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An evaluation model for landslide and debris flow prediction using multiple 1 

hydrometeorological variables 2 

Abstract: Landslide and debris flows are typically triggered by rainfall-related weather conditions, including 3 

short-duration storms and long-lasting rainfall. The critical precipitation of landslide and debris flow 4 

occurrence is different under various hydrometeorological conditions. In this study, the daily hydrological states 5 

were evaluated by the SWAT model, and the trigger sensitivities of different daily hydrological variables were 6 

assessed with 50 days recorded landslide and debris flows between 2010 and 2013. Based on modeled wetness 7 

states, the event days were divided into LLR-trigger event days (long-lasting rainfall) and SDS-trigger event 8 

days (short-duration storm) with six determinate criteria. The landslide and debris flow prediction model was 9 

built using nine hydrometeorological variables and the predictive performance was tested with simulated data 10 

from 2010 to 2012. The results suggest that: Historical hydrological variables and their development provide 11 

important information for triggering debris flows, though rainfall is the most important factor for triggering 12 

debris flows. The landslides and debris flows in the selected subbasins region are triggered on 33 days by LLR 13 

and on 17 days by SDS. Specifically, LLR type landslide and debris flow account for a large proportion in July, 14 

while SDS type landslide and debris flow occur more frequently in September. The prediction model with the 15 

AUC value of 0.85, can capture most of the landslide debris flow. The temporal distribution of the two 16 

triggering-event predicted by the model is consistent with the annual distribution of precipitation. Besides, 17 

there are spatial variations of the specific trigger types in the different subbasins, which may attribute to the 18 

different land cover. Despite some uncertainty, this study thereby provides an idea of improving the landslide 19 

and debris flow prediction model. 20 

Keywords: SWAT model; multiple hydrometeorological variables; trigger sensitivities; landslide and debris 21 

flow; prediction model 22 

 23 

1. Introduce 24 

Landslide and debris flow is a widespread and destructive natural disaster in the world 25 

(Huang et al., 2017; Nicolussi, Spotl, Thurner, & Reimer, 2015), which may cause a large number 26 

of casualties and economic losses. Globally, landslides cause about 1,000 casualties and about $4 27 
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billion in property damage every year (Pradhan & Youssef, 2010). In the Aranayake area, Sri 28 

Lanka, a rapid and long-traveling landslide triggered by a monsoon rainfall on 2016 has destroyed 29 

75 houses and killed 127 persons (Tan, Sassa, Dang, Konagai, & Sato, 2020). In the mountainous 30 

areas of the Western China, landslide and debris flow leads to approximately 762 deaths and 31 

disappearances and $600 million in property losses per year recently, according to the Chinese 32 

Institution of Geological Environmental Monitoring (Zhang, Wang, Bao, & Zhao, 2019). Other 33 

research reported that landslide debris flow disasters have caused more than 1100 fatalities and 34 

$5-10 billion in China since 2000 (Hong et al., 2017). It is therefore extremely important to 35 

analysis the landslide and debris flow triggering conditions and build the disaster prediction 36 

model to minimize damage and avoid loss of life. 37 

As the frequent hazards in mountain regions, landslide and debris flows are caused by 38 

various triggers, including earthquakes, rainfall and rapid floods, and are influenced by multiple 39 

factors, such as topography, soil and rock types, fractures and bedding planes, and moisture 40 

content (Crozier & Michael, 1986). Besides earthquakes, volcanism, precipitation is the most 41 

frequent trigger of debris flows (Mostbauer, Kaitna, Prenner, & Hrachowitz, 2018; Prenner, 42 

Hrachowitz, & Kaitna, 2019), which is widely studied by the empirical models and physical 43 

(process-based) models (Floris & Bozzano, 2008; Schiliro, Cevasco, Esposito, & Mugnozza, 44 

2018). Using empirical models to analyze the landslide and debris flow has always been a hot 45 

topic for scholars (Aleotti, 2004; Ferro, Carollo, & Serio, 2020; Lainas, Sabatakakis, & Koukis, 46 

2016) since Caine (1980) first proposed the global rainfall intensity duration (ID) threshold for 47 

shallow landslides. For example, Kanungo and Sharma (2014) found the rainfall threshold 48 

relationship fitted to the lower boundary of the landslide triggering rainfall events by analyzing 49 

81 out of 128 landslides taken place in India from 2009 to 2012. Although the empirical model 50 

is relatively simple and suitable for large areas, this method requires higher quality precipitation 51 

data and does not take into account the different trigger sensitivities of different regions, which 52 
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leads to many false positives and reduces the accuracy of the prediction model. To reduce the 53 

negative effects of the lack of geological parameters, a rainfall threshold is usually only used for 54 

a particular geographical region. Martinotti et al. (2017) designed a new ensemble-non-55 

exceedance probability algorithm for the quantitative evaluation of the possible occurrence of 56 

rainfall-induced landslides in karst areas, providing better diagnostics than the single metrics 57 

often used for landslide forecasting. Vessia, Curzio, Chiaudani, and Rusi (2020) had taken the 58 

local geo-morphological characters into account by means of the co-kriging technique to 59 

constrain the cumulated and duration mean values of a regional Empirical Rainfall Thresholds 60 

and their confidence intervals. Furthermore, as for the poor quality data on which empirical 61 

methods, Frattini, Crosta, and Sosio (2009) used logistic regression to define the ID thresholds 62 

associated with different precipitation regression periods that trigger landslide and debris flow. 63 

