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Abstract: Identifying priority areas and vegetation restoration modes is important for alleviating 12 

the conflicting demands for water between the ecosystem and humans based on the ecological 13 

effectiveness of payment for ecosystem services (PES) in arid or semi-arid areas. This study uses 14 

the treatment effect model to estimate the marginal contribution of Sloping Land Conversion 15 

Programme (SLCP) in the Northern Shaanxi Loess Plateau towards greater vegetation cover in the 16 

Northern Shaanxi Loess Plateau, including conversion of farmland to forestland (CFF) and 17 

conversion of farmland to grassland (CFG). In addition, we build a relative advantage index (RAI) 18 

to identify priority areas and vegetation restoration modes based on an assessment of the PES` 19 

ecological effectiveness. The RAI can identify priority areas and vegetation restoration modes. 20 

Furthermore, the areas with a RAI of more than 1 qualify for afforestation reach 11460 km2, 21 

accounting for 14.101% of the Northern Shaanxi Loess Plateau, mainly distributed in the south of 22 

the Northern Shaanxi Plateau while others are more suitable for grass-planting. The government 23 

should improve PES schemes to guide farmers to choose the appropriate vegetation restoration 24 

modes in different areas from a cost-effectiveness perspective. 25 

Keywords: Payment for ecosystem services; Sloping Land Conversion Programme; Ecological 26 

effectiveness; Treatment effects model; Vegetation restoration modes27 
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1. Introduction 28 

Ecosystem services are basic conditions for human survival and are essential in maintaining life 29 

and the dynamic balance of the environment (Daily, 1997). However, human activities have 30 

profound impact on the structures and functions of the ecosystem (Peng et al., 2018). The concept 31 

of payment for ecosystem services (PES) has been widely used in biodiversity conservation 32 

(Schirpke et al., 2018), soil and water conservation (Wang et al., 2019), addressing of climate change 33 

(Sheng and Qiu, 2018; Robert et al., 2017), and correction of other environmental externalities 34 

(Kroeger, 2013). Several PES initiatives have been implemented to increase ecosystem services 35 

supply around the world, such as Costa Rica’s national PES project (Sánchez-Azofeifa et al., 2007), 36 

Mexico’s national project for forest protection (Southgate and Wunder, 2009), and the China’s 37 

Sloping Land Conversion Programme(SLCP) (Liu et al., 2008). 38 

Ecological effectiveness of PES is crucial for the optimal management of environmental 39 

problems (Boerema et al., 2018), and has received great attentions though there are major challenges 40 

as a result of the complex nature of the contemporary PES project (Kroeger et al., 2013). Ecological 41 

effectiveness is defined as a change in the services provided by the project, when compared to a 42 

counterfactual without PES (Börner, 2017). Employing the straightforward method of comparing 43 

differences or changes of ecology or environment in space or time for assessing ecological 44 

effectiveness in geography or ecology is common (Cai et al., 2015; Lü et al., 2020). However, it is 45 

difficult to truly evaluate the performance caused by the PES separately without controlling for other 46 

factors. Thus, models such as geographical weighted regression, simultaneous equations, and the 47 

panel regression model accompanied with remote sensing technology have been used to evaluate 48 

the impact of the SLCP on the ecosystem services or vegetation at different scales (Zhang et al., 49 
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2018; Wang et al., 2019; Qian et al., 2019). Moreover, the counterfactual analysis methods, such as 50 

difference-in-differences model and propensity score matching mode, are then also used to assess 51 

more precisely the ecological effectiveness of PES when controlling other factors in the social 52 

sciences (Scullion et al., 2011; Andam et al., 2018).  53 

China’s SLCP is the largest PES project in the world. Initially, it was implemented to control soil 54 

and water loss by increasing vegetation cover since 1999 and provided farmers with incentives to 55 

change their land use types and structures to achieve ecological restoration and improvement in 56 

social welfare (Cai et al., 2015). The SLCP has included 33.86 million hm2 farmland and invested 57 

more than CNY 500 billion in China. The project is crucial in vegetation restoration (Li et al., 2015) 58 

and water and soil conservation (Wang et al., 2019). However, the scarce rainfall and poor soil 59 

nutrient levels have led to the low survival rate of trees and resulted in the wide distribution of old 60 

and dwarf trees (Chen et al., 2014). Such conditions are also likely to increase the costs of 61 

afforestation without earning any of the expected benefits (Liang et al., 2015). Simultaneously, the 62 

unsuitable vegetation restoration model intensified evapotranspiration, and caused soil layers to dry 63 

up (Liang et al., 2018), and, in turn, caused water scarcity at the local level due to due to the 64 

mismatch of ecological restoration modes and regional conditions (Wang et al., 2011). Nevertheless, 65 

revegetation is approaching sustainable water resource limits, which causes potentially conflicting 66 

demands for water between the ecosystem and humans in China’s Loess Plateau (Feng et al., 2016). 67 

