
Autonomous Dishwasher Loading from Cluttered

Trays using Pre-trained Deep Neural Networks

Isobel Voysey
Bio-Inspired Robotics Laboratory

Department of Engineering
University of Cambridge, UK

iv256@cam.ac.uk

Thomas George Thuruthel
Bio-Inspired Robotics Laboratory

Department of Engineering
University of Cambridge, UK

tg444@cam.ac.uk

Fumiya Iida
Bio-Inspired Robotics Laboratory

Department of Engineering
University of Cambridge, UK

fi224@cam.ac.uk

Abstract

Autonomous dishwasher loading is a benchmark problem in robotics that highlights the
challenges of robotic perception, planning and manipulation in an unstructured environ-
ment. Current approaches resort to a specialized solution, however, these technologies are
not viable in a domestic setting. Learning-based solutions seem promising for a general
purpose solutions, however, they require large amounts of catered data, to be applied in
real-world scenarios. This paper presents a novel learning-based solution without a training
phase using pre-trained object detection networks. By developing a perception, planning
and manipulation framework around an off-the-shelf object detection network, we are able
to develop robust pick-and-place solutions that are easy to develop and general purpose
requiring only a RGB feedback and a pinch gripper. Analysis of a real-world canteen tray
data is first performed and used for developing our in-lab experimental setup. Our results
obtained from real-world scenarios indicate that such approaches are highly desirable for
plug-and-play domestic applications with limited calibration. All the associated data and
code of this work is shared in a public repository.

1 Introduction

The process of autonomously loading a dishwasher is a benchmark problem for domestic robots (Dillmann,
2004; Vischer, 1992). This task is of particular interest as it introduces the challenges of an unstructured
environment in perception and manipulation, while constraining the complexity of the problem with a well-
defined task and a limited set of objects. The task involves challenges in design, perception, planning and
control. We restrict our study to the perception. planning and control problem by using a general purpose
6 Degree of Freedom (DoF) industrial manipulator with a simple pinch gripper (See Figure 1).

The first step in developing an autonomous dishwasher loading robot is to detect and estimate the grasp
point of objects in a tray. The level of accuracy required in the detection process depends on the object
manipulation system. With specialized cleaning devices, the output required from the perception process can

be minimal (CambridgeConsultants, 2019) to being absent (Dishcraft, 2019). For general purpose service
robots, the perception problem is challenging because of the variabilities among a class of object, visual
occlusion and sensory limitations. Next, we briefly enumerate the works on learning-based approaches for
perception, planning and control to examine the state-of-the art and their limitations.

The objective of the perception system is to estimate grasp points required for the given grasping mechanism.
Traditionally, this involved the process of segmenting and obtaining a full 3D model of the object and cal-
culating the grasping locations based on force balancing (Bicchi and Kumar, 2000; Miller et al., 2003; Weisz
and Allen, 2012). Although, such methods can provide optimal grasping strategies, they are practically dif-
ficult to implement due to their heavy sensory and computational requirements. Learning-based approaches
are promising due to their ability to cut out mid-level computational processes. Saxena et. al. showed that
it is possible to estimate 3D grasp points using multiple 2D visuals (Saxena et al., 2008a). Their work was
based on the insight that man-made objects have certain visual features that correspond to their appropriate
grasping location. Given labelled images with the ’correct’ grasp points, the mapping from the image to
grasp location can be learned in a supervised manner. However, such an approach requires a large amount
of manually labelled data, that is subject to human interpretation of the best grasp location. Moreover,
they are still susceptible to occlusions and visual noise. Successive works showed that incorporating depth
information significantly improved the performance of the system. as expected (Saxena et al., 2008b). Other
related works include automatic approach vector generation for grasping using learning by demonstration
(Ekvall and Kragic, 2007).

Deep learning based approaches have demonstrated their superiority in visual processing tasks (Hinton and
Salakhutdinov, 2006). With the relative ease of generating samples for learning and the ability to share
data set among different problems and domains make them highly desirable for our problem. Deep learning
based approaches have shown superior performance in object detection and classification problems with high
generalizability (Zhao et al., 2019; Girshick et al., 2014). Lenz et. al. proposed a deep learning framework for
generating object grasp locations from RGB-D images for the first time (Lenz et al., 2015). Their work showed
that deep learning based methods are highly desirable for grasp detection with excellent generalizability.
Additionally, their deep network directly provided the grasp location and orientation without additional
processing or hand-tuning and worked independently of the gripping hardware. However, the process still
required numerous manually labelled data set for training their network, which could also incur human biases
on the best grasp location.

Once the target objects are identified and localized, the next process is to develop the planning strategy,
which involves the sequence of objects to be picked and the trajectory to follow while doing so. The general
version of the problem is NP-hard and is a vast research topic (Wilfong, 1991). However, the process can be
simplified without strict constraints on a collision-free plan. Planning strategies can vary from push-grasping
(Lynch and Mason, 1996; Dogar and Srinivasa,) to multi-arm motion planning (Koga and Latombe, 1994;
Smith et al., 2012). It is however clear that physics based motion planning strategies still remain a challenging
robotic task (Yu et al., 2016). Deep reinforcement learning approaches have therefore looked promising for
this problem (Finn and Levine, 2017; Levine et al., 2016). However, such methods require a large number
of real-world trials or accurate simulation models (Andrychowicz et al., 2020) to be developed. This work
focuses mainly on the task of grasp identification, and thus we will consider only objects that can be picked
up without performing complex manipulation. We use a simple pinch-gripper for grasping and the motion
planning does not penalize object collisions explicitly. Collisions can lead to losing grip and perception errors,
which will be reflected in the clearance performance. The next paragraph presents the past research works
focusing specifically on the dishwasher loading problem.

Even though dishwasher loading is a common domestic application ripe for automation, there have been
very few works that have attempted to solve it entirely. Earliest works have tried to use supervised learning
techniques along with a rigid body simulation to decide the location to pick and place. However, the
demonstrations were limited to simulations and requires the availability of rigid body models for each object
type. Other works focus on handling occlusion and noisy sensors while performing the task of dishwasher
loading (Pajarinen and Kyrki, 2017). They model multi-object manipulation of crowded occluded objects

as a partially observable Markov decision process in order to improve planning process. This study was,
however, limited to a single object and ignored the complexities of object detection. Object placement after
picking is another complex problem that is involved in the dishwasher loading problem (Jiang et al., 2012b;
Jiang et al., 2012a). The dishwasher loading problem has also been used to develop grasp point identification,
as discussed in the previous section(Saxena et al., 2008a).