And Jaiswal and van Westen (2009) used a control data set that was not used in the empirical 64 

model to verify the threshold value of the visual drawing to estimate the conditional probability 65 

of the landslide and the overall time probability of the occurrence of the landslide. Although 66 

many measures were used to improve the empirical model, the direct contributions of that to 67 

predicting disasters accurately are limited due to its limited data and parameters. 68 

Physical (process-based) models are also used to study the triggering mechanisms of 69 

landslide debris flows by considering the relevant geo-morphological features (Bui et al., 2019; 70 

Dou et al., 2020; Schiliro et al., 2018). For example, Dai and Lee (2002) described the physical 71 

characteristics of landslides and the statistical relations of landslide frequency with the physical 72 

parameters contributing to the initiation of landslides on Lantau Island in Hong Kong using the 73 

Geographical Information Systems (GIS) database. Hu, Li, Chen, and Zhang (2007) used nine 74 

evaluation factors for the landslide prediction and demonstrated that the Support vector machine 75 

model is efficient and accurate for landslide hazard evaluation and spatial prediction. However, 76 

most of the studies focused on a single slope or landslide event in a relatively small catchment, 77 
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which is also a prerequisite to validate model results against observed landslides from inventories 78 

(Tian, Xiao, Liu, & Wu, 2008). In order to apply physically-based landslide prediction models in 79 

a large region, Wang et al. (2020) provided an effective method by coupling a hydrological model 80 

and a slope stability model to predict landslides over large regions in which fine-scale 81 

topographical information is incorporated. Even so, the physical (process-based) models that use 82 

physical thresholds typically predict pore pressure based on spatial variable characteristics are 83 

difficult to apply to those areas where their key parameters (such as soil thickness, groundwater 84 

conditions or shear strength) are difficult to obtain (Camilo, Lombardo, Mai, Dou, & Huser, 85 

2017). 86 

By considering the hydrological history of the basin, Crozier and Michael (1999) used the 87 

Antecedent Water Level (AWS) model to verify the hydrological sensitivity of landslides in the 88 

basin, indicating that different hydrological basin states may affect the critical water input 89 

required to trigger the landslide. Although the occurrence of landslide and debris flow is a local 90 

phenomenon in the basin, the hydrometeorological process ensures sufficient water input in the 91 

basin, so that the landslide and debris flow can be identified on a larger scale. Prenner, Kaitna, 92 

Mostbauer, and Hrachowitz (2018) quantitatively determined different trigger types for historical 93 

debris flows and used four Naive Bayes classifier models, ranging from a simple rainfall-only 94 

model to a multi-parameter hydrometeorological model differentiating between trigger types, to 95 

predict the days susceptible for debris flow occurrence in the region, which improved 96 

understanding of the hydrometeorological impact on debris flow initiation in a mountain 97 

watershed. Therefore, using hydrometeorological variables to predict landslide debris flow can 98 

not only make up for the defect of single precipitation data in the empirical model, but also avoid 99 

the need for many geological parameters in the physical model. 100 

Following these research ideas and theoretical basis above (Ciavolella, Bogaard, Gargano, 101 

& Greco, 2016; Prenner et al., 2019; Prenner et al., 2018), this paper aim to build an evaluation 102 
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model for landslide and debris flow prediction using multiple hydrometeorological variables. The 103 

upper Han River basin, China is selected as this case study. The specific objectives are to: (1) 104 

comprehensively assess the trigger sensitivities of different daily hydrological variables 105 

simulated by the SWAT model; (2) divide the hydrometeorological conditions triggering 106 

landslide and debris flows into LLR (long-lasting rainfall) and SDS (short-duration storms) and 107 

build a landslide and debris flow prediction model with multiple hydrometeorological variables 108 

based on the naive Bayesian model; (3) test the applicability of the landslide and debris flow 109 

predictive model using simulated data from 2010 to 2012. The results are expected to gain 110 

insights into the effect of hydrological state on triggering landslide and debris flows, and give 111 

implications for improving the landslide and debris flow prediction model. 112 

 113 

2. Materials and Methods  114 

2.1 Materials 115 

2.1.1. Study area 116 

As the largest tributary of the Yangtze River, Han River originates from the Luzhang 117 

Mountain in Ningqiang County, Shaanxi Province of China, runs across the Qinling Mountains 118 

and Daba Mountains from west to east, flows through Shaanxi and Hubei provinces, and injects 119 

the Yangtze River in Hankou City, Hubei Province. The upper Han River basin (30° 8' - 34° 11' 120 

N, 106° 12' - 114° 14'E) is located between the Western Plains and the Tibet Plateau, with a total 121 

catchment area of about 95,200 km² and an elevation of 82 - 3545 m, about 925 km long. The 122 

study area is a subtropical area with a monsoon climate, with an average annual temperature of 123 

