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Abstract

This paper deals with the sixth-order boussinesq equation with fourth-order disper-
sion term. By suitable assumptions on the initial values, the conditions on finite time
blow-up of solutions are given. Moreover, the upper and lower bounds of the blow-up
time are also investigated.
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1 Introduction

In this paper, we consider the blow-up phenomena for the initial-boundary value problem
of the following sixth-order boussinesq equation with fourth-order dispersion term:

utt − α∆3u+ β∆2u−∆u− a∆utt = ∆f(u), (x, t) ∈ Ω× R+, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω, (1.2)

u|∂Ω = 0,
∂u

∂ν

∣∣∣∣
∂Ω

= 0, ∆u|∂Ω = 0, (1.3)

where Ω is a bounded region in Rn with a smooth boundary ∂Ω, ν is the unit eternal normal
on ∂Ω; u = u(x, t) refers to the unknown function; ∆, ∆2 and ∆3 are the n-dimensional
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harmonic operator, bi-harmonic operator, and third-order harmonic operator respectively;
the subscript t denotes the partial derivative regarding to t; the parameters a, α, β satisfies:

a > 0, α > 0, β > −αλ1, (1.4)

where λ1 is the first eigenvalue of −∆ with zero Dirichlet boundary condition in Ω. The
nonlinear smooth function f(s) : R 7→ R satisfies the following conditions:

(i) there exists a constant ξ ∈ (0,+∞) such that for any s ∈ R it holds

|f(s)| ≤ ξ|s|q, where 1 < q

{
< +∞, n = 1, 2, 3, 4;
≤ n+4

n−4
, n = 5, 6, 7, · · · ;

(ii) there exists a constant p ∈ (0,+∞)such that for any s ∈ R it holds
2(p+ 1)F (s) ≥ sf(s) where F (s) =

∫ s
0
f(τ)dτ.

(1.5)

When the space dimension n = 1, (1.1) with f(u) = bu2 and α = a = 0, becomes the
following well-known Boussinesq equation established by Boussinesq in 1872 (see [2]):

utt + βuxxxx − uxx = b
(
u2
)
xx
, (1.6)

which is called “good”Boussinesq equation when β > 0 and “bad”Boussinesq equation
when β < 0. (1.6) is used to model small oscillations of nonlinear beams and two dimen-
sional irrotational flows of an inviscid liquid in a uniform rectangular channel (β > 0), and
the propagation of long surface waves in shallow water (β < 0). Generally, we can written
(1.6) as

utt + β∆2u−∆u = ∆f(u) (1.7)

in n dimension. The Cauchy problem of (1.7) in R with initial data (1.3) was studied in
[1, 16, 18, 19, 20, 32, 34]. For example: Bona and Sachs [1] got the existence of localHs+2×Hs

solution for any (u0, u1) ∈ Hs+2 × Hs with s > 1/2 and f(u) = −|u|p−1u, and, with some
assumptions on initial data, they showed the solution exists globally for 1 < p < 5 by
using Kato’s abstract theory of quasilinear evolution equation. Besides, In [18], Linear-
es also obtained the local well posedness of (1.7) with f(u) = −|u|p−1u either in H1 × L2

with 1 < p < ∞ or in L2 × H−1 with 1 < p < 5. By means of potential well method,
the invariant sets of solutions in (1.7) was obtained by Liu in [20], and the author also
proved the global existence and finite time blow-up of solutions with f(u) = −|u|p−1u. Xue
[34] considered the equation (1.7) with f(u) = −uk+1, k = 5, 6, · · · , and the existence of
global solutions was proved in some homogenous Besov-type space. When f(u) = ±|u|p
or f(u) = ±|u|p−1u of equation (1.7), which was considered by Liu and Xu in [19], and
the authors obtained the invariant sets, vacuum isolating and threshold results of global
existence and nonexistence of solutions by using a family of potential wells. Recently, X-
u [32] generalized the above results by considering the case f(u) = −

∑l
k=1 ak|u|pk−1u or

f(u) = −
∑l

k=1 ak|u|pk−1u +
∑m

j=1 bj|u|qj−1u, where ak (1 ≤ k ≤ l) and bj (1 ≤ j ≤ m) are
positive constant. By combining potential well method with other skills, he obtained the
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sufficient and necessary conditions for global existence and finite time blow-up of solu-
tions. On the basis, Liu, Wu and Ryan [16] got some sufficient conditions for the finite time
blow-up of solutions of equation (1.7) with more general form of f(u).