Although learning-based approaches seem the most promising for solving our specific problem, all of these
techniques require a data acquisition and learning phase which is heavily time consuming. Moreover, these
methods are either limited by the need for a simulation environment, subjective data labelling, high sensory
requirements, etc. This limits the generalizability of these approaches and their large scale deployment in
domestic environments. The aim of this study is to investigate a general purpose learning-based solution
for the dishwasher loading problem without a time consuming learning/calibration phase and the need for
complex physics models and rich sensory data. The core idea of this work is to use commonly available pre-
trained neural networks for objection detection and develop algorithms to extract relevant information from
the output of these networks. The immense progress in image detection deep networks can be attributed
to the developments in computational devices and the collective scientific effort to organize large labelled
databases. The Imagenet and COCO data sets are some of the most commonly used ones (Deng et al.,
2009; Lin et al., 2014). For this work we will be using the COCO data set. These databases have led to
the development of several deep-learning architectures for image detection and segmentation (Ren et al.,
2015; He et al., 2016; Girshick, 2015; Russakovsky et al., 2015; Krizhevsky et al., 2012; He et al., 2017).
Image detection involves classification and localization of objects using bounding boxes and image segmen-
tation involves classification and localization with edge detection. As objection detection has no labelling
ambiguity compared to grasp localization, they are desirable to avoid human biases. In this work, we use
pre-trained deep networks trained on the COCO data set for image detection, specifically a unified deep
learning architecture for image classification and detection called YOLO (You Only Look Once) (Redmon
et al., 2016a). There are few reasons for using this network trained on the COCO data set. First, the COCO
data set contains thousands of labelled images of objects typically found in a dishwasher loading problem
(with some exceptions such as plates shown later). Hence, deep networks trained on this database will be
robust to visual noise and be highly generalizable. Second, the YOLO architecture is very compact for the
accuracy it provides. Hence, training the network on additional images or testing the pre-trained network
is fast. Image segmentation networks are not considered as the available databases are currently limited to
very few objects. Note that pre-trained models like YOLO does not provide object pose information and
hence has to be estimated by further processing techniques as demonstrated in this work.

1.1 Contributions

This work presents an integrated object detection, grasping and manipulation framework build around pre-
trained deep neural networks for the dishwasher loading problem. We use a commonly available object
detection network called YOLO, trained on the COCO dataset. As our learning-based approach is derived
from pre-trained models and existing databases, there is no training required for setting up, while we maintain
the generalizability of deep neural networks and their robustness to visual noise. The viability of using YOLO
for object detection and grasping has already been proposed in an earlier work (Tian et al., 2019). We extend
this to a thorough framework that extracts the relevant information for object localization, pose estimation
and motion planning. The grasp point estimation and planning algorithm is independent of the object
class geometry, thereby requiring no parameter tuning for grasping and placing new unseen objects. We
incorporate a simple force feedback to the system to remove the requirements for depth information and
hence, requiring only a RGB camera. We run benchmark tests on our visual perception system from real-
world canteen data and develop a test protocol based on this data. The complete control framework is
then tested on an in-lab kitchen setup. To the best of our knowledge, this is the first research work that
has extensively tested a complete framework for dishwasher loading on real-world scenarios. Additionally,
we demonstrate the importance of interactive perception in manipulation tasks through a simple feedback
strategy that can drastically improve the performance of our system (Bohg et al., 2017; Katz and Brock,
2008). The results and data set obtained through our study can also serve as a tool for future researchers

and for developing novel deep networks.

Figure 1: Experimental setup and flow of communication.

2 Experimental Method

This section presents the experimental setup and the algorithms developed for the dishwasher loading prob-
lem. First, we introduce the experimental setup to provide an insight about the problem and the hardware
constraints. Further sections describe in detail the algorithms developed for the dishwasher loading problem
built around our experimental setup (See figure 2).

2.1 Experimental Setup

The setup we used for performing our tests is shown in Figure 1. It comprises of a pinch-gripper mounted
on a 6 degree of freedom (DoF) UR5 arm, which is mounted on a movable platform. The gripper is actuated
by a single servo motor. A silicon padding is added to the gripper to improve its grasping ability. An RGB
camera is mounted on last link of the UR5 robot arm to provide information about the scene. The camera is
mounted directly on the arm for two reasons. First, this allows us to easily transfer the whole system with
minimal calibration. Second, it provides an extra control authority over the scene detection. We use a 720p
logitech c270 camera for obtaining the RGB images. The pinch-gripper is controlled by commands from the
PC through an Arduino. The UR5 arm is controlled from the PC through the UR5 controller through a
TCP/IP connection. Commercially available kitchen utensils are used as our test objects. The tray with the
items and the dishwasher tray are place on a standard kitchen top. Three calibration markers are added to
the table for obtaining the camera-to-robot coordinate transformation. All the computation is done on an
Intel(R) Core(TM) i7-8750H CPU @2.20 Ghz with 16 Gb RAM. A GPU is not used for running the deep
neural network. All the codes are developed in the python programming language and are available on the
open repository bitbucket.org/cambirllab/isobel_4th_yr/.

bitbucket.org/cambirllab/isobel_4th_yr/

Figure 2: Overview of the complete process.

2.2 Object Detection

This section presents the object detection module upon which our planning algorithm and robot controller is
built on (Figure 2). The object detection process takes in a single image from the RGB camera and outputs
all the detected object, their relative pose, size and confidence in their estimation. This information is then
used for deciding the picking strategy. The object detection process starts with the capture of single image
from a known location in the robot workspace, creating a rotated duplicate and feeding it to the YOLO
network for object detection. This process is performed to infer the orientation of each object as explained in
section 2.2.2. The original image is rotated in a way to keep dimensions of image the same, i.e. the corners
of the image are cut off rather than resizing image to keep corners in frame. The subsequent subsection
provides a brief overview of the YOLO network.

2.2.1 YOLO

You Only Look Once (YOLO) is a an object detection algorithm where object detection is framed as a
regression problem to spatially separated bounding boxes and associated class probabilities. This makes it
possible to use a single neural network to predict bounding boxes and class probabilities directly from the full
images in one evaluation making the process fast and easy to train (Redmon et al., 2016b). Other algorithms
have to go through the image twice or separate localisation and classification into two stages. Only going
through the image once means that YOLO is very fast, with the latest version (YOLOv3) achieving speeds
of 34fps (Redmon and Farhadi, 2018). YOLOv3 downsamples the input image to a dimension of 416x416x3
and has 106 layers. Hence, for more accurate detection, it is necessary to perform YOLO detection on
segments of the image separately.

YOLO still lags behind state-of-the-art detection systems in accuracy. While it can quickly identify objects
in images it incurs error in localizing some objects, especially small ones. YOLO’s limitations stem from
the division of image required for processing in a single run. The image is divided into 7× 7 grid cells and
non-maximal suppression is carried out for objects detected within these regions. This means a maximum of
49 objects can be detected in a single image. However, this is unlikely to be a problem for our application.
For our study we use a pretrained YOLOv3 network trained on the COCO data set. Although the COCO
data set has only 80 objects classes, they include almost all of the objects found in a typical canteen tray.
This makes them particularly suited for our application. As plates are not labelled in the COCO data set,
we use a traditional circle detection algorithm called Hough circle detection for identifying and localizing
them. With progress in the manual labelling of various image data sets, we can expect this drawback to be
addressed in the future. Note that for adding new object labels to a image data set and to retrain an object
detection deep network, it is vital to manually label all the images with the new object for ideal training.