15-17℃. The annual average rainfall is about 700 - 1100 mm, which is very uneven throughout 124 

the year, of which 70-80% is concentrated in the rainy season from May to October. About 48% 125 

of the upper Han River is covered by woodland, 36% by grassland and 9% by cultivated land. In 126 

the region, there were 93 landslide and debris flows caused significant damage between 2010 and 127 
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2013. Among them, landslide and debris flows that occurred in the same subbasin at the same 128 

time were regarded as the same disaster. In the end, 50 landslide and debris flows were used for 129 

research. 130 

 131 

2.1.2. Available data 132 

The data required for research and analysis are mainly divided into attribute data and map 133 

data: attribute data are mainly hydrometeorological data including precipitation, temperature, and 134 

runoff data; map data are mainly digital elevation model (DEM) data, landuse data, and soil type 135 

data. As input meteorological data, precipitation and temperature data are daily average data 136 

observed by four hydrological stations (i.e., Hanzhong station, Ankang station, Shangluo station 137 

and Xixia station) in the upstream of the Han River from 1961 to 2013 (see Figure 1). Runoff 138 

data from 2000 to 2013 is monthly average data monitored by Danjiangkou station at the outlet 139 

of the basin located 800 m downstream of the confluence of Han River and Dan River, which 140 

was used to calibrate and verify the performance of the hydrological model. The DEM data was 141 

obtained from the GDEMDEM 30 m resolution digital elevation data downloaded from the 142 

geographic spatial data cloud (http://www.gscloud.cn), and the geographic coordinates is 143 

WGS_1984 (Figure 1). The landuse data and soil type data are downloaded from the data set of 144 

Resources and Environmental Data Cloud Platform (http://www.resdc.cn), with a spatial 145 

resolution of 1 km (Figure 2). The landslide and debris flow data analyzed in the study was 146 

obtained from the Shaanxi Disaster Relief Yearbook, including the time, location, and casualties 147 

of the incident. 148 

 149 

2.2. Methods 150 

This paper contains four parts (Figure 3): First, the hydrological model SWAT was used to 151 

simulate the hydrological processes in the upstream of the Han River Basin and estimate the 152 



7 

 

values of hydrological state variables. Second, the landslide and debris flow triggering probability 153 

and characteristics conditional on the multiple hydrometeorological variables were analyzed by 154 

using the Bayesian method in the area with the landslide debris flow frequently occurring. Third, 155 

the observed landslide and debris flows were divided into two trigger classes LLR and SDS based 156 

on the triggering probability and characteristics, and the differences, as well as the distribution 157 

characteristics between two classes were compared. Finally, a landslide and debris flows 158 

prediction model was built with the Naive Bayesian probability to predict the debris flows 159 

occurrence on a specific day as a function of a range of hydrometeorological variables. 160 

 161 

2.2.1. SWAT model 162 

The process-based SWAT model was used to simulate the hydrological catchment state to 163 

obtain estimates of the daily study region state and flux variables such as soil water content, actual 164 

evapotranspiration, potential evapotranspiration, underground runoff, surface runoff and net 165 

water production, which were used for subsequent analysis and prediction model establishment. 166 

As a semi-distributed hydrological model, the SWAT model divides the study area into several 167 

subbasins according to topography and water system, and then subdivide the subbasins into 168 

different hydrologic response units (HRUs) based on soil properties and landuse types. Thus, it 169 

can take into account the comprehensive effects of weather, soil properties, topography and land 170 

cover so as to realize more accurate simulation of the basins. 171 

In this study, the SWAT model was used to simulate the hydrological processes for the 172 

period of 2006-2013. The 2006-2010 period is used to calibrate the model, while the 2011-2013 173 

as the validation period. The model was calibrated and validate with manual discharge data set 174 

of the basin outlet. Based on the parameter sensitivity analysis of potential influencing factors, 175 

the sensitive parameters were calibrated using the automatic calibration software SWAT-CUP 176 

under SUFI-2 optimization algorithm. The performance of model simulation was quantitatively 177 
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evaluated by using three indicators: Nash-Sutcliffe Efficiency Coefficient (NSE), the Percent 178 

Bias (PBIAS) and Coefficient of Determination (R2).  179 
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Where, ,p iQ is the thi estimated flow value, ,o iQ is the thi observed flow value, pQ is the mean 183 

of estimated flow value, 
oQ is the mean of observed flow value. 184 

Except for precipitation and temperature, the hydrological variables required for analysis in 185 

this paper were estimated data of SWAT model, which included precipitation, soil water content, 186 

potential evapotranspiration, actual evapotranspiration, surface runoff, groundwater discharge, 187 

and net water yield. Among them, the daily hydrological variables were extracted from the SWAT 188 

hydrological model. Considering the hysteresis of time and the treatment of effective 189 

precipitation, the calculation of the cumulative hydrological variables was defined as follows 190 

(LIU et al., 2016): 191 

0

1

=
n

k

k k

k

X X X 


                                 (4) 192 

Where, Xk is the cumulate hydrological variable X of the kth days before the event; X0 is the 193 

value of the hydrological variable X on the day of the event; α is the effective coefficient, here 194 

=0.84 (Cong, Pan, Li, Ren, & Li, 2006; Glade, Crozier, & Smith, 2000). 195 

 196 

2.2.2 Trigger probability of hydrometeorological variables 197 
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Bayes' theorem computes the probability that a landslide debris flow (E) occurs given a 198 

hydrometeorological variable (Xi), including the time series of hydrological model states and flux 199 

variables, and their temporal derivatives and accumulations: 200 
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                            (5) 201 