If we neglect the terms ∆3u and ∆2u of (1.1), we get the following wave equation:

utt −∆u−∆utt = ∆f(u) (1.8)

In [21], Makhankov studied the Cauchy problem of (1.8) with f(u) = u2 or f(u) = u3, and
derived the properties of soliton type solutions. And spherically symmetric, oscillating
solutions (pulsons) are examined in the framework of φ4 and sine-Gordon theories. Wang
and Chen considered the case f(u) = u3 of (1.8) in [29], and the global existence, nonexis-
tence of solutions and the global existence of a small amplitude solutions were obtained.
The authors [5] studied the nonlinear partial differential equation (1.8), and modeled the
propagation of longitudinal deformation waves in an elastic rod.

In order to correct the bad numerical feature of the classical fourth-order Boussinesq
equation (1.6), Daripa [7] and Daripa and Hua [8] introduced the following sixth-order
Boussinesq equation

utt − uxx − uxxxx − ε2uxxxxxx =
(
u2
)
xx
, (1.9)

where ε is a small parameter. Similarly, Maugin [22] introduced the sixth-order Boussinesq
equation

utt − uxx − uxxxx − 0.4uxxxxxx = 6
(
u2
)
xx
. (1.10)

Likewise, Christov et al. [3, 4] showed that, a way to make the fourth-order Boussinesq
equation (1.6) mathematically correct is to retain the term containing the sixth-order spatial
derivative in the approximation expansion. Recently, Godefroy [9] considered the Cauchy
problem of equation (1.1) without damping in Rn, i.e.,

utt −∆u−∆2u− µ∆3u = ∆f(u), (1.11)

where f(u) = γ|u|p−1u, γ ∈ R, p ≥ 2, µ > 1/4. The author found two global existence
results for appropriate initial data when n verifies 1 ≤ n ≤ 4(p + 1)/(p − 1). On the other
hand, the author showed that if µ = 1/3 and p > 13/2, then the solution with small initial
data decays in time. The author also obtained a finite time blow-up result for appropriate
initial data when n verifies 1 ≤ n ≤ 4(p+ 1)/(p− 1).

Motivated by the above researches, we study the blow-up phenomena for (1.1), (1.2)
and (1.3) in the present work. As for we know, there are many works to study the existence,
uniqueness, nonexistence and asymptotic behavior of global solution of (1.1), (1.2) and
(1.3) (see, for example, [9, 7, 16, 10, 11]) by using potential well method (see, for example,
[6, 13, 14, 17, 23, 25, 26, 27, 30, 31, 33]). However, there are few researches on the bounds
for blow-up time to problem (1.1), (1.2) and (1.3) with a general function f(u). Therefore, in
present paper, we study the blow-up conditions, the upper and lower bounds of blow-up
time for solutions of the initial-boundary (1.1), (1.2) and (1.3).
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The paper is organized as follows. In section 2, we introduce some notations, important
functions and lemmas which are used in this paper. In section 3, we derive the blow-up
result for solutions of (1.1), (1.2) and (1.3) and estimate the upper bound of blow-up time of
solutions. In section 4, by means of a differential inequality method, we establish a lower
bound of blow-up time .