The regression problem tries to predict the two dimensional centre point, as well as a width and height for
each viable object candidate. Typically, this is represented as a bounding box around the detected object.
There are a few metrics that are typically used to evaluate the performance of such detection algorithms.
They include intersection-over-union (IOU), precision, and recall (see figure 3). IOU is a measure of how
closely the predicted bounding box overlaps with the ground truth bounding box. When it exceeds a chosen
threshold, the prediction made is considered to be a true one. Precision is the ratio of true predictions to
total predictions and recall is the ratio of true predictions to ground truth occurrences. They are given by:

IOU =
area of intersection

area of union

Precision =
TP

TP + FP
Recall =

TP

TP + FN

where TP stands for true positives, FP for false positives, and FN for false negatives. For all these metrics,
a value of 1 corresponds to ideal detection. Note that the ground truth labelling is still subject to subjective
errors.

2.2.2 Orientation Estimation

As YOLO returns a bounding box parallel to the image axes, there remains ambiguity about how the object
lies within the bounding box. This is particularly relevant for long thin objects, such as pieces of cutlery,
which will usually lie on one of the diagonals of the rectangle. Without highly adaptive gripper, it is necessary
to resolve this ambiguity. For example, in order to pick up items of cutlery with the pinch gripper used here,
it is necessary to know which diagonal to align the mouth of the gripper with.

The solution proposed here uses a rotated version of the original image, as mentioned in the beginning
of the section. It runs the same object detection algorithm on it, and compares how the dimensions of
the bounding box for an object differ from the initial image and the rotated image. For instance, the two
possible arrangements of a piece of cutlery in a given bounding box are shown in Fig. 4. Below these cases

Figure 3: A visualisation of the YOLO and plate detection results on an image from the canteen data set.
Object classes, confidence levels and bounding boxes are shown. The failure to detect the cup is an example
of a false negative for cups. The identification of the knife as a fork is an example of a false positive result
for forks.

is the expected bounding box on an image rotated anticlockwise. The dimensions change in different ways
depending on the initial arrangement. In Fig. 4 this is illustrated using the detection results from a example
tray captured at a canteen (see Section 3). For the cutlery lying on the diagonal from top right to bottom
left, the bounding box is narrower and taller in the image rotated anticlockwise. For the cutlery lying on
the diagonal from top left to bottom right, the bounding box is wider and shorter in the image rotated
anticlockwise. This means it is possible to infer which diagonal the object lies on, marked on the final image.
In some cases the bounding boxes may not change significantly or the changes are inconclusive or the object
is not detected in both images. In these cases, the diagonal was chosen randomly with equal probability to
reduce the computational time. Such cases can be solved by adjusting the viewing point of the camera or
by relying on a closed-loop strategy as proposed in this paper.

Since each image likely contains multiple objects and therefore multiple bounding boxes, we must compare
bounding boxes corresponding to the same object. This is not always possible purely by considering object
classes as there may be multiple instances of the same object in an image, or an object might be correctly
localised but misidentified as a similar object (e.g. a fork misidentified as a spoon in the rotated image). The
same rotation transformation that was applied to the initial image is applied to the centroid of bounding
boxes found in the initial image. This then gives the predicted location of the centroid in the rotated image.
This relies on both bounding boxes being very close to the the ground truth, within a certain radius of the
predicted centroid. This is reasonable as the image rotation is done in software rather than by rotating the
camera physically, thereby preserving the image characteristics.

2.3 Planning Algorithm

Once the objects are detected, localized and the their orientation determined, the next step is to predict
the best picking strategy (Figure 2). This involves deciding the order in which to pick the objects and
determining the motion plant to do so. The subsequent section presents the algorithm for determining the
spatial configuration of each object with respect to each other.

2.3.1 Configuration Estimation

Before planning specific trajectories, a plan must be made about the order in which to pick the objects. There
may exist dependencies between objects, wherein object A must be picked before object B. For example,
in the case of object A being stacked on top of object B or partially covers object B. As the deep neural
network is trained on a large set of real-world data, even occluded objects can be correctly identified and

Figure 4: Example of inputs to and outputs from the orientation estimator represented on the images of the
tray. The detection results for the original and rotated image are input. Diagonals predicted from comparing
bounding boxes are marked on the output.

localized by the YOLO network.

The network does not explicitly provide any information about the relative configuration of the objects.
Adding a depth sensor or using multiple images from different angles and triangulation could be one way to
solve this problem. However, this would incur additional computational and calibration overhead along with
the requirement of additional hardware. Here we propose a method of inference based on the relationship
between bounding boxes of detected objects and their estimation confidences. The algorithm is based on
the insight that partially occluded objects are less likely to predicted with high confidence and that the
intersection of the object bounding boxes provide some information about their relative configuration. The
inference is based on what fraction of the bounding box of object A overlaps with the bounding box of
object B. That is, if Area of A ∩ B

Area of A > threshold, then A is on top of B, otherwise it would not have been
detected (see figure 5). If object A was underneath object B, a large proportion of it would be occluded and
object detection would be unlikely to identify the object or it would be detected with lower confidence. The
algorithm in the pseudocode form is shown in Algorithm 1.

2.3.2 Image to Robot Coordinate Transformation

Once the relative configuration of the objects and their corresponding poses are obtained in the image
coordinates, an image-to-robot coordinate transformation is performed to plan the robot and gripper motion.
The transformation is done from (x′, y′, w′, h′) in the image coordinate to (x, y, w, h) in the robot coordinate
space, where the variables represent the planar coordinates of the objects and their width and height. We
use a simple planar perspective projection based on the a priori knowledge of three fixed points in image
coordinates and robot coordinates.

The three points were marked by small black circles in the upper left, upper right, and lower right of
the camera’s field of view. Their coordinates in the image space were found using blob detection. Their
coordinates in robot space were found using kinesthetic demonstration by moving the tool centre point of the
robot to directly above each point and recording the XY coordinates of the end-effector. The Z-coordinate
of the surface was found using downward movement until contact was detected from the force feedback. This
also allows us to calculate the vertical distance between the camera and the worktop.

Algorithm 1: Determining picking order

Input: A: a list of the n objects in the image and their corresponding bounding box information sorted
by confidence with highest first, t: a threshold for level of overlap

Output: B: a list of objects in the image and their corresponding bounding box information in the
order to be picked

B ← A0;
for i← 1 to n do

a← Ai;
l← |B|;
j ← 0;
while |B| = l do

b← Bj ;
o1← area(a ∩ b)/area(a); /* area of bounding boxes */

o2← area(a ∩ b)/area(b);
if o1 > t then

if o2 > t then
B ← sub(B, 0, j + 1) ‖ 〈a〉 ‖ sub(B, j + 1, l); /* insert a into B right after b */

else
B ← sub(B, 0, j) ‖ 〈a〉 ‖ sub(B, j, l); /* insert a into B right before b */

end

else
if j = l − 1 then

B ← B ‖ 〈a〉; /* append a to end of B */

end

end
j ← j + 1;

end

end
return B

2.3.3 Grip Selection

The grip type and grip location for each object class is parameterized by the output from the Image-to-
Robot coordinate transformation process (x, y, w, h). This is done in such a way that no parameter tuning is
required to pick object classes of varying geometry. There were two grip types: one with the gripper plates
horizontal and one with the gripper plates held vertically. Plates were picked with the horizontal grip type,
while cutlery and cups picked with the vertical grip type. Table 1 details how the gripping parameters are
estimated from the centroid (x, y) and dimensions (w, h) information for each object class. Angles are defined
as clockwise or anticlockwise from y-axis, with clockwise being positive. Combined with the generalizability
of the deep network, this algorithm allows us to pick object classes of different sizes, color and form as long
as they conform to common geometries.