The SLCP mainly includes two vegetation restoration modes: conversion of farmland to 68 

forestland (CFF) and conversion of farmland to grassland (CFG) (Zhang et al., 2018). Additionally, 69 

it is necessary for maximising the ecological effectiveness and sustainable development of both the 70 

ecosystem and humans to identify priority areas and vegetation restoration modes. The effectiveness 71 
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or suitability of vegetation planted is discussed frequently with climate and topographic factors (Fu 72 

et al., 2010; Dou et al., 2020; Hou et al., 2016), based on the statistical analysis method. Although 73 

these studies provide insights into the vegetation restoration modes, they have not formulated the 74 

definite standard of vegetation types selection. In addition, vegetation mapping is popular for 75 

identifying the vegetation styles and the sites planted based on the ecological niche theory and 76 

vegetation gradient analysis including conceptual models based on expert opinion, geographic 77 

envelopes and spaces, climate envelopes, multivariate-associated methods, and tree-based and 78 

machine learning methods (McVicar et al., 2010; Okujeni et al., 2018; Erinjery et al., 2018). These 79 

methods depend on expert opinion and specific functions and parameters and ignore human 80 

interventions and actual vegetation conditions, which may result in some decision distortions for 81 

policymaking. 82 

Therefore, the goal of our paper is to identify priority areas and vegetation restoration modes 83 

based on assessing ecological effectiveness of PES. First, we used the land use transition to define 84 

the variables of PES including CFF and CFG. Second, we used treatment effect model to evaluate 85 

the ecological effectiveness of PES in the counterfactual framework. Third, we designed the relative 86 

advantage index (RAI) to identify priority areas and vegetation restoration modes based on the 87 

contribution of CFF and CFG to the vegetation. Our research could evaluate the adaptability of 88 

vegetation restoration modes in different zones more objectively based on interdisciplinary 89 

advantages. Finally, the conclusion would provide a valuable policy reference for implementing a 90 

new round of SLCP. 91 

2. Theoretical and methods 92 

2.1 Theoretical analysis 93 
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The main purpose of the project’s implementation is to control soil and water loss by changing 94 

the land use types to improve surface vegetation on the steep slope farmland in the Loess Plateau of 95 

China(Cai et al., 2015). Therefore, slope and amount of farmland are two geomorphic factors, which 96 

determine whether the SLCP would be implemented in an area. In general, the higher the slope and 97 

the amount of the farmland are, the greater the probability of implementing the SLCP becomes. 98 

However, the SLCP includes two vegetation restoration modes of CFF and CFG (Zhang et al., 2018). 99 

For the choice of CFF or CFG, it needs to be judged by the local climate factors (Xu, 2006; Guo et 100 

al., 2007). As the most basic climate component, precipitation and temperature are the core factors 101 

affecting the vegetation (Li et al., 2015; Qu et al., 2018; Qian et al. 2019). The Loess Plateau in arid 102 

and semi-arid climate areas, where the precipitation becomes a limiting factor for vegetation growth. 103 

Furthermore, the forest and grass both depend on the local precipitation; that is, the increase in 104 

precipitation will increase the possibility of CFF and CFG being implemented. After controlling for 105 

precipitation, temperature may become a competitive factor in the selection of vegetation restoration 106 

modes. With the same precipitation, areas with higher temperature are more suitable for forests, 107 

which leads to the increase of the probability of CFF, while that of CFG decreases. 108 