Bayesian probability is usually computed in terms of relative frequencies. Thus, equation (5) 202 

can be simplified to equation (2), which expresses the ratio between the number of occurrences 203 

of magnitude Xi in connection to debris flow events N(Xi|E) and the total number of occurrences 204 

N(Xi): 205 

 
 
 

=
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                                  (6) 206 

In this study the Bayesian probability is used to identify the effects of the crucial 207 

hydrological indicators on triggering landslide and debris flows, and provides a basis for 208 

determining the trigger type classification criteria. Here, six hydrological variables including soil 209 

water content (SW), groundwater discharge (GW_Q), net water yield (WYLD), potential 210 

evapotranspiration (PE), actual evapotranspiration (E), and surface runoff (SURQ) are involved 211 

due to the potential impact of rainfall on the hydrological process, and the specific value of them 212 

are derived from the SWAT model simulation results. According to the SWAT model spatial 213 

analysis, the study area was divided into 109 subbasins, and each subbasin used the rainfall and 214 

temperature data from the nearest weather station to the center of the subbasin. In order to avoid 215 

data splitting while retaining the meteorological spatial characteristics, we selected 29 subbasins 216 

where landslides and debris flows occurred as the research subjects, assigned each historical 217 

landslide debris flow to the subbasins, and combined the hydrometeorological data of the 29 218 

subbasins into one hydrometeorological data set for analysis (Berti et al., 2012).  219 

 220 
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2.2.3 Identification of landslide and debris flow trigger type 221 

To identify the different hydrometeorological conditions when the landslide debris flow 222 

occurs, we divided the trigger types of landslide and debris flow in the upper Han River into LLR 223 

and SDS with a combined analysis of multiple hydrometeorological variables. Based on the 224 

above holistic trigger probability analysis of the temporal development of watershed state before 225 

event occurrence, we formulated three individual criteria for the respective classification of LLR 226 

and SDS trigger types with soil moisture, potential evapotranspiration and air temperature span 227 

(Prenner et al., 2019). An overview of the criteria C1–C6 including the respective absolute values 228 

associated with the above percentile ranges are given in Table 1. Note that, to some degree, the 229 

epistemic uncertainties from point precipitation measurements and exploiting the low-pass filter 230 

properties of watersheds (Euser, Hrachowitz, Winsemius, & Savenije, 2015), precipitation is here 231 

not directly used as a criterion. Importantly, the actual threshold values for these criteria were not 232 

arbitrarily defined a priori but sampled from a uniform distribution within a range of respective 233 

percentiles that were selected from an explorative-iterative modeling process, guided by the 234 

outcomes of the probability analysis. For comparison and calculation, the specific classification 235 

thresholds were expressed in percentiles. The trigger type of event was classified as LLR or SDS, 236 

depending on which trigger met more corresponding criteria (Prenner et al., 2018). Moreover, 237 

except for classification of the triggering event days, these criteria also used to identify the non-238 

triggering event days, which is helpful to understand watershed characteristics and predict the 239 

occurrence of landslide and debris flows of the prediction model. 240 

 241 

2.2.4 The prediction model of landslide and debris flow 242 

Since the occurrence of debris flows in hydrometeorology is time-sensitive (variable in time) 243 

(Cardinali, 2000), the critical water input required to trigger the disasters was affected by 244 

historical hydrometeorological state. In order to predict the landslide and debris flow on a certain 245 
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day, we built a predictive model with the Naive Bayes classifier by dividing the trigger classes 246 

into LLR type of triggering event, LLR type of non-triggering event, SDS type of triggering event 247 

and SDS type of non-triggering event, and collecting corresponding hydrometeorological data 248 

sets. The Naive Bayes classifier was used to calculate the relative probability that a certain day 249 

during the study period belongs to a certain trigger class with different predictor variables. The 250 

type with the highest probability is the type of trigger event on the predicted day. 251 

The Naive Bayes classifier (Heiser, Scheidl, Eisl, Spangl, & Hübl, 2015; Perez, Larranaga, 252 

& Inza, 2009; Tsangaratos & Ilia, 2016) is given by equation (7): 253 
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where P(cj|x1, … xn) is the probability that a signature of the subbasins state, described by n 255 

hydrometeorological predictor variables x1, … xn, corresponds to the trigger class cj. The prior 256 

probability P(cj) is the probability for a given trigger class cj to occur, regardless of the catchment 257 

state. P(xi|cj) describes the likelihood that the magnitude of predictor variable xi was observed in 258 

connection with a debris flow event from that trigger class cj. The denominator acts as a 259 

normalizing constant, which ensures that the determined probabilities for the k trigger classes 260 

integrate to unity. 261 

To describe the characteristics of the trigger classes (which are a combination of catchment 262 

state and rainfall input) as holistically as possible, we used the following set of predictor variables 263 

for the predict models: (1) effective precipitation of the day (mm), (2) soil moisture of the day 264 

(mm), (3) moisture gradient to the previous day, (4) soil moisture gradient between the first and 265 

the second previous day, (5) soil moisture gradient between the second and the third previous 266 

day, (6) potential evaporation of the day (mm), (7) potential evaporation of the previous day (mm), 267 

