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Abstract. Phenylenes network is applied in several fields of chemistry sciences due to its advantages
compared to other several columnar networks, recently. This paper aims to introduce a kind of networks
which obtained by a family of dicyclobutadieno derivative of linear phenylene chain L,, which is made up
of n hexagons and (n + 1) quadrangles. Let L? be the strong prism of the dicyclobutadieno derivative of
linear phenylenes L,,. By taking full advantage of the knowleges about the normalized Laplacian spectra,
we induce the explicit expressions, with respect to the index n, of the multiplicative degree-Kirchhoff
index and the number of spanning tree based on the graph L2.
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1. Introduction

From respect of theoretical research, we only take into account simple, connected and finite graphs. It
in essence describes some definitions in graph theory that G is a simple undirected graph with Vg =
{v1, va, -, v,} and Eg = {e1, ea, -+, ey }. For more other basic graph notations, one can be referred
to [1]. We use the notation A(G) indicate the adjacent matrix of G which is labeled as A(G) = (@j)nxn-
We consider the diagonal degree matrix as the symbol D(G), whose ith diagonal is marked as d;, the
degree of vertex i. The normalized Laplacian is of great help in analyzing the structural properties
of non-canonical graphs. The Laplacian of G is defined as L(G) = D(G) — A(G) and the normalized
Laplacian of G is defined to be £(G) = I — Dz(D~'A)D~2 = D=2 LD~2. What is noteworthy is that
the (p, ¢)th-entry of L(G) are denoted by

L, P=gq;
(L(G)pg =S — i P#aand vy < v (1.1)
0, otherwise.

The classical distance between any two nodes v; and v; can be defined to be d;; = dg(v;, v;), which
stands for the length whose (v;,v;)-path is shortest in G. We regard the total of distances among all
vertices pairs in G as the notation W(G) [2,3], named the Wiener index and that is

W(G) = dij.

For the first time, the Wiener index was introduced into Chemistry in 1947. After that, scholar’s
work sheds more lights on the Wiener index, see [4-8]. Later, the Gutman index [9] of the simple graph
G was introduced, considering the degree d; of vertex v;, is expressed by

Gut(G) = did;dy;.
i<j

Suppose that each edge of a connected graph G is considered as a unit resistor, and the resistance
distance [10] between any two points ¢ and j is denoted as r;;. Similar to Wiener index, Kirchhoff
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index [11,12] of the graph G is expressed as the total of the resistance distance among each pairs of
vertices, namely

1<j
In 2007, the multiplicative degree-Kirchhoff index was defined by Chen and Zhang [13], that is

Kf(G) =Y did;ri;.

1<J

Spanning tree is an important part to describe the stability of a network, which is also called complex-
ity. It has direct applications in network design including standard random walks. Some other subjects
with regard to the number of spanning trees can be consulted in [14-16,22] and references therein.

As organic chemistry rapidly evolves, some polycyclic aromatic compounds have become an important
part of organic chemistry. Pheneylenes consist of a number of adjacent hexagonal and quadrilateral rings,
and each quadrangle adjacent to at most two non-adjacent hexagons. Phenylenes and its dicyclobutadiene
derivatives are, of course, classified as polycyclic aromatic compounds. On account of its wide application,
molecular graphs of phenylenes have aroused great interest in chemists, biologists and network scientists.

Let L,, be the dicyclobutadieno derivative of phenylenes, which obtained by adding two four-membered
rings to the terminal of phenylenes as shown in the panel of Figure 1. One can see [25] for more details
of this. Provided graphs G and H, we consider that the notation G X H stands for the strong product
of these two graphs with V(G) x V(H). For more definitions and concepts, readers can refer to [17].
Lately, Pan et al. [16,18] derived the kirchhoff index in line with resistance distance of graphs P,, and C,,.
Similarly, Li et al. [19] put forward some invariants with respect to resistance distance of the star S,,. For
more results, refer to [20-23]. Then, we obtain the strong prism of L,, after much deliberation. Let L?
be the strong prism of L,,, which is plotted in Figure 2. One can be convinced that |V(L2)| = 12n + 8
and |E(L2)| = 38n + 20.
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Figure 1: Given graph L.