2 Preliminaries

In this section, we give some notations, functions, definitions and important Lemmas.
Throughout this paper, the following abbreviations are used for precise statement:

Lp = Lp(Ω), Wm,p = Wm,p(Ω), Hm = Wm,2(Ω), Hm
0 = Wm,2

0 (Ω),

V =

{
u ∈ H6(Ω) : u|∂Ω = 0,

∂u

∂ν

∣∣∣∣
∂Ω

= 0, ∆u|∂Ω = 0

}
,

‖u‖p = ‖u‖Lp(Ω), ‖u‖ = ‖u‖L2(Ω), ‖u‖Wm,p = ‖u‖Wm,p(Ω), ‖u‖Hm
0

= ‖u‖Hm
0 (Ω),

and
(u, v) =

∫
Ω

uvdx,

which denotes the L2-inner product.

Since α > 0 and β > −αλ1, by Poincaré’s inequality,

(u, v)H2
0

=

∫
Ω

uvdx+ β

∫
Ω

∇u∇vdx+ α

∫
Ω

∆u∆vdx (2.1)

defines an inner product of the space H2
0 , and its corresponding norm is

‖u‖H2
0

=
√
‖u‖2 + β‖∇u‖2 + α‖∆u‖2. (2.2)

By [28, Section 2.2.1], the powers (−∆)s of −∆ for s ∈ R on Ω are denoted as

(−∆)su(x, t) ,
∞∑
k=1

λskak(t)ek(x), (2.3)

where ek(x) (k = 1, 2, · · · ) is the eigenfunction of−∆ subject to the zero Dirichlet boundary
condition: {

−∆ek = λkek, x ∈ Ω,
‖ek‖ = 1, ek|∂Ω = 0,

(2.4)

λk(k = 1, 2, · · · ) is the corresponding to eigenvalue, and

ak(t) =

∫
Ω

u(x, t)ek(x)dx.
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It is well-known that {ek(x)} ⊂ C∞0 (Ω) are the base functions in H2
0 , H1

0 and L2, 0 < λ1 ≤
λ2 ≤ · · · ≤ λk ≤ · · · , and λk → +∞ as k → +∞.

Using (2.3), we get (−∆)−
1
2u ∈ L2 if u ∈ L2. In fact, we have∥∥∥(−∆)−

1
2u
∥∥∥2

=
∞∑
k=1

λ−1
k a2

k ≤ λ−1
1

∞∑
k=1

a2
k = λ−1

1 ‖u‖2. (2.5)

Define a Hilbert space
H = (L2, (u, v)H),

with the scalar product (note a > 0)

(u, v)H = a(u, v) +
(

(−∆)−
1
2u, (−∆)−

1
2v
)
, (2.6)

and

‖u‖H =

√
a‖u‖2 +

∥∥∥(−∆)−
1
2u
∥∥∥2

, (2.7)

is the corresponding norm. By (2.5) and a > 0, ‖ · ‖H is equivalent to ‖ · ‖ and

√
a‖ · ‖ ≤ ‖ · ‖H ≤

√
a+ λ−1

1 ‖ · ‖. (2.8)

By [12, Lemma 1.7], for any u ∈ V , it holds

(−∆)−1∆2u = −∆u, (−∆)−1∆3u = −∆2u, (−∆)−1∆u = −u.

Then applying the operator (−∆)−1 to (1.1), we have

(−∆)−1utt + autt + u− β∆u+ α∆2u = −f(u). (2.9)

For this reason, the weak solution of (2.9) with the initial data (1.2) and boundary value
condition (1.3) is said to be the weak solution of the problem (1.1), (1.2) and (1.3). This leads
to the following definition.

Definition 1. Assume (1.4) and (1.5) hold and (u0, u1) ∈ H2
0×L2. A function u ∈ C([0, T ];H2

0 )∩
C1([0, T ];L2) ∩ C2([0, T ];H−2) is said to be a weak solution to problem (1.1), (1.2) and (1.3) over
[0, T ], if and only if for any t ∈ [0, T ], it satisfies〈

(−∆)−
1
2utt, (−∆)−

1
2ϕ
〉
H−2,H2

0

+ a〈utt, ϕ〉H−2,H2
0

+ (u, ϕ) + β(∇u,∇ϕ)

+ α(∆u,∆ϕ) + (f(u), ϕ) = 0
(2.10)

for all test functions ϕ ∈ C([0, T ];H2
0 ), and

u(x, 0) = u0(x) in H2
0 , ut(x, 0) = u1(x) in L2. (2.11)

5



Moreover, if
T ∗ = sup{T > 0 : u = u(x, t) exists on [0, T ]} <∞,

then u is called the local weak solution of the problem (1.1), (1.2) and (1.3). If T ∗ = +∞, then u is
called the global weak solution of problem (1.1), (1.2) and (1.3).