In addition to the SLCP, socioeconomic factors and natural factors impacting on the vegetation 109 

should also receive more attention (Qian et al., 2019; Zhang et al., 2018; Liang et al., 2015; Qu et 110 

al., 2018; Hou et al., 2012). Human activities are widely regarded as socioeconomic factors that 111 

directly affect vegetation growth (Li et al., 2015; Cai et al., 2015), and results in a huge threat to an 112 

ecosystem supported by vegetation (Peng et al., 2018). Amongst the natural factors, temperature, 113 

precipitation, wind speed, relative humidity, slope, and aspect may have both important impacts on 114 

the vegetation growth. As a sensitive factor for photosynthesis of vegetation, temperature will 115 
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increase the photosynthetic efficiency appropriately, which is conducive to vegetation (Michaletz et 116 

al., 2014). Precipitation is also a positive factor affecting vegetation growth in the Loess Plateau 117 

(Qian et al., 2019; Liang et al., 2015). Additionally, the abundant precipitation can not only improve 118 

the survival rate but also promote the self-healing ability of vegetation. Increased wind speed in arid 119 

and semi-arid areas will accelerate the process of desertification (Zhang and Fan et al., 2018), which 120 

may have adverse effects on vegetation. The relative humidity often used to measure the degree of 121 

air dryness can promote and induce plant stomatal opening to improve photosynthetic efficiency 122 

(Zuo et al., 2011) and contribute greatly to the vegetation especially in semi-arid areas (Hou et al., 123 

2012). With regard to topographical factors, slope impacts positively on vegetation and will prevent 124 

humans from interfering with ecosystem and destroy vegetation, and it is conducive to maintaining 125 

the original habitat for vegetation (forest) (Qu et al., 2018). Moreover, the aspect would affect the 126 

amount of solar radiation and evaporation intensity (Moore et al., 1993). Although the south receives 127 

more solar than others at the same latitude, which is more beneficial to the vegetation to some extent, 128 

the increase of the radiation would aggravate the evaporation intensity and also cause adverse effects 129 

on vegetation when the receiving solar radiation exceeds the appropriate value. Therefore, 130 

considering both effects, we put the quadratic term of the aspect into the regression model. 131 

Finally, the relative advantage index (RAI), the rate of contribution of CFF and CFG to the 132 

vegetation, was designed as the criterion for identifying priority areas and vegetation restoration 133 

modes by measuring the ecological effectiveness of PES, as shown in Figure 1. 134 

[Figure 1 near here] 135 

2.2 Treatment effect model 136 

The SLCP is generally chosen to be implemented in the poor environmental quality in the 137 
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Northern Shaanxi Loess Plateau. The program may underestimate the ecological effectiveness of 138 

PES using the ordinary least squares model with sample self-selection problems. Therefore, the 139 

treatment effect model is used to evaluate the ecological effectivenessof SLCP for overcoming the 140 

endogenous problems caused by sample self-selection (Maddala, 1983). The specific form of the 141 

model is as follows: 142 

i i i ivege x pes                              (1)    143 

where vegei is the surface vegetation status, xi is the control variables including nature and 144 

socioeconomic factors,  is the ecological effect of PES, i is the residual error,  is the model 145 

estimation parameter, and pesi is the treatment variable indicating whether the SLCP have been 146 

implemented or not. 147 

It is assumed that the treatment variables are determined by the following treatment equation: 148 

( )T

i i ipes I z u                                  (2) 149 

where  is the parameter of the model, iu indicates the residual error, and I(*) represents an 150 

indicative function. Further, zi  refers to the exogenous variables including xi and other additional 151 

instruments unrelated to i . The probability of SLCP is affected by the amount of sloping farmland, 152 

and we put the proportion of farmland area, slope, and their interaction into the selection model. 153 

Furthermore, the temperature and precipitation were also added into the model for calculating the 154 

probability of CFF and CFG. Moreover, we assume that the residuals ( iu  , i  ) obey a two-155 

dimensional normal distribution: 156 

20
,

0 1

i u u

i u

N
  

 

     
     
      

:                           (3) 157 

 Hence, the conditional expectation of the participants is as follows: 158 
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           (4) 159 

where ( )  is the hazard function, namely 
( )

( )
1 ( )

c
c

c
= . 160 

Similarly, the conditional expectation of the non-participants is as follows: 161 

( | 0, , ) ( | 0, , )
( | + 0, , )
( | , , )