In the paper, we concentrate our attention upon the strong prism of the dicyclobutadieno derivative of
linear phenylenes. Henceforth, to show this, we can write the following based on thinking over the graph
L? with n > 1. The rest of the paper is organized as below: In Section 2, we put forward some illustrious
concepts and lemmas for the development of this paper. In Section 3, we first have the normalized
Laplacian spectrum, then arrive at the multiplicative degree-Kirchhoff index and the complexity of L2,
respectively. Finally, we close this paper with a conclusion in Section 4.
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Figure 2: Given graph L2.

2. Preliminary Results

Following the previous subsection, let L,, be the dicyclobutadieno derivative of phenylenes and the graph
L? be obtained from the strong prism of the graph L,, where L,, and L? are depicted in Figure 1 and
Figure 2, respectively. The characteristic polynomial of matrix A is represented as ® 4(z) = det(zI,, — A).

It's worth noticing that 7 = (1,1/)(2,2')--- ((3n + 2), (3n + 2)’) is an automorphism. Let V; =
{ur,uz, -+ s usni2,v1, - a2}, Va = {ul uhy o U0, 0, U0 [V(LD)] = 12048 and [E(L7)] =
38n + 20. Thus the normalized Laplacian matrix can be expressed as the form of block matrix, that is

2\ __ ‘CV1V1 £V1V2
K(Ln) N ( £V2V1 £V2V2 ’

in which
‘Cvlvl = ‘CV2V2? £V1V2 = [-"V2V1 . (22)
Let
%16n+4 %IGnJrél
W= a1r _1r
V2 6ntd /2 6n+4
then

2 1 _ ACA 0

where L4 = Ly,v, + Lv,v, and Lg = Ly,v, — Ly, v,. Note that W’ is the transposition of W.
Lemma 2.1. [24] Suppose that L4, Ls are determined as above, then one has
(I)ﬁ(Ln)(x) =Pz, (x) : (I)lls (x)
Lemma 2.2. [13] Let Ay < A < -+ < An be the eigenvalues of L(G), then the multiplicative degree-
Kirchhoff index can be denoted by
Kf*(G)= Qmi *
- k=2 Ak

Lemma 2.3. [1] The number of spanning trees of the G can be called the complexity of the G at the
same time. Then the complexity of the G is



3. Multiplicative degree-Kirchhoff index and complexity of L?

In this section, we are devoted to using the eigenvalues of normalized Laplacian matrix to derive the
multiplicative degree-Kirchhoff index of L2. At the same time, we calculate the spanning tree of L2.

Then, we obtain

Lv,v,
1 1
1l ~ 01 0 0 -1 01 0 0 0
v 11 N 0 0 0 ~1 0 0 0
0~ 1 0 0 0 0 0 0 0
. . . . 21 . . . 11 .
0 0 0 11 N 0 0 0 —1 o1
_ 01 0 0 = 1 0 01 0 0 -1
-1 01 0 0 0 11 — = 01 0 0
0 -1 0 0 0 N 1 N 0 0
0 0 0 0 0 0 — 135 1 0 0
. . 21 . . . . . 11
0 0 0 -1 01 0 0 0 11 =
0 0 0 0 -1 0 0 0 — = 1
and
Lviv,
1 1 1
5 UE o1 0 0 -1 o1 0 0 0
“vE T Um 0 0 0 -1 0 0 0
0 —u= -3 0 0 0 0 0 0 0
. . 21 21 . . . 21 .
0 0 0 T U 0 0 0 —1 01
_ 01 0 0 ~7= 3 01 o1 0 0 -1
-1 01 0 0 0 5 TVm 01 0 0
0 ~1 0 0 0 VETT VR 0 0
0 0 0 0 0 0 —= 3 0 0
. . . 11 . . . . 11 21
0 0 0 -1 o1 0 0 0 T U
0 0 0 0 -1 0 0 0 v

which are matrices of order 6n + 4.
Owing to L4 = Lv,v, (L2) + Lv,v, (L2) and Ls = Ly, v, (L2) — Ly, v, (L2), we have matrices of order




6n + 4. One can be convinced that

2 1 0
_l gﬁ _ 1
N
0 0 0
, ) 0 0 0
4T -1 0 0
0 -3 0
0 0 0
0 0 0
0 0 0
and
6
50
0 =
0 0
0 0
0 0
0 0
Ls = 0 0
0 0
0 0
0 0
0 0
0 0