(8) potential evaporation gradient between the second and the third previous day, (9) air 268 

temperature span of the day (°C). To ensure the accuracy of using the trigger classes, we 269 
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examined the correlations between any selected variables (Chawla, 2005). The result showed that 270 

the highest correlation between individual predictor variables was computed between air 271 

temperature span and soil moisture with a R2 of 0.42, followed by an R2 of 0.37 for effective 272 

precipitation and soil moisture, while all others did not exhibit statistically significant correlations. 273 

The prediction model was trained and evaluated with the above hydrometeorological data 274 

sets, which contained 50 event days and 250 non-event days selected randomly to represent the 275 

distribution of watershed states over our study period better. Here, we used 40 days with landslide 276 

and debris flow occurrence and 200 non-event days as the training data, while the remaining 10 277 

event days and 50 non-event days was the validation data. Each hydrometeorological variable 278 

conditional probability P(xi|cj) was calculated by the maximum likelihood fitting to the training 279 

data, except the precipitation applied a general extreme value distribution for better performance. 280 

For training, we repeated this procedure 1,000 times to consider the uncertainties by varying the 281 

model training data sets. We evaluated the model’s predictive performance by comparing the 282 

predicted landslide and debris flow trigger classes with actually observed landslide and debris 283 

flow. 284 

To quantify and summarize the model skill, receiver operating characteristic (ROC) statistics 285 

of true positive rates (TPR) and false positive rates (FPR) were used (Fawcett, 2006). The 286 

performance of the prediction model was evaluated based on the ROC curve formed by TPR and 287 

FPR computed by comparing the model predictions with the verification data set. As a measure 288 

for model performance we use the area under curve (AUC), and a perfect model yields unity for 289 

TPR with a value of 0 for FPR. Finally, we selected the best model to evaluate the whole days of 290 

the study period to verify the model performance.  291 

 292 
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3. Results 293 

3.1 SWAT model and hydrometeorological states of the event day 294 

Because of the limitation of the observed runoff data, The SWAT model was calibrated and 295 

validated for monthly streamflow only at the basin outlet (Danjiangkou station). After 3000 times 296 

optimization, the twelve sensitive parameters with detailed descriptions and fitted values are 297 

listed in Table 2. The values of Nash-Sutcliffe Efficiency Coefficient, the Percent Bias and 298 

Coefficient of Determination in calibration are 0.81, 7.3 and 0.84, respectively, while the values 299 

of Nash-Sutcliffe Efficiency Coefficient, the Percent Bias and Coefficient of Determination in 300 

calibration are 0.74, 3.3 and 0.87, respectively. The processes of modeled and observed monthly 301 

discharge for eight years (a total of 96 months) are shown in figure 4. The simulated discharges 302 

show generally good agreement with the observations implying that the calibrated SWAT model 303 

is good enough to describe the hydrological condition of the study area and the optimized model 304 

parameters can be used to simulate the daily flow for the following research. 305 

In figure 5a-b, we provide a detailed view of the subbasin state around the two selected 306 

rainstorm events in the study area. The X-coordinate shows the relative sequence of events with 307 

respect to the event date (unit: day); minus sign means days before the event date while 0 refers 308 

to the event date; y-coordinate refers to simulation values of corresponding hydrological variables. 309 

For the event on 16th September 2011 described as LLR trigger event (Figure 5a), it rained for 310 

four days before the event, including two days with high precipitation intensity (above 50 mm d-311 

1) and one day with moderate precipitation intensity (about 20 mm d-1), which caused a large 312 

amount of precipitation input before the disaster occurs. On the contrary, evaporation in the 313 

region had been at a low level with no more than 2.5 mm. As heavy rain continues pounding the 314 

subbasin as well as low evaporation, the soil moisture level was still rising and up to 100 mm d-315 

1, and the mean value of soil water content was above 95.4 mm. Therefore, the landslide and 316 

debris flows would happen even though almost no rainfall was observed on 16th September 2011. 317 
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Another example is the event 9th July 2012 described as SDS trigger event (Figure 5b), there was 318 

little rain in the days before the event and the total rainfall in the four days before the event was 319 

48 mm with the low intensity below 30 mm d-1. In addition, the evaporation was generally at a 320 

high level although the trend was down and the total evaporation in the four days before the event 321 

was 17.44 mm with over 4.36 mm on average. Because of the little rain but the high evaporation, 322 

the soil moisture of the subbasin kept a relatively low level, which the mean value of soil water 323 

content was about 68.3 mm in the four days before the event. However, the rainfall with high 324 

intensity more than 80 mm d-1 also could cause the landslide and debris flows although not so 325 

much precipitation accumulation before 9th July 2012. Since no snowmelt was found in the 326 

subbasin debris flow occurs during the study period, the type of intense snowmelt trigger (SM) 327 

was not considered in this paper (Prenner et al., 2018). 328 

 329 

3.2 The trigger probability of hydrometeorological variables 330 

The triggering probabilities based on the magnitude of different hydrometeorological 331 

variables of the day with a landslide and debris flow occurrence in the event area (29 subbasins) 332 

and their cumulative hydrometeorological variables on the 12 days before the day of the event 333 

are analyzed. The trigger probability shows a volatility increasing trend as the value of the 334 

variable increases (Figure 6). For example, the actual evapotranspiration reaches a high 335 

probability of more than 1% at the 20th percentile, after which the probability decreases, and a 336 