( )

i i i i i i i i i

i i i i i i

i i i i i i

i i

E vege pes x z x E pes x z
x E z u x z
x E u z x z
x z

       (5) 162 

The differences in the conditional expectations between participants and non-participants can be 163 

obtained by subtracting equation (4) from equation (5) as follows: 164 

( | 1, , ) ( | 0, , ) [ ( )+ ( )]i i i i i i i i i iE ndvi pes x z E ndvi pes x z z z    (6) 165 

Clearly, if we directly observe the difference of the vegei of the treatment and the control groups, 166 

it would result in biased estimates owing to omitting [ ( )+ ( )]i iz z  at the condition of 167 

0  . To integrate the two groups in a regression equation, we define the individual hazard 168 

function as follows: 169 

( ) 1

( ) 0

T

i i
Ti
i i

z if pes

z if pes
               (7) 170 

Thus, equations (4) and (5) can be merged into one: 171 

( | , )i i i i i iE vege x z x pes                       (8) 172 

The first step is to estimate equation ( 1| ) ( )T

i i iP pes z z   using the Probit model to 173 

derive the estimates  and i . The second step is to use ordinary least squares model to estimate 174 

equation (8) for an unbiased estimate of . 175 

2.3 Relative advantage index 176 

The effects of CFF or CFG may present a few differences owing to the locational conditions in 177 
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different regions. Thus, we designed a relative advantage index for comparing the spatial ecological 178 

effectiveness of both CFF and CFG as shown in equation (9): 179 

, ,( ) / ( )i i f f i g gRAI p p =                         (9)    180 

where RAIi is the ratio of the contributions of CFF and CFG to the NDVI for observing, which one 181 

is more effective in different spaces; pi,f  and pi,g are the occurrence probabilities of CFF and CFG, 182 

respectively, calculated using the Probit model in the treatment equation (2); and 
f and 

g  are 183 

the marginal contributions of CFF and CFG, respectively. When RAIi is greater than or equal to 1, 184 

region i is prior for afforestation; otherwise, grass-planting is deserved. 185 

3. Study area and data 186 

3.1 Study area 187 

The Northern Shaanxi Loess Plateau is in the centre of the Loess Plateau in China, including 188 

Yan’an and Yulin city of Shaanxi province (Figure 2., 107o28’–111o15’E and 35o21’–39o35’N). The 189 

Northern Shaanxi Loess Plateau belongs to a typical hilly area of the Loess Plateau dotted with 190 

many crisscrossing gullies and valleys of various sizes. The Northern Shaanxi Loess Plateau has 191 

become a typical PES zone for vegetation restoration since 1999. By the end of 2018, the North 192 

Shaanxi Loess Plateau had completed the afforestation mission covering 1.29 million hm2, with a 193 

cumulative investment of CNY 17.821 billion. Additionally, the forest coverage rate had reached 194 

about 41.91% with an increase of 13.03%. In 2017, the silt produced by Yellow River has decreased 195 

from 2.58 to 0.31 million t/a, with a drop of 88% only in Yan’an City. 196 

[Figure 2 near here] 197 

3.2 Variable design and data source 198 

 (1) Vegetation. The NDVI data were captured using the 500 500m m  monthly composite 199 

products of the Geospatial Data Cloud in China (http://www.gscloud.cn/) for 2000 and 2015. The 200 
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maximum monthly NDVI values were retained as the NDVI values of that year by the maximum 201 

composite method (MVC) using ArcGIS. 202 

 (2) Natural and socioeconomic factors. The site data of precipitation, air temperature, relative 203 

humidity, and wind speed were provided by the National Meteorological Information Centre of 204 

China (http://data.cma.cn/) and then interpolated into grid layers using the Kriging method. Then 205 

the slope and aspect were also calculated based on the DEM data. However, aspect, calculated by 206 

DEM data, is not scalar and is the azimuth of the projection of the slope on the horizontal plane and. 207 

If being put into the regression or correlation model, it would lose actual physical meaning (Ding et 208 

al., 2019). Thus, we converted it as the angle between its own azimuth and the South’s (The azimuth 209 

is 180 in the South) in every grid based on Ding (2019). Furthermore, the human activity intensity 210 

of land surface (HAILS) computed using land use data might become an alternative variable for 211 

socioeconomic factors due to the unavailability of that in grids (Xu et al., 2015). Land use data and 212 

DEM data with a spatial resolution of 30 30m mwere both extracted from the Resources and 213 