Consequently, we find that the normalized Laplacian spectrum of L2 is consisted of the eigenvalues of
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L4 and Lg, according to Lemma 2.1. It stands to reason that the eigenvalues of Lg are composed of g

with multiplicity (2n 4+ 4) and % with multiplicity (4n), for Lg is a diagonal marix. Then, it is not hard

to acquire a complete description about the eigenvalues of L4, which can be applied for calculating the

characteristic quantities of L2.
Let
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and

-L 0 0 o0 0 0 0
0 -1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 -1 0 0 0
D = .
0 0 0 0 0 0 0
0 0 0 0 0 -1+ 0
1
0 0 0 0 0 0 —5 (3n+2) x (3n+2)

Then %L 4 should be protrayed as

1 C D
ZEA_(D C’)'

W_ ( %I3n+2 %IBnnLZ >
= 1

Suppose that

\/§I3n+2 _%1371-&-2

is the block matrix. Hence, one has

1 , (C+D 0
W(z‘CA)W_< 0 C—D)'

Let S=C+Dand T =C —D. As for %E A and S, T, their eigenvalues are equal. Assuming that «;

and B;(i,5 = 1,2,--- ,2n + 1) are, respectively, the eigenvalues of S and T, with a1 < as < ag <--- <
Q3nt2, B1 < P2 < B3 <+ < Panie . It is obvious to see that the normalized Laplacian spectrum of L2
is {20[17 2042, e, 20[37,,_;'_2, Qﬂl, 2B2, ey 2[’33”4_2} and we check o) > 0 and ﬂl > 0.

Note that |E(L2)| = 38n + 20, the following is a direct result of Lemma 2.2.
Lemma 3.1. Assume that L2 be the strong prism of the dicyclobutadieno derivative of phenylenes. Let

1 1
5TYE 0 0 0 0 0

—% 2 L 0 0 0 0

35 7 \{%
0 _% 2 L 0 0 0
0 0 o= 3 0 0 0
S = . 7 . . . . )
0 0 0 0 2 —é/% 0
0 0 0 0 —J% 2 —{%
0 0 0 0 0 0 5 (3n+2)x (3n+2)
and

3 1
i - 0 0 0 0 0

_ 1 4 __1 0 0 0 0
V3BT ¥35
i T 00 0
0 0 -7 7 0 0 0

T = . . . . . .

0 0 0 %1 —ﬁ 01
0 0 0 0 0 0 5 (3n+2) x (3n+2)



Then, we have

Kf*(LQ)—2(38n+20)[(2n+4)5 (4n)L 4 Ei li i} (3.3)
n/ 6 8 2 2 — 6] ) :
as desired.

Lemma 3.2. Assume that a;(i = 1,2,--- ,3n + 2) is defined according above stated. one has

3"z+:2 1 3610n° + 8779n% — 630n + 1200
— o 10(38n + 20)

Proof. Suppose that &(5) = I3"+2—|—a1x3"+1—|—~--—|—a3nx2+a3n+1x = g;(x3"+1+a1m3”+...+a3nx+a3n+1)7
where aw, a3, -+, asn42 are the roots of the equation

¥ 4 a2 4+ agn + agng1 =0,

and we find that —, L ..., —L_ are the roots of the next equation
[e5] Q3 Qa3n+42

a3 12" Faz, 2 - Faz+1=0.

Employing Vieta’s Theorem, one has
1 —1)3n
Yy —= ()—ai’m_ (3.4)
— o;  (=1)*"*tlag,iq
For 1 < i < 3n + 1, we take into account S; and put s; := detS;. We shall obtain the equation of

54, which can be applied for computing (—1)*"as, and (—1)3"*lag, 1. We proceed by considering the
following facts. Then, one has

1 1 1 1
T 2T 35 BT qry T 1225
and
S3; = 25311 — 3593i—2, 1 <i<m;
S3i41 = 283, — 3=83i-1, 1 <i <

2 1 -
83i+2 = £83i+1 — 3953, 0<i<n—1

After further simplification, the transformation form of the above formula is obtained.