Table 1: Grip Selection

Object Type Grip Type Grip Location Grip Orientation

Fork Vertical (x, y) ± arctan w
h

Spoon Vertical (x, y) ± arctan w
h

Knife Vertical (x, y) ± arctan w
h

Cup Vertical (x+ w
2 , y) 0◦

Plate Horizontal (x± w
2 , y) ∓90◦

Figure 5: A representation of how the areas of bounding boxes and their intersections with other bounding
boxes can be used to make inferences about configuration. The planned order for picking is marked on the
output image. Full details of the algorithm are shown in Algorithm 1.

2.3.4 Trajectory Planning

The trajectory planning process takes into account the configuration of objects in the scene to create an
overall order to remove objects and the information from grip selection to plan specific trajectories for each
object. Next we present the trajectory planner for each object class after the grip selection.

For plates the gripping location was set at the edge of the plate. The width of the bounding box returned
from the object detection gave the diameter of the plate. The gripper was moved to a location so the tips
of the fingers were offset from the rim of the plate. The gripper moved vertically downwards until the force
sensor registered a threshold force value. As with all usages of the force sensor, the gripper was then raised
by 2 mm so that surface contact with the tray was eliminated. The gripper then moved 4 cm along the
plane of the worktop towards the centre of the plate (corresponding to the centroid of the bounding box).
The plate was either gripped from the right or left, depending on the location relative to the centre of the
image. If the centroid fell in the right half of the image the plate was picked from the left side and vice
versa. This was done to avoid collision with the canteen tray. Note that other objects would have most likely
been removed by the time the planner executed the removal of the plate and hence their collisions are not
considered.

The diameter of the cup was taken as the smaller of the width and height of the bounding box. For cups it
is necessary to also take into account errors in the image-to-robot transformation due to its elevate height.
This parallax error become more noticeable if the cup lies on the outskirts of the tray, as is most often the
case. To compensate for this, a manual scaling is performed to account for distance between the camera and
the object imaged. This parameter is hand-tuned and could be parameterized by the cup height. However,
as the cups have a higher error tolerance on the gripping success, this was not required. The cup was picked
using a vertical pinch grip at the right-hand side of the rim. Like in the case of the plate, the robot arm
stops when the reaction force values exceeded a certain threshold.

In order to pick cutlery, the vertical grip type was used. The angle of the piece of cutlery from the y-
axis was calculated using θ = arctan w

h , where w is the width of the bounding box and h is the height of
the bounding box. With the gripper jaws aligned with this angle, the picking location was taken as the
centroid of the bounding box. The gripper began above this location and moved downwards until the force
sensor determined contact with the surface the cutlery was assumed to rest on. Once again, after the force
sensor had determined contact with the surface, the gripper was raised slightly, so that during closing of

the gripper, the surface underneath the piece of cutlery would not move due to friction between the surface
and the gripper. Note that by using a unified strategy for all cutlery items, our algorithm is more robust to
wrongly identified cutlery items, which is a common issue with the YOLO architecture. For instance, even
if a knife was wrongly identified as a spoon or fork (which is the more likely scenario), as the grip strategy
is the same for all, we can still perform a successful pick and place. Hence, by appropriately designing our
planning algorithm, we can achieve better robustness to poor recall performances.

2.4 Robot Controller

Once the end-effector trajectory and the corresponding gripper states are calculated, these commands are
sent to the UR5 controller and the arduino from the PC. The UR5 controller takes in the end-effector
pose and calculates the joint angles using its in built inverse kinematics model. We use the servoj motion
module in the UR5 controller to obtain smooth motions in the joint space. Once the motions commands are
completed, a flag is sent back to the PC for obtaining the next points in the trajectory. The force feedback,
which is obtained from the current intake of all the servo motors, are also sent back to the PC. Based on
the force feedback and the current configuration of the arm, the next trajectory points and gripper states
are modified.

3 Object Detection Analysis

Before we tested our control architecture on real-world scenarios, we performed a comprehensive analysis on
the visual perception system. This is was done for two reasons. First, we wanted a baseline evaluation of
the object identification module, as the performance of the subsequent processes depended directly on it.
Second, we wanted to ground and subdivide our experimental protocol based on real-world scenarios. The
next two sections describe the tests we performed and analysed to do so.

3.1 Experiment Protocol

To obtain real-world samples for evaluating the object detection module, we setup an image capturing setup
at a typical college canteen. Images of canteen trays from the St Catharine’s College at the University of
Cambridge were obtained over the course of a single lunchtime. The canteen was equipped with a conveyor
belt where users place their trays of dirty cutlery and crockery at the end of a meal. A camera was mounted
directly above the conveyor belt and captured 1 hour 1 minutes of 1920 by 1080 video at 50 fps, from which
images of tray were extracted manually, resulting in a total of 69 images of different trays.

The ground truth rectangular object bounding boxes were annotated on all images using the labelImg
software (available at github.com/tzutalin/labelImg). This information was saved in text files using the
YOLO format. The list of classes was restricted to fork, spoon, knife, cup, bowl, plate, and cutlery. The
introduction of the cutlery class was necessary due to several instances of occlusions which made it impossible
to definitively determine which class of fork, spoon, or knife it belonged to. This was the case for 17 out of
the 154 pieces of cutlery in the data set. Besides objects belonging to these aforementioned classes, no other
objects were labelled. For occluded objects, labelling was done only on the visible section.

Every image in the data set was run through YOLO and Hough circle detection as outlined above. The YOLO
network used weights supplied by the creators which had been pretrained on the COCO data set. The results
of the object detection procedure were compared with the ground truth labels to assess the performance of
the object detection procedures. This collection of images along with the files of corresponding ground truth
labels is published along with the code in the open repository bitbucket.org/cambirllab/isobel_4th_yr/.

We also conducted an analysis of the orientation estimation performance on the canteen data set. The
original 2D image and a rotated version of the same image were both run through the object detection and

bitbucket.org/cambirllab/isobel_4th_yr/

the results compared to find the orientation of items of cutlery in their bounding boxes as outlined above
and illustrated in Fig. 4. The orientations found through this process were displayed on the images and
checked manually for correctness.

3.2 Detection Results

The results of the object detection module are analyzed keeping the final application in mind. The average
performance metrics of the canteen dataset are shown in Fig. 6, separated into object classes based on the
metrics described in section 2.2.1. Due to their large size and hence low probability to being occluded,
’plate’s had a high identification and localization performance. Few times they were wrongly classified as the
object class ’bowl’ as shown in the confusion matrix in Figure 7. ’Cups’ had the worst localization accuracy
due to their poor recall performance. This means that in many cases cups were never attributed a class.
Note that the precision for cups is high, which indicates that when they are identified, they were almost
always correctly labelled. We observed that the poor identification result of cups occurred when the point
of view was directly above the cup. Hence, a potential improvement could be to view the scene from at least
two angles.