high probability again at the 70th percentile. The similar trends are observed in soil water content, 337 

potential evapotranspiration and groundwater discharge, while a single increasing trend of trigger 338 

probabilities is observed with increasing net water yield and surface runoff. In addition, with the 339 

accumulation of time, the probability distribution of triggering is gradually stable, such as soil 340 

water content, potential evapotranspiration, actual evapotranspiration, etc.  341 
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Trigger probabilities for landslide and debris flows conditional to gradients (divided into 342 

positive and negative absolute gradients) of potential evapotranspiration (PE), soil moisture (SW), 343 

and groundwater discharge (GW_Q) fraction up to 12 days prior to the event (always with respect 344 

to the event day) are shown in figure 7. The trigger probability either in positive gradient or 345 

negative gradient increase as the percentile of each variable increase to a higher range. For soil 346 

water content, we find increased trigger probabilities from 0.5% to 1% when positive gradients 2 347 

days before the event are in the high percentile range of 60-80%, as well as the negative gradient 348 

with the same tendency but a lower probability. At the same time, the trigger probability of 349 

potential evapotranspiration is increased significantly as the positive and negative gradients of 350 

the four days prior to the event are in the high percentile range. In summary, it suggests that there 351 

are different watershed states developed about four days before the event. The evapotranspiration 352 

was significantly reduced to increase the soil moisture pointing to LLR, while the 353 

evapotranspiration was increased to reduce the soil moisture pointing to SDS. On the whole, these 354 

sometimes opposing trends of increased landslide and debris flows probabilities conditional to 355 

different hydrometeorological variables show that different weather conditions are connected 356 

with the landslide and debris flows occurrence in our study region.  357 

 358 

3.3 Temporal characteristics of triggers and their watershed states at the event day 359 

The procedure described in section 3.3 was used to separate the different trigger type, which 360 

allows us to identify only the most likely trigger but the distinct threshold values for the different 361 

criteria. The results suggest that landslides and debris flows in the selected subbasins region were 362 

triggered on 33 days by LLR and on 17 days by SDS, and temporal occurrence characteristic is 363 

obvious (Figure 8). In a year, landslide and debris flows mainly occur in July, August and 364 

September, with the most occurring in July, accounting for 68% (34 days), followed by 365 

September, accounting for 22% (11 days). In addition, triggers show different dominant type in 366 
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time, such as the LLR in July was up to 79%, while in August and September, SDS gradually 367 

became the dominant trigger factor, accounting for 64% in September. This is basically consistent 368 

with the rule found in Prenner's previous research (Prenner et al., 2019). 369 

The differences (p-value of Wilcoxon rank sum test < 5%) in median value of each variable 370 

per trigger class are statistically significant for the study regions (Figure 9). Here, the data of all 371 

variables were normalized for the convenience of comparison. For example, the median 372 

accumulated precipitation of LLR-trigger events was higher than those of SDS-trigger events, 373 

especially the median accumulative precipitation of the event day was 127% higher than those of 374 

SDS-type events. Meanwhile the median accumulated soil water content a day before the event 375 

was 57% higher than that of SDS-type events. In addition, the similar trends were displayed on 376 

the actual evapotranspiration, mean temperature and potential evapotranspiration. On the 377 

contrary, the average potential evaporation on the day of LLR-type events was 94% lower than 378 

that of SDS-type events. It was noted that the differences between the two trigger types gradually 379 

decrease, as the time before the event prolongs. These findings indicate that the classification of 380 

different trigger types in the study area can better analyze the hydrologic state when landslide 381 

debris flows occur. 382 

 383 

3.4 Validation and application of the landslide and debris flow predictive model  384 

Through the most likely trigger can be identified based on the procedure described in section 385 

3.3, the threshold values for the different criteria are not certain to predict whether landslide and 386 

debris flow will occur. Thus, the prediction models described in section 3.4 is used to help predict 387 

landslide and debris flow. After optimization with 1000 sets of calibration and verification 388 

samples obtained by random sampling, the best performance model determined by comparing the 389 

true positive rate and false positive rate was selected to perform experiments to test predictions. 390 

The results show that the AUC value is up to 0.85 and the true positive rate TPR and false positive 391 
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rate FPR of the model with the best performance are 0.9 and 0.177 respectively, indicating that 392 

this model possesses good simulation capability. 393 

 394 

3.4.1 The landslide and debris flow prediction and their temporal characteristics 395 

The selected prediction model was applied to typical subbasins of landslide and debris flow 396 

respectively to predict days with landslide and debris flow occurrence for 2010-2012. The results 397 

are shown in the figure 10，where the horizontal axis is the day in a year, and the vertical axis 398 

shows the typical subbasin ID numbers of landslide and debris flow. Comparing with the 399 

observed events, the true positive rate and false positive rate of landslide and debris flow 400 

predicted by the model reach 0.64 and 0.023 respectively. For 2010, 21 landslides and debris 401 

flows are predicted successfully, while nine recorded landslides and debris flows are not 402 

recognized by the prediction model. Among the nine observed but not predicted landslides and 403 

debris flows, some events do not have the hydrological conditions that trigger landslides and 404 

debris flows, like the event on 4th August 2010 which occurred near the exit of the Xikang 405 

Railway Tunnel and inside the number 103 provincial highway in Liangheguan Village, Xiaohe 406 