Similarly, we have

, 1 , 1 , 1 , 1
175 %27 35 8T 1750 %47 1905
and
! 2 !
53; = 593i—1 — 35331 2 1<i<my
! _ 2 ’
8341 = 753: — 35331 -1 L<i<mn;
!’ 2 7
S3i+2 = 753i+1 — 49332, 0<i<n-1



Therefore, the transformation form of the above formula is obtained.

s3= % (35), 1<i<m;
sy = 5 (gh)h 1<i<m (3.6)
S3ive = 35 (735)"
Then in the light of Claim 3.1, we are ready to determine the equation of (—1)3"as,, and (—1)3"*taz, 1
based on the next claims. For convenience, suppose that diagonal entries of S denote as [;; in the following.
n
Fact 3.3. (—1)3”+1a3n+1 = 10;;971 (ﬁ) .
Proof of Fact 3.3. Since the sum of all principal minors of S is presented by the number (—1)3"*taz, 1,

which have (3n + 1)-rows and (3n + 1)-columns, we can acquire

3n+2 3n+2 S 0 3n+2
(1" agn = Y detlali] =) det< 10‘1 g ‘ ) =) sic1cSgup0 s (37)
i=1 i=1 3n+2—1 i=1
where
liv1i41 -+~ 0 0
S?m+27i = O I 1
3n+1,fn+1 \/%
0 e — 7% I3n41,3n+1
By Eq.(3.5), (3.6) and (3.7), we have
n n n—1
(“1)*" M agner = Saner+ Szuq1 T Y S50-142  S3nong2 T D53 Symoner T Y S+l Sz
1=1 1=1 1=0
o Ly Ly T Ly I Ly
N 5 \245 5 \245 25 \245 25 \245
10+ 19n (i)n
B 25 245/
The proof of Fact 3.3. completed. m

3. 2 - n—1
Fact 3.4, (—1)""ag, — Bin s ssusmso (1)
Proof of Fact 3.4. We observe that the (—1)3"as,, is the total of all the principal minors of order 3n of
S, then

snt2 | Siz1 0 0
(—)%az = 3 | 0 Z 0 ,1<i<j<3n+2, (3.8)
1<i<j| 0 0 S50
where
lit1i41 0
7 = : ,
0 R RN A
and
lit141 0 0
S:?erQ*j = : - L
0 l3n+1,i;n+1 3
0 v l3n+2,3n+2



Note that

3n+2 , 3n+2 ,
(—1)%*"as, = Z si—1-detZ - detSs, 5 ; = Z detZ - si—1 - Szpyoj- (3.9)
1<i<j 1<i<y

By Eq.(3.9), we know that the result of detZ will be different with the values of ¢ and j. Then we
can classify the following nine cases.
Case 1. 1 =3k and j =3l for 1 < k < < n, one has

2 1
VYL b e
T 71 /35 )
0~ 5 Tym 0 0
detZ; = 0 0 ~ 7% 7 0 0
: : 2 :
0 0 0 0 71 —2%
0 0 0 0 7 7 1(31-3k-1)
—k
B (245) ’
Case 2. i =3k and j =3[+ 1 for 1 <k <[ <mn, one has
z -1 0 0 0 0
1 2 1 0 0 0
7 7 {g
0 —\/% = ——L 0 0
gﬁ
_ 0 0o - 2 0 0
detZy = V35 7
: : 2 :1
0 0 0 0 £ *F
0 0 0 0 - 2
V35 5 (31—3k)
sk ()"
= (Bl-3k+ )<245) ’
Case 3. i =3k and j =3[+ 2 for 1 <k <[ <mn, one has
z -1 0 0 0 0
1 2 1 0 0 0
7 7 {g
0 __1 2 __1 0 0
V35 5 é/%
detzy; = | 0 0 —gm 7 0 0
3 = 35
: 2 :1
0 0 0 0 £ —F
0 0 0 0 v
(31—3k+1)
| s o 1 N\ I—k+1
— 35(30— 3k + )(245)



Case 4. i =3k + 1 and j =3l for 0 < k <[ < n, one has

detZ4

Case 5. 1=3k+1and j=3l+1for 0 <k <l <n,one has

detZ5

Case 6. 1 =3k+1and j =3l+2for 0 <k <[ <n,one has

detZG

Case 7. i =3k +2 and j =3l for 0 < k <[ < mn, one has

detZ7

1
— ﬁ O1 0
5 /35 0
__1 2 _1
\éﬁ _71 27
7 7
0 0 0
0 0 0

8l -3k —1) ( 1 )l—k—l

7

245

1
7 01 0
5 —ym 0
T G
V35 71 27
0 -7 7
0 0 0
0 0 0

21(1 — k)(ﬁ)l_k.