A separate class for cutlery, which includes forks, spoons and knifes, is also included in Figure 6. As the
gripping strategy is independent for all the items in the cutlery class, the recall rate of this class is more
relevant for us. The recall rate gives a upper bound on the grasping success rate. A poor recall rate will
invariable lead to a poor clearing performance. A high recall rate, on the other hand, does not ensure
perfect grasps. The average IOU in combination with the grasping strategy provides an estimate of the
grasp success. For instance, a poor identification of the plate geometry (low IOU), can cause the gripper
to close early, leading to a weak grip on the plate and hence increase the probability of failure. Cups have
higher tolerance on the IOU performance, as the vertical motion of the arm is decided by the force sensors
and errors in the horizontal planes are largely accommodated by the open gripper geometry.

The confusion matrix for all the actual instances of objects is shown in Figure 7. It is color coded by
each objects fraction of total occurrence. This is obtained by comparing the true labels with the predicted
bounding box that best localises the object, i.e. the one with the highest IOU. The figure provides insights
into potential areas of improvement in the object identification and gripping strategy. The poor recall rate
for knives can be attributed to a significant portion being mislabelled as forks, which in our case would not
affect the clearing performance. The poor recall rate of cups and bowls, however will significantly affect the
performance of the system. One way to reduce this error is to find a uniform grasp strategy for bowls and
cups. The mislabelling of bowls as spoons probably occur in cases where there is a spoon and bowl in a
small portion of the image, which causes YOLO to pick one with the highest confidence. A work around
would be to divide the original image into multiple segments and feed them to the network separately. Note
that YOLO internally downsamples the images before passing them through the convolution layers.

Figure 6: Performance of object detection (YOLO and Hough circle detection) on real-world data.

Figure 7: Confusion matrix showing classification performance where the colour coding is as a fraction of
total class occurrences in the data set, shown in Table 2

A full breakdown of the items contained in the data set is shown in Table 2 along with the number identified
correctly. There may appear to be a discrepancy between the values in Fig. 7 and Table 2. This is because
YOLO often provides multiple bounding boxes for the same object. This is more common when the scene
is more cluttered and objects are closer together. In Fig. 7 we compare the true label with the predicted
bounding box that best localises the object, i.e. the one with the highest IOU. In Table 2 we count an
identification as a success if the class prediction is correct and the IOU is above 0.5. The last column
includes where objects were identified as similar enough objects, namely items of cutlery being identified as
cutlery but not the correct subcategory. For the procedure described above this is acceptable because all
cutlery is picked using the same process so it would still be possible to pick a fork misidentified as a spoon.
Note that the total of fork identifications that will result in a successful pick, shown in brackets, is equal to
the sum of the number of forks predicted as each of the cutlery classes, similarly for spoons and knives. This
provides the counterintuitive insight that sometimes a bounding box which incorrectly identifies the object
class may localise the object better (higher IOU). Overall, 61% of the objects were identified and labelled
with the correct class. A further 12% were identified and labelled with an incorrect but similar enough class
for the planning and picking methods described above to work.

Table 2: Breakdown of items in canteen data set. Bracketed value indicate identifications that will still result
in a successful pick.

Object Type Number in set Number identified

Fork 63 53 (59)
Spoon 37 29 (29)
Knife 54 38 (46)
Cup 58 27
Bowl 37 20
Plate 79 71

Cutlery 171 120 (140)

All 345 238 (252)

Out of the 140 pieces of cutlery identified in the canteen images, the orientation of 95 of these was found

correctly. The orientations for 4 were incorrect and the results for the remaining 41 were inconclusive. In
inconclusive cases, the orientation is selected randomly from the two cases which suggests for approximately
20 of these inconclusive cases the orientations would be selected correctly by chance. The base success rate
of the orientation estimator is 67.9% and this increases to 82.1% when you consider the chance of guessing
inconclusive orientations. This is a sizeable improvement on the alternative of random selection which would
have a 50% success rate.

3.2.1 Division of Object Complexity

The results of object detection were also used to categorise the trays from the canteen data set into different
levels of complexity. We hypothesize that a better performance by the object detection algorithm would
indicates a less complex visual scene and hence, an easier manipulation problem. Characteristics from this
analysis is then used to simulate our in-lab experimental setup and studies.

We used the average IOU across all objects in the image for deciding the complexity of the scene, which was
found by comparing the detection results to the ground truth labels. In any cases where there were multiple
bounding boxes for one object, the bounding box with the best IOU was used in the average. If an object
was not identified at all or the class was incorrectly identified, the IOU for that object was 0. A value of
1 would be perfect performance, meaning the bounding box from object detection would overlap perfectly
with the ground truth bounding box for all objects in the image.

Based on the IOU values we decided to divide each trays into three levels. Level 1 was set as images with
an average IOU of above 0.6, level 2 was images with an average IOU between 0.4 and 0.6 and level 3 was
images with an average IOU below 0.4. This method of separation resulted in levels 1, 2, and 3 containing
28, 28, and 13 images respectively. The images comprising each level were then analysed subjectively to pick
out any common features. Images in level 1 involved objects that were often widely spaced in the image.
However, this could sometimes mean cutlery positioned half on a plate, see Fig. 8a. Overall, levels of food
waste were minimal. Images in level 2 overall featured an increased level of food waste. Another feature of
level 2 was a variety of configurations of cutlery, sometimes these were interlocked or rested on top of each
other, see the top two trays in Fig. 8b. There were also slight occlusions. Images in level 3 often involved
major occlusions. These were caused by stacked plates, large amounts of food waste, or other waste, such
as napkins or plastic yoghurt pots. While subjective, this analysis enabled an assessment of factors that
potentially influenced object detection performance, with a view to including key features in a recreation of
the environment. The values for average IOU ranged from 0.102 to 0.842 (the extreme cases are shown in
Fig. ??).

(a) Level 1: average IOU > 0.6 (b) Level 2: 0.6 > average IOU > 0.4 (c) Level 3: average IOU < 0.4

Figure 8: Four example trays for the three levels of complexity observed in the canteen data set

4 Experimental Results

To validate our YOLO based control architecture, we designed experiments that closely mimic a real-world
canteen environment. The objective of the system is to pick items from a canteen tray and place them in a
dishwasher tray. Two strategies were investigated for this task on 25 trays each. The next section details
the experimental protocol and the subsequent section presents the results and analysis.

4.1 Experimental Protocol

The setup for the in-lab experiments is shown in Fig. 1. the tray from a household dishwasher was placed
on the same level as the worktop, as is common with the pass-through dishwashers used in canteen kitchens.
The tray contained five classes of objects in arbitrary configurations set manually. The objects we used
were forks, spoons, knifes, cups and plates. Different varieties of each classes were also used to test the
generalizabiltiy of the approach.

Two strategies were evaluated for the dishwasher loading problem (Figure 9). The first strategy took visual
feedback only at the start of each clearing cycle (i.e one image per tray), while the second strategy iteratively
took visual feedback after every attempted pick-and-place process. The first strategy allows faster loading
whereas the second strategy allowed the process to correct errors and discover new information at every
cycle, at the cost of a slower cycle time. We will be referring to these strategies as the one-shot strategy and
the closed-loop strategy from now on.

Start

Capture image

Perform object detection
and planning algorithm

Pick one object

All
picked?

End

Y

N

Start

Capture image

Perform object detection
and planning algorithm

Pick one object

All
picked?

End

Y

N

Closed-loopOne-shot

Figure 9: Flowcharts of the two strategies investigated in this study. The looping for each object is not
shown in Figure 2.