Environment Data Cloud Platform of the CHINESE ACADEMY OF SCIENCES 214 

(http://www.resdc.cn).  215 

 (3) SLCP variable design. SLCP was measured by area ratio of the CFF or CFG according to 216 

Zhang et al. (2018). We also measured CFF and CFG similarly. But the CFF or CFG measured by 217 

area ratio was continuous data, and we converted them into categorical ones to obtain the land 218 

transition probability for matching the treatment effect model. The conversion rules were that when 219 

the areas of farmland to be converted to forestland from 2000 to 2015 were greater than 0 in the 220 

grid, 1 was assigned to the variable of CFF variable, if not, 0 was assigned, and the CFG variable 221 

was also measured similarly. Additionally, if the CFF or CFG variables were equal to 1 in the grid, 222 
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it indicated that SLCP had occurred, and we assigned 1 to the SLCP variable.  223 

All variables were calculated by their average in the 1000 1000m m fishing net established 224 

according to the boundary file in ArcGIS. The descriptive statistics were presented in the Table 1. 225 

[Table 1 near here] 226 

4. Results 227 

4.1 Assessing the ecological effectivenessof PES 228 

The treatment effect model might reduce sample self-selection bias resulting from the ordinary 229 

least squares model. As a reference, ordinary least squares model was applied for setting equations 230 

in the models (1) and (2). The treatment effect model was then applied for measuring ecological 231 

effectivenessof PES in the model (3) to (5), as shown in Table 2. 232 

[Table 2 near here] 233 

First, we should test the rationality of the model setting. In the main equation, temperature and 234 

precipitation have significant and positive effects on NDVI. In addition, the wind increasing will 235 

decrease the NDVI in the Northern Shaanxi Loess Plateau. Furthermore, the aspect has a significant 236 

inverted U-shaped effect on the NDVI, which indicates the aspect in the east or west is more 237 

conducive to vegetation growth than that in the south or north overall. As for the slope, it brings 238 

about a significantly positive contribution to the NDVI because of the lower possibility of vegetation 239 

destruction from humans when slope rises. The intensity index of human activities impacts on the 240 

NDVI significantly and negatively when human activities occupy more ecological space with 241 

intensive production and life. Additionally, the NDVI of a lagged period can significantly promote 242 

that of the current period, that is, the richer the current vegetation cover is, the higher its contribution 243 

to future vegetation growth. In the treatment equation, the proportion of farmland land area, slope, 244 
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and their interaction promotes the probability of the SLCP including CFF and CFG, as shown in 245 

model (3). In addition, the precipitation will both increase the probability of CFF and CFG both in 246 

models (4) and (5), while temperature will increase the probability of CFF in model (4) and decrease 247 

that of CFF in model (5). The coefficient symbols of these variables are consistent with theoretical 248 

expectations. 249 

However, coefficient of the relative humidity is unreasonable in model (1). Relative humidity 250 

likely acts on the NDVI in nonlinear form, and the humidity152 variable, quadratic term of 251 

humidity15, was added into model (2). After introducing the humidity152 variable into the model 252 

(2), the effect of relative humidity on NDVI appears to increase first and then decrease. Maybe the 253 

marginal contribution of relative humidity to vegetation in low relative humidity areas is less than 254 

that in high relative humidity areas as seen Figure 3. Therefore, we used the average value of relative 255 

humidity (56.35%) as the sample segmentation point and drew scatter plots and linear fitting 256 

between the relative humidity and NDVI, respectively (Figure 3a and 3b). When relative humidity 257 

is less than 56.35%, the marginal contribution of relative humidity to vegetation is 0.0155 (P < 0.01), 258 

while exceeding 56.35%, it reaches 0.0542 (P < 0.01), being 3.497 times the former one1 . The 259 

influence of relative humidity on NDVI presents a flat bottom U-shaped style, but only with the 260 

right part (Figure 3c), and its marginal contribution will increase when relative humidity rises.  261 

[Figure 3 near here] 262 

Second, we assess the ecological effectiveness of PES. In the ordinary least squares model, the 263 

SLCP has a positive effect on the NDVI, and the marginal contribution is 0.0246 in model (2), 264 

indicating that implementing PES has a certain ecological effectiveness from the perspective of land 265 