1
7 0 0
2 L 9
Y

3 71 27
0 -7 7
0 0 0
0 0 0

(31 — 3k + 1)(i)l_k.

245

1
s o0
7 —7 0
J1o2 o

7 71 35
0 - 3
0 0 0
0 0 0

0 0
0 0
0 0
0 0
2 1
T
77 1@31-3k—2)
0 0
0 0
0 0
0 0
2 1
Lo
V35 5 (31—3k—1)
0 0
0 0
0 0
0 0
2 1
RIS
V35 7 (31—3k)
0 0
0 0
0 0
0 0
2 1
T
77 1@31-3k—3)




Case 8. i =3k+2and j =31+ 1 for 0 <k <l <n, one has

2 __1 0 0
_l 5,/% _1 0
V35 71 27 1
0 -1 2 1
. 0 07 _L ﬁ
detZy = V35 5
0 0 0 0
0 0 0 0 —
1 \I—k
= 49(31— 3k — 1)(%) .

Case 9. 1 =3k +2and j =31+ 2 for 0 < k <l <n, one has

2 1
coE L
V35 71 27 1
0 —7 T TYm
detZy = 0 0 -7 3
0 0 0 0
0 0 0 0 -

Therefore, we can obtain

ﬁ‘ N O O O O
W=
ot

o O O O

U - - e
wH
(S

\m\)ﬁ‘
w -
&

o O O O

o
w)—‘
i

o O O O

(31—3k—2)

(31—3k—1)

(—1)"ag, = D detZ - sp—1-sguy0 =G+ G+ G
1<i<j<3n+2
where
Cl = Z det21 ©S83k—1 SémfglJrQ + Z detZ2 ©83k—1 S;)nfglJrl
1<k<i<n 1<k<i<n
+ Z detZs - s35,_1 - 5/3,1_3[ + Z detS[3k,3n + 2] - 351
1<k<I<n-—1 1<k<n
- n(n2_1) (i>n71+ n2(n+1) (i)nfl
N 490 245 350 245
n%(n—1) (i)"*l n n(3n +1) (i)nfl
350 245 490 245
_19n® + 1507 (L)"’l
2450 245 ’

11

(3.10)



G = Z detZy - 83k - 835, 3142 + Z detZs - 83k - S35, 3141 T Z detZs - S3k + S3p_3y

1<k<i<n 1<k<i<n 1<k<i<n—1
+ > detS[3k+1,3n+2] 53+ Y detS[1,3] 55, g0+ Y detS[L3L+1] 5, g0y
1<k<n 1<I<n 1<I<n
+ > detS[1,31+2] - sy, + detS[1,3n + 2]
0<i<n—1
~ n*(n—1) (L)"—l N n(n?—1) (L)"—l N n(n —1)2 (L)n—l
N 350 245 250 245 250 245
+n(3n -1) (i)”—l n n(3n+1) (i)”—l n 3n(n+1) (i)”—l
350 245 490 245 350 245
nBn—1), 1 \»=1 3n+1/ 1 \n-1
D )+ 5 )
350 245 245 \245
~133n° + 25702 + 2100 + 50 (i)n—l
- 12250 245 ’
and
<3 = Z detZ7 - S3k+1 S/3n73l+2 + Z detZsg - S3k+1 ° S;’m73l+1 + Z detZy - S3k+1 S;‘m73l
0<k<i<n 0<k<i<n 0<k<l<n—1
+ ) detS[Bk+2,3n+2] - s3p41
0<k<n-—1
_ n2(n + 1) (i)’n—l n n(n + 1)2 (i)n—l n TL(TL2 _ 1) (i)n—l
- 350  \245 250 245 250 245
3n(n+1) (L)nfl
350 245
_ 1913 + 34n2 + 15n (i)”*l
- 1750 245 ’

Hence, substituting ¢;, 2 and (3 into Eq.(3.10), we can obtain

(=D ag, =G+ G+ (=

361n® 4+ 570n? + 315n + 50 (L)nfl
12250 245 '
The proof of Fact 3.4 completed. [

Let 0 = a3 < ag < ag < --- < agpyz be the eigenvalues of S, we can get Lemma 3.2 according to
Fact 1 and Fact 2. It is obvious that