For each strategy, 25 configurations of a cluttered canteen tray were artificially simulated. These 25 con-
figurations were in turn subdivided by the three complexity levels based on the insights from the previous
experiments. They were divided in the ratio 10:10:5 for complexity level 1, 2 and 3 respectively. The prob-
lem of placing objects into the dishwasher was not the focus of this work having been covered in greater
detail by other researchers (Jiang et al., 2012b; Jiang et al., 2012a). Hence, we opted for a predetermined
placement strategy for each item, irrespective of the current state of the dishwasher tray. There were three
predetermined trajectories for placing objects in the dishwasher tray: one for cutlery, one for cups, and one
for plates. These were created by moving between handcrafted waypoints found through experimentation.
The next section presents the results of the one-shot control strategy.

4.2 Results for the one-shot strategy

The performance of the one-shot strategy is summarised in Table 3. The overall clearance success rate was
around 59%. Given the fact that the whole system is based on a single 2D image, a simple pinch gripper
and a 1D force feedback, this result is reasonably good. Note that the objects we have used were arbitrarily
chosen. There deep neural network was never trained on these objects and the planning strategy has not
been designed specifically for the particular design we used. The only exception here is the ’plate’ class,
where a hand tuned parameter is used for detection.

Table 3: Overall system performance in simulated kitchen conditions with the one-shot strategy.

Metric Result Definition

Total trays 25 Trays in experiment

Total ground-truth objects 109 25 forks, 24 spoons, 8 knives, 25 cups, 27 plates

Total objects correctly identified 92 22 forks, 23 spoons, 4 knives, 19 cups, 24 plates

Total objects successfully removed 64 16 forks, 16 spoons, 3 knives, 17 cups, 12 plates

Total picks attempted 116 Total pick-and-place actions planned from object detection results

Planning success rate 92.0 % Total theoretically appropriate plans
Total plans

Clearing success rate 58.7% Total objects removed
Total objects

Effective picking rate 55.2% Total objects removed
Total picks planned

Total completely cleared trays 3 Trays where all objects were successfully removed

Average cycle time 159 s Time from initial image capture to end of pick-and-place actions

The sources of errors can be analysed from Figure 10a. The object identification module performed very
well for forks, spoons and plates. Cups and knifes had a lower rate of detection as observed from our
analysis in section 3. Knifes, in particular fared poorly. We believe this was mainly because of its shiny
surface, exacerbated by our lighting condition. The object identification module did label several objects
with multiple bounding boxes which resulted in 24 extra picks being planned. This increased the overall
cycle time. However, there were occasions during the experiments when the object was not picked with the
first attempt (due to a prediction with poor localisation but high confidence), but the object was then picked
on the second attempt due to the double identifications.

The proposed planning strategy fared very well, even though it was developed on low-dimensional scene
information. This shows that for real-world scenarios, the generalizability and robustness of the object
detection module overpowers the required complexity of the planning phase. In other words, it is more
important to have reliable identification of objects than a complex physics-based planning algorithm for
successful grasps. A notable fraction of items were identified correctly but did not lead to a successful
grasp. This could be because of errors in the bounding box estimation (low IOU) or displacement of items
during the execution of the plan. The closed-loop strategy presented in the next section investigates the
contribution of both. It is interesting to see that plates had a higher chance for failed grasps and cups had
a lower chance for failed grasps. This can be attributed to the motion strategy (as mentioned in section 3)
and its robustness to errors in object localization. An straightforward way to reduce the failed grasps is to
increase the forces applied by the pinch-gripper so that even grasps at the edge of the plate can lead to a
stable grip. Another improvement would be to include additional tactile sensors to the gripper to adjust its
grip based on the tactile feedback.

All the 25 tray settings we used and their final states are shown in Figure 11. We set up three levels of
complexities based on our previous insights to evaluate the performance of our algorithm in a systematic
way. The first two rows in Figure 11 belong to level 1, the next two to level 2 and the final row to level
3. The average IOU for each levels were 0.80, 0.72 and 0.55 respectively. Even though the trays were set
up based on our subjective insights, we were still able to recreate an environment closely matching the real-
world scenarios, thus validating the experimental protocol. Level 1 had 38 objects and 25 were successfully
picked (65.8%). Level 2 had 43 objects and 25 were successfully picked (58.1%). Level 3 had 28 objects and

(a) Performance breakdown of the one-shot strategy. (b) Performance breakdown of the closed-loop strategy.

Figure 10: Comparison of the two control strategies proposed in this study. The closed-loop strategy can
compensate for failed grasps to a large extend.

(a) Trays at the start of experiment (b) Trays at the end of experiment

Figure 11: State of the trays before and after the experiment with the one-shot strategy.

14 were successfully picked (50.0%). It can be concluded that the clearance rate is directly related to the
average IOU values in the one-shot strategy. Hence, increasing the IOU metrics is one way to improve the
clearance performance. However, improving the average IOU requires more complex learning architectures,
higher quality images and precisely labelled data. Therefore, a better strategy is to use the information
gained/modified after each picking cycle to iteratively modify the planning strategy as proposed in the next
section.

4.3 Results for the closed-loop strategy

The performance of the closed-loop strategy is summarised in Table 4. The overall clearance success rate
was around 81%, much higher than the one-shot strategy. This, however, comes with an almost 100%
increase in the cycle time. With the incorporation of the feedback, we can now achieve a clearing success
rate which is as good at the planning success rate. Unsuccessful plans are the cases in which the wrong order
of items are picked, which would most likely result in unsuccessful grasps. Some of these plans also leads to
unintentional removal of items, which are not counted as a successful clearance since they were not placed

into the dishwasher.

Table 4: Overall system performance in simulated kitchen conditions with the closed-loop strategy.

Metric Result Definition

Total trays 25 Trays in experiment

Total ground-truth objects 111 27 forks, 25 spoons, 10 knives, 25 cups, 24 plates

Total objects correctly identified 98 26 forks, 23 spoons, 5 knives, 21 cups, 23 plates

Total objects successfully removed 90 23 forks, 22 spoons, 4 knives, 18 cups, 23 plates

Total picks planned 134 Total pick-and-place actions planned from object detection results

Planning success rate 84.0% Total theoretically appropriate plans
Total plans

Clearing success rate 81.1% Total objects removed
Total objects

Effective picking rate 67.2% Total objects removed
Total picks planned

Total completely cleared trays 12 Trays where all objects were successfully removed

Average cycle time 296 s Time from initial image capture to end of pick-and-place actions

The sources of errors for the closed-loop strategy can be analysed from Figure 10a. With the addition of the
feedback, the number of objects that were identified, but not successfully grasped decreases dramatically.
This is primarily because the system can now adjust its plan to any changes in the scene. Additionally, now
the system has the ability to obtain new information once occluding objects are removed. Knives and cups
are still poorly identified, reducing the overall performance of the system.