Town, Xunyang County, Ankang City, within subbasin number 39 in our study area. The total 407 

rainfall in the six days before that event was 20.91 mm with the high intensity evaporation up to 408 

6.24 mm on average and decreasing soil moisture content. What’s more, no rainfall was observed 409 

that day implying that the possibility of landslide debris flow is very low. Thus, the non-rainfall 410 

factors (such as human activity) may be the main triggers for such events. Besides, the most of 411 

the prediction errors lie in the earlier or later occurrence time predicted by the model, which 412 

indicates that the model is not sensitive enough to identify the hydrological state of the landslide 413 

debris flows due to the limited historical event data. 414 

The days of landslide and debris flow mainly gathered between May (about the 120th day) 415 

and mid-September (about the 260th day), among which the number of days of landslide and 416 
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debris flow occurred from July to September is the largest. Moreover, the LLR-trigger days are 417 

mainly concentrated in August (about 220th day), while the SDS-trigger days are mainly 418 

concentrated in July and September (about 181th and 243th day). This is consistent with the 419 

annual distribution of observed landslides and debris flows and the precipitation in the study area 420 

from July to September accounts for about 57% of the annual precipitation (Zhang et al., 2019). 421 

 422 

3.4.2 Spatial distribution of predicted landslide and debris flow 423 

Besides temporal distribution, the spatial variations among the subbasins for the occurrence 424 

of specific trigger types were analyzed by choosing four subbasins (the numbers are sub_41, 425 

sub_42, sub_50 and sub_87) with high frequency of landslide debris flows which are located in 426 

different geographical locations. For number sub_41 covering a total area of nearly 128.3 km2 427 

and 495 -1894 meters in height, the main land use type is the agricultural land, account for about 428 

66.2% of the subbasin area, as well as other land use types are urban land, account for about13.7%. 429 

For number sub_42 covering a total area of nearly 1152.97 km2 and 155-1490 meters in height, 430 

the three main land use types are forest, pasture and agricultural land, account for about 58.0%, 431 

25.7% and 15.4%, respectively. For number sub_50 covering a total area of nearly 646.88 km2 432 

and 494-2328 meters in height, it also has three main land use types including pasture, agricultural 433 

and forest land, account for about 39.4%, 31.0% and 28.0% of the subbasin area, respectively. 434 

And sub_87 with a total area of about 63.18 km2 and 318 - 1300 meters in height have two main 435 

land use types including pasture and agricultural land, account for about 61.7% and 36.4% of the 436 

subbasin area, respectively. Above all, the four subbasins have different characteristics in land 437 

use and soil type.  438 

The results are shown in the figure 11, the LLR-trigger days are dominant in sub_41, sub_50, 439 

while the SDS-trigger days make up the majority in sub_42 and sub_87. As the different 440 

proportions of the main land use, we attribute the more LLR-trigger days to the larger forest area 441 
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than agricultural area, while the more SDS-trigger days may due to the larger agricultural area 442 

than forest area, which needs further proof through more detailed evidence. On the other side, we 443 

found that the number of landslide and debris flow day are different with the same rainfall 444 

scenarios, which implies that the geological conditions in different areas have a certain influence 445 

on triggering landslides and debris flows. That is, although the landslide and debris flow 446 

prediction model of multi-meteorological hydrology does not directly use geological parameters 447 

for modeling, the geographical distribution characteristic of landslide and debris flows 448 

occurrence still could be identified by using the semi-distributed hydrological model (SWAT) 449 

and hydrometeorological variables, making up for the lack of geological parameters to some 450 

extent. 451 

 452 

4. Discussion  453 

China has been suffering a lot of loss of life and property due to landslides and debris flows, 454 

and the number of disasters will increase further (Gariano & Guzzetti, 2016) because of the 455 

excessive exploitation of natural resources and vegetation damage (Nadim, Kjekstad, Peduzzi, 456 

Herold, & Jaedicke, 2006), land urbanization, especially mountainous urbanization (LiGerui, 457 

LeiYalin, YaoHuajun, WuSanmang, & GeJianping, 2017), as well as the increase in extreme 458 

precipitation (Fu et al., 2013). The interacting factors between the precipitation and topography, 459 

soil, lithology, vegetation and population density are more closely related to the spatial 460 

distribution of fatal landslides than each individual factor (Lin & Wang, 2018). This paper attempt 461 

predict the occurrence of the landslides and debris flows based on the different hydrological 462 

subcatchment states evaluated by the SWAT model. The hydrologic response unit divided by 463 

spatial analysis used in SWAT model for hydrological calculation can make up for the lack of 464 

geological parameters to some extent.  465 
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The differences of most hydrometeorological variables between the trigger types are 466 

statistically significant, implying that the hydrometeorological formation processes (Ford, Rapp, 467 

Quiring, & Blake, 2015; Rulfova & Kysely, 2013) leading to landslides and debris flows can be 468 

clearly identifiable at subbasin scales. In addition, the annual time distribution of event days in 469 

different trigger types is consistent with local meteorological and precipitation trends (Qiu, Cui, 470 