?’i? 1 (=1)®az,  361n° +570n% 4 3150 + 50
o (Z1)PHlagen 38n + 20 '

Lemma 3.5. Assume that 8;(j =1,2,---,3n + 2) is defined according above stated. one has

?’gf 1 [10380n(11 + 2v/30) + 5400 + 11677+/30]7; — [10380n(11 — 2v/30) + 5400 — 11677v/30] 7,
7=
j=1

240[(60 + 11v/30)7, + (60 — 11v/30)n.] 7

where 1 = (11 4 2+/30)" and 1, = (11 — 24/30)™.
Proof. Suppose that ®(T) = > 2+ b1y 4+ b3y +bany1y = y(y*" T +019>" +- - +b3ny+bsni1),
where (1, 82, , B3n42 are the roots of the equation

y3n+1 + b1y3n + .+ bgny + b3n+1 = 0’

12



and we find that - -+, =—— are the roots of the next equation
B1’ ,32 Ban+2

b3n+1y3n+1 + bgnysn 4+ -+ b1y + 1= 0

Employing Vieta’s Theorem, one has

3n+2 1)3n+1p
Z _ D™ bani (3.11)
detT

For the sake of convenience, let R, is used to express the p — th order principal minors of matrix 7',
and r, = detR,, is recorded. For 1 < p < 3n+ 1, we shall obtain the equation of r,, which can be applied
for computing (—1)3""1bs3,, 11 and detT. We proceed by considering the following facts. Then, we obtain

3 1 19 65

T T35 BT s T 1225

and

1 )
T3p = —1— 35T3p—2, 1 <p <y

|| m\w

T3p+1

T3p
4 1 .
773p gT:Sp—l, I1<p<m
_ 4
T3p+2 = 7T

3p+1 — 2573p, 0 <p<n—1
After further simplification, the transformation form of the above formula is obtained.

105+14+/30 . (11+2W)p 4 105-14+/30 et 2W)p 1<p<n;

T3p = 150 /i = 15\0ﬁ W
__ 454830 11+2 45-8 11-2 .
3p+1 = —‘;5(\)/7 ( f)p + 15(\]/7 ( 24 f)p 1<p<n
114230 (1142 11-2 11— 2
rapp2 = TG0 (BSRR)P + - ( 0P, 0<p<n-—1.
Similarly, we have
’ 3 ’ 1]_ ’ 19 ’ 65
re= = Ty = — P = —, Ty = ———
175 2735 3 1757 4 12257
and
’ 2 ’
T3, 5T3p—1 — 35r3p 9, 1 <p<my
/ 2./ 1
T3p+1 = 773p 357’3p—17 1<p<n
! _ 2 1 !
Fapi2 = 3Tapi1 — 2573y 0 <P <n— L.

Therefore, the transformation form of the above formula is obtained.

7“;,1, _ 105+14\/% (11+2\/%)p + 105714\/% (1172\/%)177 1<p<n
! _ 45+8W 114230 45— 8\/7 11-2+/30
T3p+1 = f ( 245\%)1) + 150\ﬁ - ( 245%)1) L<p=<mn
! 1142 1142 11-2 11-2
T3pta = + (HERE0P + M2 ( P 0<p<n-l.

__ 6041130 /114230 60—11v/30 /11—2/30
Fact 3.6. det T = >=2 ( 5 )+ 375 ( S )"

Proof of Fact 3.6. Expanding det T along the last row, we have

1 _ 60+ 11\/%(11+2\/%)n+ 60 — 11\/%(11 —Qm)n
35 %" 375 245 375 245 ’

3
det T = gr3n+1 —

as desired.
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Fact 3.7.