 
1 The marginal contributions are calculated by simple linear regression. 
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use change. However, as SLCP is generally implemented in areas with a poor environmental quality, 266 

the problem of sample self-selection may lead to underestimating the real ecological effectiveness 267 

of PES. Thus, treatment effect model was established in model (3). The p value of and is less 268 

than 1%, and we can prove the conjecture of sample selection deviation by using ordinary least 269 

squares model. The marginal contribution of the SLCP is 0.0425 in the treatment effect model, 270 

namely 72.764% higher than that estimated by the ordinary least squares model. Moreover, the 271 

ecological effectiveness of CFF and CFG is estimated using the treatment effect model, such as in 272 

models (4)-(5), respectively. In general, CFF and CFG both positively affect the NDVI, and the 273 

marginal contribution of CFF is 1.8717 times that of CFG. 274 

4.2 Identifying priority areas and vegetation restoration modes based on the RAI 275 

  Although the marginal contribution of CFF is greater than that of CFG, it’s not suitable to 276 

implement CFF instead of CFG in the whole Northern Shaanxi Loess Plateau without considering 277 

the ecological effectivenessof spatial heterogeneity. Hence, we used the RAI to determine the 278 

vegetation restoration mode in different regions, as shown in Figure 4. 279 

[Figure 4 near here] 280 

   The RAI decreases from the south to north in the Northern Shaanxi Loess Plateau. The suitable 281 

areas for afforestation with RAI greater than 1 reach 11460 km2, accounting for 14.101% of the 282 

study area. Furthermore, it is mainly distributed in mostly in the south of the Northern Shaanxi 283 

Loess Plateau, especially in Huanglong, Huangling, Fu, and Yichuan counties. These regions are 284 

dotted with mountains and hills with rich precipitation and heat, so the relatively higher probability 285 

of CFF results in the contribution of CFF to the vegetation clearly higher than that of CFG. In 286 

addition, the suitable areas for grass planting are 69812 km2 when RAI is less than 1, comprising 287 
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85.899% of the study area, mostly distributed in the north and northwest of the Northern Shaanxi 288 

Loess Plateau maybe owing to the limitation of rainfall and heat, terrain, and other reasons. 289 

Although a 450 mm precipitation line can help determine vegetation restoration modes in arid 290 

and semi-arid areas (Xu, 2006; Guo et al., 2007), the standard is relatively rough and might fail in 291 

decision-making in a complex geographical environment without considering other factors. For 292 

instance, it is difficult to identify the appropriate vegetation restoration modes in the forest-grass 293 

transition area Feng (2017) by the 450 mm precipitation line (Figure 4c). Moreover, priority areas 294 

for afforestation (with precipitation less than 450 mm) still exist in the east of the Northern Shaanxi 295 

Loess Plateau (Figure 4b). Therefore, although precipitation is an important limiting factor for the 296 

regional vegetation types or selection of ecological restoration modes, it is not appropriate to rely 297 

on this factor alone to identify priority areas and vegetation restoration modes. 298 

5. Discussions 299 

Our analysis illustrates how substantial improvements can be made by identify priority areas 300 

and vegetation restoration modes. We provide a theoretical basis and technical standards to select 301 

the vegetation restoration mode. Our methodology can guide future studies in measuring the impact 302 

of land ecological policies and programs on various environmental and social outcomes. 303 

Conventional measurement of ecological effectiveness in geography or ecology focuses on 304 

describing the temporal and spatial changes of the ecological environment quality after 305 

implementing the PES policy or project (Zhang et al., 2016; Dou et al., 2020; Hou et al., 2016). 306 

However, the causality test is still based on empirical judgment rather than reliable statistical 307 

inference, and it is difficult to determine whether these changes are caused by PES. Identifying 308 

priority areas and vegetation restoration modes based on ecological effectiveness assessment of PES 309 
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will improve the survival rate of vegetation and bridge the gap between vegetation restoration and 310 

water consumption of economic development to some extent. However, the incentive scheme 311 

designed in this paper simply compares the ecological effectiveness difference of two vegetation 312 

restoration modes in different spaces from the perspective of land use transition without considering 313 

the cost-effectiveness of PES. Considering utility maximization, funds must be allocated to areas 314 

with the highest ecological efficiency or the lowest investment cost. In the PES project, the financial 315 

subsidies for the CFF is much higher than CFG, which leads farmers to choose afforestation while 316 

ignoring natural suitability. Cost-effectiveness, which is critical in evaluating the sustainability of 317 

