127–10139.
  29. Kosanović C, Bosnar S, Subotić B, Svetlicic V, Radić TM, Dražić G, Havancsák K. Study of the microstructure of amorphous aluminosilicate gel before and after its hydrothermal treatment. Microporous and Mesoporous Materials. 2008; 110: 177–185.
  30. Valtchev VP, Bozhilov KN. Transmission electron microscopy study of the formation of FAU-type zeolite at room temperature. The Journal of Physical Chemistry B. 2004; 108: 15587-15598.
  31. Yang SY, Navrotsky A, Phillips BL. An in situ calorimetric study of the synthesis of FAU zeolite. Microporous and Mesoporous Materials. 2001; 46: 137-151.
  32. Bauer F, Geidel E, Peuker Ch, Pilz W. Vibrational spectra of18O-exchanged NaZSM-5 and HZSM-5. Zeolite. 1996; 17: 278-282.
  33. Mintova S, Olson NH, Valtchev V, Bein T. Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science. 1999; 283: 958-960.
  34. Aiello R, Crea F, Nastro A, Subotić B, Testa F. Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors. Part 1. Chemical and thermal properties. Zeolite. 1991; 11: 767-775.
  35. Shirazi L, Jamshidi E, Ghasemi MR. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Crystal Research and Technology. 2008; 43: 1300-1306.
  36. Fu DL, Schmidt J, Ristanović Z, Chowdhury AD, Meirer F, Weckhuysen BM. Highly oriented growth of catalytically active zeolite ZSM-5 films with a broad range of Si/Al ratios. Angewandte Chemie International Edition. 2017; 129: 11369 –11373.
  37. Malfait WJ, Xue XY. The nature of hydroxyl groups in aluminosilicate glasses: Quantifying Si–OH and Al–OH abundances along the SiO2–NaAlSiO4 join by1H, 27Al–1H and29Si–1H NMR spectroscopy. Geochimica et Cosmochimica Acta. 2010; 74: 719-737.
  38. Dib E, Mineva T, Veron E, Sarou-Kanian V, Fayon F, Alonso B. ZSM-5 zeolite: complete al bond connectivity and implications on structure formation from solid-state NMR and quantum chemistry calculations. The Journal of Physical Chemistry Letters. 2018; 9: 19-24.
  39. Valtchev VP, Bozhilov KN. Evidences for zeolite nucleation at the solid-liquid interface of gel cavities. Journal of the American Chemical Society. 2005; 127: 16171-16177.
  40. Wang YX, Song JJ, Baxter NC, Kuo GT, Wang SN. Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. Journal of Catalysis. 2017; 349: 53-65.
  41. Wang YQ, Wu QM, Meng XJ, Xiao FS. Insights into the organotemplate-free synthesis of zeolite catalysts. Engineering, 2017; 3: 567-574.
  42. Liu BY, Xie KH, Oh SC, Sun DL, Fang YX, Xi HX. Direct synthesis of hierarchical USY zeolite for retardation of catalyst deactivation. Chemical Engineering Science. 2016; 153: 374-381.
  43. Yang ZX, Xia YD, Mokaya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Advanced Materials. 2004; 16: 727-732.
  44. Xing AH, Yuan DL, Tian DY, Sun Q. Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction. Microporous and Mesoporous Materials. 2019; 288: 109562.
  45. Rodríguez-González L, Hermes F, Bertmer M, Rodríguez-Castellón E, Jiménez-López A, Simon U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Applied Catalysis A: General. 2007; 328: 174-182.
  46. Na K, Alayoglu S, Ye R, Somorjai GA. Effect of acidic properties of mesoporous zeolites supporting Pt nanoparticles on hydrogenative conversion of methylcyclopentane. Journal of the American Chemical Society. 2014; 136: 17207-17212.
  47. Wang N, Hou YL, Sun WJ, Cai DL, Chen ZH, Liu LM, Ge BH, Hu L, Qian WZ, Wei F. Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion. Applied Catalysis B: Environmental. 2019; 243: 721-733.
  48. Lou Y, Ma J, Hu WD, Dai QG, Wang L, Zhan WC, Guo YL, Cao XM, Guo Y, Hu P, Lu GZ. Low-temperature methane combustion over Pd/H-ZSM-5: active Pd sites with specific electronic properties modulated by acidic sites of H‑ZSM‑5. ACS Catalysis. 2016; 6: 8127−8139.
  49. Shi J, Zhao GL, Teng JW, Wang YD, Xie ZK. Morphology control of ZSM-5 zeolites and their application in Cracking reaction of C4 olefin. Inorganic Chemistry Frontiers. 2018; 5: 2734-2738.