References
1.
Freeman,
B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate
change causes upslope shifts and mountaintop extirpations in a tropical
bird community. P. Natl. Acad. Sci. Usa. 115 ,
11982-11987 (2018).
2.
Barbarossa,
V. et al. Threats of global warming to the world’s freshwater fishes.Nat. Commun. 12 , 1701 (2021).
3.
Crozier,
L. G., Burke, B. J., Chasco, B. E., Widener, D. L. & Zabel, R. W.
Climate change threatens Chinook salmon throughout their life cycle.Communications Biology . 4 , (2021).
4.
Riddell,
E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R.
Cooling requirements fueled the collapse of a desert bird community from
climate change. P. Natl. Acad. Sci. Usa. 116 ,
21609-21615 (2019).
5.
Tomotani,
B. M. et al. Climate change leads to differential shifts in the timing
of annual cycle stages in a migratory bird. Global Change Biol.24 , 823-835 (2018).
6.
Cohen,
E. B. & Satterfield, D. A. ’Chancing on a spectacle:’ co-occurring
animal migrations and interspecific interactions. Ecography ,
(2020).
7.
Paumier,
A., Drouineau, H., Boutry, S., Sillero, N. & Lambert, P. Assessing the
relative importance of temperature, discharge, and day length on the
reproduction of an anadromous fish (Alosa alosa). Freshwater
Biol. 65 , 253-263 (2020).
8.
Wegge,
P. & Rolstad, J. Climate change and bird reproduction: warmer springs
benefit breeding success in boreal forest grouse. P. Roy. Soc.
B-Biol. Sci. 284 , (2017).
9.
Bowers,
E. K. et al. Spring temperatures influence selection on breeding date
and the potential for phenological mismatch in a migratory bird.Ecology . 97 , 2880-2891 (2016).
10.
Visser,
M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads
to decreasing bird migration distances. Global Change Biol.15 , 1859-1865 (2009).
11.
Miller-Rushing,
A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird
migration times, climate change, and changing population sizes.Global Change Biol. 14 , 1959-1972 (2008).
12.
Both,
C. & Visser, M. E. Adjustment to climate change is constrained by
arrival date in a long-distance migrant bird. Nature .411 , 296-298 (2001).
13.
Sanz,
J. J., Potti, J., Moreno, J., Merino, S. & Frias, O. Climate change and
fitness components of a migratory bird breeding in the Mediterranean
region. Global Change Biol. 9 , 461-472 (2003).
14.
Both,
C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and
population declines in a long-distance migratory bird. Nature .441 , 81-83 (2006).
15.
Møller,
A. P., Rubolini, D. & Lehikoinen, E. Populations of Migratory Bird
Species That Did Not Show a Phenological Response to Climate Change Are
Declining. Proceedings of the National Academy of Sciences -
PNAS . 105 , 16195-16200 (2008).
16.
Visser,
M. E. & Gienapp, P. Evolutionary and demographic consequences of
phenological mismatches. Nature Ecology & Evolution . 3 ,
879-885 (2019).
17.
Zhemchuzhnikov,
M. K. et al. Exploring the drivers of variation in trophic mismatches: A
systematic review of long-term avian studies. Ecol. Evol.11 , 3710-3725 (2021).
18.
Pearce-Higgins,
J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of
climate change impacts on bird communities. J. Anim. Ecol.84 , 943-954 (2015).
19.
IPCC
(ed). Climate Change 2013: The Physical Science Basis . Cambridge
University Press: Cambridge, United Kingdom and New York, NY, USA, 2013.
20.
Stott,
P. How climate change affects extreme weather events. Science .352 , 1517-1518 (2016).
21.
Swain,
D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing
precipitation volatility in twenty-first-century California. Nat.
Clim. Change . 8 , 427-433 (2018).
22.
McNamara,
J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing
of activities under environmental changes. Ecol. Lett.14 , 1183-1190 (2011).
23.
Gienapp,
P., Reed, T. E. & Visser, M. E. Why climate change will invariably
alter selection pressures on phenology. P. Roy. Soc. B-Biol. Sci.281 , (2014).
24.
Renner,
S. S. & Zohner, C. M. Climate Change and Phenological Mismatch in
Trophic Interactions Among Plants, Insects, and Vertebrates. In:
Futuyma, D. J., editor. Annual Review of Ecology Evolution and
Systematics ; 2018. pp. 165-182.
25.
Tamario,
C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and
Evolutionary Consequences of Environmental Change and Management Actions
for Migrating Fish. Frontiers in Ecology and Evolution .7 , (2019).
26.
Kharouba,
H. M. et al. Global shifts in the phenological synchrony of species
interactions over recent decades. P. Natl. Acad. Sci. Usa.115 , 5211-5216 (2018).
27.
Samplonius,
J. M. & Both, C. Climate Change May Affect Fatal Competition between
Two Bird Species. Curr. Biol. 29 , 327 (2019).
28.
Cai,
Y., Ke, C. & Duan, Z. Monitoring ice variations in Qinghai Lake from
1979 to 2016 using passive microwave remote sensing data. Sci.
Total Environ. 607-608 , 120-131 (2017).
29.
Tang,
L. et al. Influences of climate change on area variation of Qinghai Lake
on Qinghai-Tibetan Plateau since 1980s. Sci. Rep.-UK . 8 ,
7331-7337 (2018).
30.
Xiong,
F., Chen, D. & Duan, X. Threatened fishes of the world: Gymnocypris
przewalskii (Kessler, 1876) (Cyprinidae: Schizothoracinae).Environ. Biol. Fish. 87 , 351-352 (2010).
31.
Senner,
N. R., Morbey, Y. E. & Sandercock, B. K. Editorial: Flexibility in the
Migration Strategies of Animals. Frontiers in Ecology and
Evolution . 8 , (2020).
32.
Huang,
Z. & Wang, L. Yangtze Dams Increasingly Threaten the Survival of the
Chinese Sturgeon. Curr. Biol. 28 , 3640-3647 (2018).
33.
Dahlke,
F. T., Wohlrab, S., Butzin, M. & Poertner, H. Thermal bottlenecks in
the life cycle define climate vulnerability of fish. Science .369 , 65 (2020).
34.
Wang,
C. Y. et al. Distributions and abundance ofGymnocypris przewalskii
(Kessler, 1876) in Qinghaihu Lake, China: an approach based on
hydroacoustic sampling. J. Appl. Ichthyol. 29 , 1473-1476
(2013).
35.
Zhang,
Z. et al. The response of lake area and vegetation cover variations to
climate change over the Qinghai-Tibetan Plateau during the past 30
years. Sci. Total Environ. 635 , 443-451 (2018).
36.
Yao,
T. et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt
and Water Cycle Intensification and Interactions between Monsoon and
Environment: Multidisciplinary Approach with Observations, Modeling, and
Analysis. B. Am. Meteorol. Soc. 100 , 423-444 (2019).
37.
You,
Q., Zhang, Y., Xie, X. & Wu, F. Robust elevation dependency warming
over the Tibetan Plateau under global warming of 1.5 degrees C and 2
degrees C. Clim. Dynam. 53 , 2047-2060 (2019).