PES projects, has attracted the attention of many scholars, especially in the subjects’ (or spaces’) 318 

selection (Wünschera et al., 2012). The subjects’ (or spaces’) selection of PES is mainly affected by 319 

the level of ecosystem services, the cost of providing ecosystem services, and the risk of ecosystem 320 

degradation when there is no ecological compensation (Wünschera et al., 2012). 321 

The new round of SLCP emphasises farmers’ participating in the PES projects voluntarily without 322 

limiting their choice of vegetation types. Thus, it crucial for the government to design an effective 323 

incentive scheme of PES to lead farmers to choose suitable vegetation restoration patterns based on 324 

the ecological effectiveness of environmental policy instruments. At present, input-cost methods are 325 

applied for the reforestation projects to calculate the subsidy standard, which results in an 326 

afforestation subsidy much higher than that of planting-grass. Hence, many farmers choose 327 

afforestation instead of planting-grass for the high subsidies despite the limitations of the natural 328 

environment for forests growth and even survival. Unsuitable vegetation restoration modes 329 

eventually bring about small and old trees, which have low forest survival rate and poor contribution 330 

to overall vegetation, and aggravate the water scarcity in the Northern Shaanxi Loess Plateau. 331 
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Performance payment is the most direct and efficient means to guide farmers to participate in 332 

ecological restoration projects as it encourages suppliers of environmental services to choose the 333 

best means to fulfil a desired level of environmental services (Zabel et al., 2009). Afforestation 334 

would result in a low survival rate and improve the ecological environment little in the poor natural 335 

conditions. If farmers are compensated according to the performance payment of PES, they will 336 

choose a reasonable vegetation restoration mode to avoid losses considering future benefits and 337 

risks. However, the randomness of environmental service production would make personal 338 

investment risky owing to the production of environmental services being the result of the 339 

interaction of human activities and many other environmental factors. We must consider how to 340 

reduce the risks and interferences preventing suboptimal incentives for service providers in the 341 

production process of environmental services when using performance payment (Zabel et al., 2009). 342 

6. Conclusions 343 

In the counterfactual framework, the SLCP affects the NDVI positively, and the average marginal 344 

contribution of CFF is better than that of CFG. The RAI can identify priority areas and vegetation 345 

restoration modes. Furthermore, the priority zones for afforestation with RAI greater than 1 reach 346 

11460 km2, accounting for 14.101% of the Northern Shaanxi Loess Plateau. These regions are not 347 

only in the south of the Northern Shaanxi Loess Plateau, such as Huangling, Huanglong, Fu, and 348 

Yichuan counties, but also distributed sporadically in the eastern Northern Shaanxi Loess Plateau 349 

although its rainfall is less than 450 mm, while others are more suitable for grass-planting. It might 350 

be improper to identify priority areas and vegetation restoration modes by the precipitation alone 351 

for precise decision-making despite its important limitation for the vegetation restoration. 352 

 353 
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 469 

Table 470 

Table 1 Variables and descriptive statistics 471 

Variables Explanation Unite Mean Std. Dev Min Max 

ndvi00 Annual average NDVI  0.483 0.186 0.062 0.998 

ndvi15 Annual average NDVI  0.656 0.178 0.078 0.999 

temp00 Annual average air temperature ℃ 9.744 0.895 7.578 12.075 

temp15 Annual average air temperature ℃ 9.978 1.018 7.982 13.179 

rain00 Annual average precipitation mm 349.361 98.225 119.593 691.230 

rain15 Annual average precipitation mm 363.377 95.483 190.562 576.083 

humidity15 Annual average relative humidity % 56.336 2.783 48.465 62.138 

wind15 Annual average wind m/s 2.131 0.323 1.400 3.100 

aspect 
Average angle between its own 

azimuth and the South`s 
 

-90.121 4.393 -180 -7.167 

slop Average slop  。 11.860 5.532 0 45.881 
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Variables Explanation Unite Mean Std. Dev Min Max 

fl00 Rate of farmland aeras in 2000  0.354 0.249 0 1 

hails HAILS  0.124 0.079 0 1 

slcp SLCP  0.741 0.438 0 1 

cff CFF  0.227 0.419 0 1 

cfg CFG  0.698 0.459 0 1 

Note: aspect= E (-abs (180- azimuth in the grid))472 
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Table 2 Ecological effectiveness measurement of PES 473 