All the 25 tray settings we used and their final states are shown in Fig. 12. Like the previous experiment,
the first two rows in Figure 12 belong to level 1, the next two to level 2 and the final row to level 3. The
average IOU for each levels were 0.765, 0.629 and 0.501, respectively, indicating that set of trays were slightly
more complex than the previous set. Level 1 had 44 objects and 39 were successfully picked (88.6%). Level
2 had 43 objects and 37 were successfully picked (86.0%). Level 3 had 24 objects and 14 were successfully
picked (58.3%). For the closed-loop strategy we see that clearance rate does not depend much on the average
IOU for levels 1 and 2. This is probably because of the improved detection after every pick-and-place cycle.
For level 3 this improvement is not present probably because of the simulated food waste that is never
removed. One of the interesting observation, particularly to the closed-loop strategy is the relation between
the average IOU and the clearing success rate as shown in Figure 13. The mapping is almost logarithmic
with the intrinsic noise of the process. This is very important because by just estimating the average IOU
values of each plate, a reasonable estimate of the clearing rate can be found, without actually running the
tests. A further study would be to be investigate how this pattern shifts with better gripping mechanisms
and higher quality object detection networks.

4.4 Comparison and Discussions

As expected, the closed-loop strategy showed greater success in object removal than the one-shot strategy,
but at the cost of an increase in cycle time. Optimisation of cycle time was not the main objective here,
but it would be possible to decrease cycle time. For example, the movement speed of the robot arm could
be increased. The time taken to run YOLO on average was 11.1 seconds which is a significant contribution
to cycle time when the process is run multiple times. However, by running the YOLO network on a GPU is
possible to get real-time detection of objects, as it is most well-known for (Redmon and Farhadi, 2018).

A benefit of the closed-loop strategy is the use of interactions with the environment to reveal more information
about the scene. Consider the test shown in Fig. 14. Images 3 and 4 in the set show an unsuccessful attempt
to pick up the plate due to its central location in the tray - the gripper contacted the raised lip of the tray
rather than the surface of the tray. However, this failed attempt moved the plate further to the left of
the tray, along with the napkin it was in contact with. This began to reveal a spoon that was previously
totally obscured from view. The plate was then successfully removed from its shifted location, the spoon

(a) Trays at the start of experiment (b) Trays at the end of experiment

Figure 12: State of the trays before and after the experiment with the closed-loop strategy.

Figure 13: Relation between the average IOU for each tray and the clearing success rate for the closed-loop
strategy.

totally revealed and then successfully removed as well. This shows that by incorporating simple feedback
and leveraging the effects of action on perceptions, there is no need to do complex multi-angle view of system
or create a 3D point cloud to discover all objects present in the scene initially. Instead, the requirements
of the task - removal of objects from a scene - facilitates interactions with the environment that can reveal
further information about the contents of the scene.

Failures could occur at several stages in the procedure and were caused by different elements of the system
either in isolation or in combination. One common method of failure was when a plate was picked with a
piece of cutlery still on top of it (typically the knife). As the plate was lifted up and rotated to be placed
into the dishwasher tray, the piece of cutlery slipped off the plate. An example from the closed-loop strategy
is shown in Fig. 15. The movement of the plate meant it tended to land on the upper edge of the tray,
sometimes sliding further out of view. Examples of this can be seen in Fig. 11b and Fig. 12b where it
appears the tray has been completely cleared but closer inspection of the top portion of the image shows
the fallen piece of cutlery. This failure case was seen with both the one-shot strategy and the closed-loop
strategy. In both cases the cause of failure may appear to be a failure in planning but this was not the case.
The failure either stemmed from a failure in object detection or, restricted to the one-shot strategy, a failure
in manipulation. In the one-shot cases, the object may have been identified successfully at the start of the

Figure 14: An example of the closed-loop strategy. This example shows plate being moved from unsuccessful
picking position to successful one and a spoon being revealed. All the frames used for motion planning are
shown. Grid lines are provided to show the displacement of objects in between frames.

run but interactions with the tray caused displacement of the object. The picking trajectory planned from
the initial image attempts to pick the object from its original position and fails. An example of this is shown
in Fig. 16 where contact with the plate causes the knife on top to slide and the subsequent pick does not
grasp the knife correctly. Since the one-shot strategy assumes perfect success at picking, the plate is then
picked and the cutlery slides off. It is possible to recover from this failure using the closed-loop strategy but
not with the one-shot strategy.

Figure 15: Example from the closed-loop strategy showing a failure in planning caused by failure in identifi-
cation followed by a failure in manipulation. Firstly, the knife was not identified during object detection so
is tipped off when the plate is picked. Secondly, the napkin wrapped between the gripper and plate causes
the plate to slip out of the grip during movement towards dishwasher.

Figure 16: Example from the one-shot strategy showing disturbance of scene causing picking failure. A
downward force towards the edge of plate causes it to tip and the knife to move location. The preplanned
pick is then in wrong place.

One of the drawbacks of the closed-loop strategy was that the process could get stuck in a loop trying to
pick an unpickable object. This happens when an object is identified with high certainty but the particular
geometry makes it unsuitable for the pinch-gripper or in a pose unanticipated when planning gripping point
(e.g. upturned cups, upright spoon in a cup). In some cases, the attempted pick caused sufficient changes to
the tray configuration that meant subsequent picks were successful. However, in other cases little to nothing
changed and subsequent picks followed the same pattern, causing a loop. To avoid this we set a cap on the
maximum number of attempts for each tray. One of the aspects we ignored in this work, is the problem of
collision avoidance. Although, collision avoidance can be implemented with the low-dimensional information
from the YOLO network, the problem becomes computational expensive as the number of items increase.

With the addition of solid food waste, the identification problem becomes nontrivial too. The addition
of solid food waste and napkins also makes manipulation more complicated since it can become trapped
between the gripper and the object, reducing grip strength, as seen in Fig. 15. The manipulation was also
subject to arbitrary restrictions. For example, in the case of cups, the inverted and on-the-side states were
never considered. This is because such cases were either not graspable with the gripper or additional three
dimensional information was required for the configuration estimation module.

5 Conclusion

This paper presents an autonomous dishwasher loading robot using pre-trained deep neural networks. The
key idea of the work is to use the power of deep neural networks pre-trained on large commonly available
dataset. By conforming the perception and planning systems to the pre-trained networks, we are able to
develop a control framework that requires no training phase, robust to visual noise and generalizable to
novel object designs and requires only a single 2D image feedback. The grasp point estimation and planning
algorithm is independent of the object class geometry, thereby requiring no parameter tuning for grasping
and placing new unseen objects. We incorporate a simple force feedback to the system to remove the
requirements for depth information. For the closed-loop strategy proposed here, we achieve an clearing rate
of 81%. Looking at the state-of-the-art in object grasping, our method performs comparatively well (Table 5).
Unlike the referenced works, our method does not require a training phase, where task-specific samples have
to obtained and trained. Hence, this approach is highly appealing for fast plug-and-play applications, where
the user does not require high domain-specific knowledge or training hardware. The pre-trained network is
trained on the most commonly available form of object detection data. Our analysis and experiments are
performed in real-world scenarios. A general purpose industrial arm and simple pinch-gripper hardware is
used for the task, making the system suitable for other tasks, unlike current commercial solutions. With the
constant progress in labelling and available of object detection databases, we can expect such an approach
to be easily extendable to other common objects.