(_1)3n+1b3n+1 _

10380n(11 + 2v/30) + 5400 + 11677+/30 (11 + 2\/§o)n

90000 245
~ 10380n(11 — 2v/30) + 5400 — 11677+/30 ( 11— 2\/ﬁo)n
90000 245 '

Proof of Fact 3.7. Since the sum of all principal minors of T is presented by the number (—1)3"+1bg,, 1,
which have (3n + 1)-rows and (3n + 1)-columns. For convenience, suppose that diagonal entries of T'
denote as g;; in the following, we can acquire

3n+2 3n+2 3n+2
3n+1 _ i—1
(1) g,y = Z det 1] Z det( ; R3n+2 ) ) Z Pt T (3.12)
where
Jitlitrl " 0 0
Ry s : :
ez 0 93n+1,3n+1 —\/%
0 —\/13—5 93n+2,3n+2
In line with Eq.(3.12), we have
n—1
(1% bgn1 = Taner + T +Zdet T[31] +Zdet T[BI+1]+ ) det T[31 +2]
=1 =1 1=0
n—1
= T3n+1 +T3n+1+z7’3(l D+2 - 7"3(n z)+2+z7"31 7"3(n z)+1+z7"3l+1 T3(n—1)
=1 =1 1=0

The following forms can be generated by using above equations.

_245n 114 2v30 nt1 11 —2¢/30, nt1
ZTS(Z 1)+2° TSn 1)+ 20 ( 245 ) (T)

V30 ,11 +2v30\n /30,11 —2v/30\n
*1200( 245 )" - 1200( 245 )"

n , 2401n 11 4+ 2v/30\n+1 11 — 2¢/30\ nt1
2t e =550 (Tggs ) (T )
+161\/?E(11+2\/3>0) 161\F(11—2f)
90000 245 90000 245
nt , 24011 11 + 230\ nt1 11 —2v/30  n+1
2 rs e =500 (Tggp )~ (g )
+1841\/%(11 +2\/%)n B 1841\F(11 - 2\F)
90000 245 90000 245
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and

g 90 16\/50(11 + 2\/30)n L 90— 16\/50(11 — 2\/30)n
R e B T) 245 150 245 '

We can obtain the desired resut of Fact 3.7. Hence, as an immediate consequence, Lemma 3.5 holds.
By Lemmas 3.1, 3.2 and 3.5, the expatiatory formula of K f*(L?) is showed in the the next theorem

at once.

Theorem 3.8. Assume that L2 be the strong prism of the dicyclobutadieno derivative of phenylenes.

Motivated by this, thus

Kf*(L2) = 1083n3+28887§2+2325n+550 + (38n + 20) [(—1)3;;;1)3”“]’

where
(1P ~10380n(11 + 2v/30) + 5400 + 11677+/30 ( 11+ 2\/§o)n
gt T 90000 245
~ 10380n(11 — 2¢/30) + 5400 — 11677\/30(11 - 2\/§o)n
90000 245 ’
and
60 + 11v/30 11 +2/30,,, 60— 114/30 11 —2v/30 .,
det T = ( )"+ ( )"
375 245 375 245

We proceed by showing the following result about the expatiatory formula of the spanning trees of
2.
Theorem 3.9. Assume that L2 is the strong prism of the dicyclobutadieno derivative of phenylenes.

Then, one has
32n+3 . 220n+5
(L) = — [(60 + 11v/30)(11 + 2v/30)™ + (60 — 11v/30)(11 — 2v/30)"].

Proof. Based on the proof of Lemma 2.2, we can without difficulty realize that ai, g, - -aon41 are
the roots of the equation 2" + 122" ' 4+ .-+ + asp_12 + a2, = 0. Then we have

3n+2
H a; = (_1)3n+1a3n+1.
=2

By Fact 3.3, we have
3ﬁ2a4_ 10+19n<i)”
el 25 245/

By the similar method,

i 60+ 11v/30 11 +2v30,,, 60— 11/30 11 —2/30,,
I 6 =det 7= 35 o3 ) T 3 oy )
j=1

15



Note that HUEVLQ d(L?) = 54F8 . 787 and |E(L2)| = 38n + 20. Together with Lemma 2.3, we have
1 6 8 3n+2 3n+2
T(L7) = s ()G (I 200)- (T 28 - C T d(£2))]
2|E(L3)] -5 7 : _
=2 j=1 UEVL%
32n+3 . 220n+5
= [(60 + 11v/30) (11 + 2/30)™ + (60 — 11v/30)(11 — 2v/30)"],

as desired.

4. Conclusion

Throughout this paper, we consider L2 which is the strong prism of the dicyclobutadieno derivative of

phenylenes. Using the related theorems of normalized Laplacian, we derived the expatiatory closed-form

formulae of the multiplicative degree-Kirchhoff index and complexity corresponding to L?. Research still

needs new discovery, development and improvement. In the future, we will focus on investigating complex
and useful objects about chemistry.
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