 Model（1） Model（2） Model（3） Model（4） Model（5） 

ndvi15 Coef. Std. Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. 

slcp 0.0221*** 0.0007 0.0246*** 0.0007 0.0425*** 0.0011     

cff       0.0992*** 0.0014   

cfg         0.0530*** 0.0012 

temp15 0.0085*** 0.0006 0.0132*** 0.0006 0.0145*** 0.0007 0.0036*** 0.0007 0.0184*** 0.0007 

rain15 0.0009*** 0.0000 0.0008*** 0.0000 0.0008*** 0.0000 0.0009*** 0.0000 0.0008*** 0.0000 

wind15 -0.0108*** 0.0013 -0.0189*** 0.0014 -0.0216*** 0.0014 -0.0196*** 0.0014 -0.0226*** 0.0014 

humidity15 -0.0215*** 0.0002 -0.0962*** 0.0051 -0.1202*** 0.0056 -0.1099*** 0.0056 -0.1200*** 0.0056 

humidity152 
  

0.0007*** 0.0000 0.0009*** 0.0000 0.0008*** 0.0000 0.0009*** 0.0000 

aspect -0.0088*** 0.0016 -0.0092*** 0.0016 -0.0100*** 0.0008 -0.0114*** 0.0008 -0.0100*** 0.0008 

aspcet2 -4.92E-5*** 8.62E-6 -5.11E-5*** 8.66E-6 -5.55E-5*** 4.15E-6 -6.29E-5*** 4.50E-6 -5.53E-5*** 4.14E-6 

slop 0.0032*** 0.0001 0.0034*** 0.0001 0.0029*** 0.0001 0.0029*** 0.0001 0.0023*** 0.0001 

ndvi00 0.5882*** 0.0031 0.5796*** 0.0032 0.5912*** 0.0031 0.5789*** 0.0030 0.5943*** 0.0030 

hails -0.0643*** 0.0038 -0.0614*** 0.0038 -0.0873*** 0.0037 -0.0689*** 0.0036 -0.0998*** 0.0037 

_cons 0.7524*** 0.0715 2.8384*** 0.1585 3.4736*** 0.1616 3.2135*** 0.1619 3.4299*** 0.1591 

fl00 
  

  6.3438*** 0.0453 1.3152*** 0.0221 4.4376*** 0.0303 

slop 
  

  0.1911*** 0.0017 0.0522*** 0.0012 0.1593*** 0.0015 

fl00*slop 
  

  0.5309*** 0.0059 0.0776*** 0.0036 0.3063*** 0.0043 

temp00 
  

    0.2341*** 0.0081 -0.5002*** 0.0104 

rain00 
  

    0.0006*** 0.0001 0.0008*** 0.0001 

_cons 
  

  -3.0477*** 0.0254 -4.4037*** 0.0666 2.0215*** 0.0823 

/athrho 
  

  -0.2314*** 0.0112 -0.7555*** 0.0127 -0.3381*** 0.0110 

/lnsigma 
  

  -2.6122*** 0.0025 -2.5124*** 0.0039 -2.6035*** 0.0027 

rho 
  

  -0.2274 0.0106 -0.6384 0.0075 -0.3258 0.0099 

sigma 
  

  0.0734 0.0002 0.0811 0.0003 0.0740 0.0002 

lambda 
  

  -0.0167 0.0008 -0.0518 0.0008 -0.0241 0.0008 

474 
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Figure 

Figure 1 Theoretical framework 

Figure 2 Location of study site, which is colored according to the elevation (m). 

Figure 3 Scatter plots and linear fitting between relative humidity and the NDVI; (a) Scatter plots 

and linear fitting between relative humidity and the NDVI when the relative humidity is less than 

its average; (b) plots and linear fitting between relative humidity and the NDVI when the relative 

humidity is more than or equal to its average;(c) Scatter plots and quadratic fitting between relative 

humidity and the NDVI. 

Figure 4 The spatial distribution of vegetation restoration modes based on the RAI; (a) Northern 

Shaanxi Loess Plateau ; (b) The east of Northern Shaanxi Loess Plateau;(c)Forest-grass transition 

areas. 