Table 5: State-of the-art performance comparison

Clearing Rate (%) Training Samples Sensory Feedback

(Lenz et al., 2015) 84 1035 RGB-D
(Pinto and Gupta, 2016) 73 50,000 RGB

(Mahler et al., 2017) 94 6,700,000 Point Cloud
(Levine et al., 2018) 77 900,000 RGB

(Kalashnikov et al., 2018) 96 580,000 RGB
This work 81 0 RGB

It is evident that the performance of our method is dependent on the complexity of the visual scene. For the
tray complexities of level 1 and 2, our method performs with a clearing rate of 89% and 86%, respectively.
Although this performance is comparable with the state-of-the-art, for commercial applications, it is vital to
have near perfect clearing rate. One workaround is to use the platform as a collaborative robot, where the
robotic clearing could be used in parallel with human workers in a high through-put restaurant, for example.
In such a case, the user can facilitate the perception pipeline by clearing food waste and occlusions and
the platform will aid in clearing and placing the items quickly and efficiently. As we use a general purpose
manipulator, such a system can be easily adapted to perform other tasks in a kitchen.

The simplicity of our robotics platform and sensory system largely facilitated in reducing the complexity
of our approach. However, this would always limit the complexity of manipulation skills achievable. For
manipulation of complex object geometries, fragile items and food waste, it might be necessary to develop
gripping mechanisms with additional degrees of freedom and tactile sensing abilities. Tactile sensing will
also be important to detect slips and evaluate the strength of the grip. Similarly, addition of depth informa-

tion will significantly improve the performance of our approach without additional computational overhead.
Another scope for improvement is on the use of object segmentation networks instead of object detection net-
works. Object segmentation networks provide the object class and its boundaries. This higher dimensional
information has the potential to improve the performance of the orientation and configuration estimation
module. Another interesting future work is to investigate how we can leverage the ability to change the
camera point-of-view to improve the detection performance. Along similar lines, strategies for obtaining new
information by acting on the environment in cases where the object of concern is completely occluded is
another problem to pursue.

Acknowledgments

This work was supported by BEKO PLC and Symphony Kitchens.

References

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plappert,
M., Powell, G., Ray, A., et al. (2020). Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3–20.

Bicchi, A. and Kumar, V. (2000). Robotic grasping and contact: A review. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), volume 1, pages 348–353. IEEE.

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., and Sukhatme, G. S. (2017).
Interactive perception: Leveraging action in perception and perception in action. IEEE Transactions
on Robotics, 33(6):1273–1291.

CambridgeConsultants (2019). Turbo clean: Tackling the most unloved job in the commercial kitchen.
http://cambridgeconsultants.com/turboclean.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.

Dillmann, R. (2004). Teaching and learning of robot tasks via observation of human performance. Robotics
and Autonomous Systems, 47(2-3):109–116.

Dishcraft (2019). https://dishcraft.com.

Dogar, M. and Srinivasa, S. A framework for push-grasping in clutter. Robotics: Science and systems VII,
1.

Ekvall, S. and Kragic, D. (2007). Learning and evaluation of the approach vector for automatic grasp gener-
ation and planning. In Proceedings 2007 IEEE International Conference on Robotics and Automation,
pages 4715–4720. IEEE.

Finn, C. and Levine, S. (2017). Deep visual foresight for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580–587.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–2969.

http://cambridgeconsultants.com/turboclean
https://dishcraft.com

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.
science, 313(5786):504–507.

Jiang, Y., Lim, M., Zheng, C., and Saxena, A. (2012a). Learning to place new objects in a scene. The
International Journal of Robotics Research, 31(9):1021–1043.

Jiang, Y., Zheng, C., Lim, M., and Saxena, A. (2012b). Learning to place new objects. In 2012 IEEE
International Conference on Robotics and Automation, pages 3088–3095. IEEE.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan,
M., Vanhoucke, V., et al. (2018). Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation. arXiv preprint arXiv:1806.10293.

Katz, D. and Brock, O. (2008). Manipulating articulated objects with interactive perception. In 2008 IEEE
International Conference on Robotics and Automation, pages 272–277. IEEE.

Koga, Y. and Latombe, J.-C. (1994). On multi-arm manipulation planning. In Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, pages 945–952. IEEE.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105.

Lenz, I., Lee, H., and Saxena, A. (2015). Deep learning for detecting robotic grasps. The International
Journal of Robotics Research, 34(4-5):705–724.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. The International Journal of
Robotics Research, 37(4-5):421–436.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755.
Springer.

Lynch, K. M. and Mason, M. T. (1996). Stable pushing: Mechanics, controllability, and planning. The
international journal of robotics research, 15(6):533–556.

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J. A., and Goldberg, K. (2017). Dex-net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv
preprint arXiv:1703.09312.

Miller, A. T., Knoop, S., Christensen, H. I., and Allen, P. K. (2003). Automatic grasp planning using shape
primitives. In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422),
volume 2, pages 1824–1829. IEEE.

Pajarinen, J. and Kyrki, V. (2017). Robotic manipulation of multiple objects as a pomdp. Artificial
Intelligence, 247:213–228.

Pinto, L. and Gupta, A. (2016). Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot
hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages 3406–3413.
IEEE.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016a). You only look once: Unified, real-time
object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 779–788.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016b). You only look once: Unified, real-time object
detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. In Advances in neural information processing systems, pages 91–99.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International journal of
computer vision, 115(3):211–252.

Saxena, A., Driemeyer, J., and Ng, A. Y. (2008a). Robotic grasping of novel objects using vision. The
International Journal of Robotics Research, 27(2):157–173.

Saxena, A., Wong, L. L., and Ng, A. Y. (2008b). Learning grasp strategies with partial shape information.
In AAAI, volume 3, pages 1491–1494.

Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D. V., and Kragic, D. (2012).
Dual arm manipulation—a survey. Robotics and Autonomous systems, 60(10):1340–1353.

Tian, L., Thalmann, N. M., Thalmann, D., Fang, Z., and Zheng, J. (2019). Object grasping of humanoid
robot based on yolo. In Computer Graphics International Conference, pages 476–482. Springer.

Vischer, D. (1992). Cooperating robot with visual and tactile skills. In Proceedings 1992 IEEE International
Conference on Robotics and Automation, pages 2018–2025. IEEE.

Weisz, J. and Allen, P. K. (2012). Pose error robust grasping from contact wrench space metrics. In 2012
IEEE international conference on robotics and automation, pages 557–562. IEEE.

Wilfong, G. (1991). Motion planning in the presence of movable obstacles. Annals of Mathematics and
Artificial Intelligence, 3(1):131–150.

Yu, K.-T., Bauza, M., Fazeli, N., and Rodriguez, A. (2016). More than a million ways to be pushed. a
high-fidelity experimental dataset of planar pushing. In 2016 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 30–37. IEEE.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep learning: A review. IEEE
transactions on neural networks and learning systems, 30(11):3212–3232.

	Introduction
	Contributions

	Experimental Method
	Experimental Setup
	Object Detection
	YOLO
	Orientation Estimation

	Planning Algorithm
	Configuration Estimation
	Image to Robot Coordinate Transformation
	Grip Selection
	Trajectory Planning

	Robot Controller

	Object Detection Analysis
	Experiment Protocol
	Detection Results
	Division of Object Complexity

	Experimental Results
	Experimental Protocol
	Results for the one-shot strategy
	Results for the closed-loop strategy
	Comparison and Discussions

	Conclusion