Hu, et al., 2019; Qiu, Cui, Yang, et al., 2019). With 1000 times training, the AUC value of the 471 

prediction model is up to 0.85, and the true positive rate TPR and false positive rate FPR of the 472 

model with the best performance are 0.9 and 0.177 respectively, indicating that this model 473 

possesses good prediction capability. Therefore, combined with the hydrological model, it can 474 

better reflect the hydrological basin state with landslides and debris flows and give early warning 475 

of possible disaster without too many geological parameters. Our application test also show that 476 

the land cover has a certain effect on the triggering of landslide debris flow (Lin & Wang, 2018) 477 

and the specific influence mechanism can be further explored in subsequent studies.  478 

For our study, we mainly study the hydrometeorological variables with similar geographical 479 

conditions, but the other factors like the slope failure (Fan et al., 2019), intensive channel erosion 480 

and human activity were not considered and may partially explain that some observed landslides 481 

and debris flows are not predicted by our model. Furthermore, the limited data used in this study 482 

will also increase the uncertainty of prediction model. On the one hand, the 50 landslide and 483 

debris flow information used in this study were obtained the disaster relief yearbook of Shaanxi 484 

province, where only with large scale or casualty disasters are recorded. But according to statistics, 485 

there were 1,891 landslide and debris flow events without specifying the date and place in the 486 

study area during the study period. So the incomplete landslide and debris flows may affect the 487 

prediction performance of the model. On the other hand, we only have hydrological stations all 488 

over the study region with a total area of 95200 km2, so the spatial distribution of precipitation is 489 

not accurate enough. Thus, adding more information about small and medium landslide and 490 
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debris flows into the model calibration data set as well as improving the resolution of precipitation 491 

data can improve the accuracy of model prediction. 492 

 493 

5. Conclusion 494 

In this study, the hydrometeorological conditions of the upper and middle reaches of the 495 

Han River were investigated by the process-based, semidistributed hydrological model SWAT. 496 

Then, based on this information of 29 typical subbasins, we divide the landslides and debris flows 497 

into LLR-trigger and SDS-trigger events. In order to predict the occurrence of landslides and 498 

debris flows, we established a predictive model with the nine hydrometeorological variables of 499 

different type trigger or non-trigger event day using a Naive Bayes classifier. Finally, we used 500 

the model to evaluate the occurrence of landslide and debris flow in the typical subbasin of 501 

landslide and debris flow from 2010 to 2012 and carried out verification analysis. The main 502 

findings can be summarized as follows: 503 

(1) Validation of the SWAT model suggests that it performs well in simulating streamflow, 504 

and can thus be used to estimate the hydrological condition for the following research. 505 

(2) We found that there is no single watershed state when landslides and debris flows occur, 506 

and historical hydrological variables and their development provide important information for 507 

triggering debris flows, through rainfall is the most important factor for triggering debris flows. 508 

Furthermore, there are significant differences in various hydrological variables between two 509 

trigger types, which may explain the uncertainty of the traditional I-D threshold prediction. 510 

(3) The landslides and debris flows in the selected subbasins regions are triggered on 33 511 

days by LLR and on 17 days by SDS. Specifically, landslides and debris flows are mainly 512 

concentrated between July and September, with the most occurrences in July, followed by 513 

September. The seasonal distribution of different trigger events is different. LLR type landslide 514 
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and debris flow account for a large proportion in July, while SDS type landslide and debris flow 515 

occur more frequently in September. 516 

(4) The AUC value of the prediction model is up to 0.85, and it can capture most of the 517 

landslide debris flow with the true positive rate and false positive rate of 0.64 and 0.023 518 

respectively. The temporal distribution of the two triggering-event predicted by model is 519 

consistent with the annual distribution of precipitation. Besides, there are spatial variations of the 520 

specific trigger types in the different subbasins, which may attribute to the different land over. 521 
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Figure legends 670 

 671 

Figure 1. Overview of the upper Han River basin. 672 

Figure 2. Landuse (a) and soil map (b) of the upper Han River basin. 673 

Figure 3. Structure of the research methods. 674 

Figure 4. The monthly rainfall and runoff (measured runoff (black) and simulated runoff (red) 675 

during calibration (2006-2010 (0-60 month)) and validation (2011-2013 (61-96 month)) 676 

periods. 677 

Figure 5. Precipitation, actual evapotranspiration, and soil water content around the landslides 678 

and debris flow event on 9th July 2012, which may be interpreted as SDS (short-duration 679 

storm) trigger type (a), on 16th September 2011, which suggests being an SDS (long-lasting 680 

rainfall) trigger type (b). 681 

Figure 6. Mean trigger probability of cumulative hydrometeorological variables in previous t days 682 

including soil water content (SW), groundwater discharge (GW_Q), net water yield 683 

(WYLD), potential evapotranspiration (PE), actual evapotranspiration (E), and surface 684 

runoff (SURQ). 685 

Figure 7. Mean trigger probability of the cumulative gradient of the variable over t days. A 686 

positive gradient means that the parameter value increases over previous t days; a negative 687 

gradient means that the parameter value decreases over previous t days. 688 

Figure 8. Temporal distribution of LLR and SDS triggers in study regions. 689 

Figure 9. The distribution of hydrometeorological variables between triggers. 690 

Figure 10. Daily predicted trigger classes exemplarily for 29 selected subbasins from 2010 to 691 

2012. 692 

Figure 11. Temporal distribution of LLR and SDS triggers in different regions. 693 


