References
1. Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. P. Natl. Acad. Sci. Usa. 115 , 11982-11987 (2018).
2. Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes.Nat. Commun. 12 , 1701 (2021).
3. Crozier, L. G., Burke, B. J., Chasco, B. E., Widener, D. L. & Zabel, R. W. Climate change threatens Chinook salmon throughout their life cycle.Communications Biology . 4 , (2021).
4. Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. P. Natl. Acad. Sci. Usa. 116 , 21609-21615 (2019).
5. Tomotani, B. M. et al. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Global Change Biol.24 , 823-835 (2018).
6. Cohen, E. B. & Satterfield, D. A. ’Chancing on a spectacle:’ co-occurring animal migrations and interspecific interactions. Ecography , (2020).
7. Paumier, A., Drouineau, H., Boutry, S., Sillero, N. & Lambert, P. Assessing the relative importance of temperature, discharge, and day length on the reproduction of an anadromous fish (Alosa alosa). Freshwater Biol. 65 , 253-263 (2020).
8. Wegge, P. & Rolstad, J. Climate change and bird reproduction: warmer springs benefit breeding success in boreal forest grouse. P. Roy. Soc. B-Biol. Sci. 284 , (2017).
9. Bowers, E. K. et al. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird.Ecology . 97 , 2880-2891 (2016).
10. Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Global Change Biol.15 , 1859-1865 (2009).
11. Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes.Global Change Biol. 14 , 1959-1972 (2008).
12. Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature .411 , 296-298 (2001).
13. Sanz, J. J., Potti, J., Moreno, J., Merino, S. & Frias, O. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biol. 9 , 461-472 (2003).
14. Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature .441 , 81-83 (2006).
15. Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of Migratory Bird Species That Did Not Show a Phenological Response to Climate Change Are Declining. Proceedings of the National Academy of Sciences - PNAS . 105 , 16195-16200 (2008).
16. Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nature Ecology & Evolution . 3 , 879-885 (2019).
17. Zhemchuzhnikov, M. K. et al. Exploring the drivers of variation in trophic mismatches: A systematic review of long-term avian studies. Ecol. Evol.11 , 3710-3725 (2021).
18. Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol.84 , 943-954 (2015).
19. IPCC (ed). Climate Change 2013: The Physical Science Basis . Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013.
20. Stott, P. How climate change affects extreme weather events. Science .352 , 1517-1518 (2016).
21. Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change . 8 , 427-433 (2018).
22. McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett.14 , 1183-1190 (2011).
23. Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. P. Roy. Soc. B-Biol. Sci.281 , (2014).
24. Renner, S. S. & Zohner, C. M. Climate Change and Phenological Mismatch in Trophic Interactions Among Plants, Insects, and Vertebrates. In: Futuyma, D. J., editor. Annual Review of Ecology Evolution and Systematics ; 2018. pp. 165-182.
25. Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and Evolutionary Consequences of Environmental Change and Management Actions for Migrating Fish. Frontiers in Ecology and Evolution .7 , (2019).
26. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. P. Natl. Acad. Sci. Usa.115 , 5211-5216 (2018).
27. Samplonius, J. M. & Both, C. Climate Change May Affect Fatal Competition between Two Bird Species. Curr. Biol. 29 , 327 (2019).
28. Cai, Y., Ke, C. & Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 607-608 , 120-131 (2017).
29. Tang, L. et al. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep.-UK . 8 , 7331-7337 (2018).
30. Xiong, F., Chen, D. & Duan, X. Threatened fishes of the world: Gymnocypris przewalskii (Kessler, 1876) (Cyprinidae: Schizothoracinae).Environ. Biol. Fish. 87 , 351-352 (2010).
31. Senner, N. R., Morbey, Y. E. & Sandercock, B. K. Editorial: Flexibility in the Migration Strategies of Animals. Frontiers in Ecology and Evolution . 8 , (2020).
32. Huang, Z. & Wang, L. Yangtze Dams Increasingly Threaten the Survival of the Chinese Sturgeon. Curr. Biol. 28 , 3640-3647 (2018).
33. Dahlke, F. T., Wohlrab, S., Butzin, M. & Poertner, H. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science .369 , 65 (2020).
34. Wang, C. Y. et al. Distributions and abundance ofGymnocypris przewalskii (Kessler, 1876) in Qinghaihu Lake, China: an approach based on hydroacoustic sampling. J. Appl. Ichthyol. 29 , 1473-1476 (2013).
35. Zhang, Z. et al. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 635 , 443-451 (2018).
36. Yao, T. et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. B. Am. Meteorol. Soc. 100 , 423-444 (2019).
37. You, Q., Zhang, Y., Xie, X. & Wu, F. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 degrees C and 2 degrees C. Clim. Dynam. 53 , 2047-2060 (2019).