Remark 1. We remark all the terms in (2.10) are well-defined. In fact, we know u(t) ∈ H2
0 ,

ut ∈ L2 and utt ∈ H−2 for any t ∈ [0, T ], then the terms a〈utt, ϕ〉H−2,H2
0
, (u, ϕ), β(∇u,∇ϕ),

α(∆u,∆ϕ) in (2.10) are well-defined. Moreover, it follows from Hölder’s inequality and
(1.5) (i) (note H2

0 ↪→ Lq+1 continuously) that

|(f(u), ϕ)| ≤
∫

Ω

|f(u)||ϕ|dx ≤ ξ

∫
Ω

|u|q|ϕ|dx

≤ξ
(∫

Ω

|u|q+1dx

) q
q+1
(∫

Ω

|ϕ|q+1dx

) 1
q+1

≤Cξ‖u‖q
H2

0
‖ϕ‖H2

0
.

For the term
〈

(−∆)−
1
2utt, (−∆)−

1
2ϕ
〉
H−2,H2

0

, we have to show (−∆)−
1
2utt(t) ∈ H−2(Ω)

and (−∆)−
1
2ϕ(t) ∈ H2

0 (Ω)for any t ∈ [0, T ]. In fact, by (2.2) and (2.5), we obtain (note (1.4))∥∥∥(−∆)−
1
2ϕ
∥∥∥2

H2
0

=
∥∥∥(−∆)−

1
2ϕ
∥∥∥2

+ β
∥∥∥(−∆)−

1
2∇ϕ

∥∥∥2

+ α
∥∥∥(−∆)−

1
2 ∆ϕ

∥∥∥2

≤

{
1
λ1

(‖ϕ‖2 + α‖∆ϕ‖2) , if − αλ1 < β < 0;
1
λ1

(‖ϕ‖2 + β‖∇ϕ‖2 + α‖∆ϕ‖2) = 1
λ1
‖ϕ‖2

H2
0
, if β ≥ 0.

(2.12)

If −αλ1 < β < 0, by Poincaré’s inequality, we have (note (2.2))

‖u‖2 + α‖∆u‖2 =‖ϕ‖2 + β‖∇ϕ‖2 + α‖∆ϕ‖2 − β‖∇ϕ‖2

≤‖ϕ‖2 + β‖∇ϕ‖2 +

(
α− β

λ1

)
‖∆ϕ‖2

≤
(

1− β

αλ1

)(
‖ϕ‖2 + β‖∇ϕ‖2 + α‖∆ϕ‖2

)
=

(
1− β

αλ1

)
‖ϕ‖2

H2
0
.

Then we get,

∥∥∥(−∆)−
1
2ϕ
∥∥∥2

H2
0

≤

{
1
λ1

(
1− β

αλ1

)
‖ϕ‖2

H2
0
, if − αλ1 < β < 0;

1
λ1
‖ϕ‖2

H2
0
, if β ≥ 0.

(2.13)

which, together with ϕ(t) ∈ H2
0 (Ω) for any t ∈ [0, T ], implies (−∆)−

1
2φ ∈ H2

0 (Ω) for any
t ∈ [0, T ]. Moreover, since (−∆)−

1
2 is a self-adjoint operator and utt(t) ∈ H−2(Ω) for any
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t ∈ [0, T ], by (2.13), we have∥∥∥(−∆)−
1
2utt(t)

∥∥∥
H−2

= sup
ψ∈H2

0 (Ω),‖ψ‖
H2
0

=1

〈
utt(t), (−∆)−

1
2ψ
〉
H−2,H2

0

≤


√

1
λ1

(
1− β

αλ1

)
‖utt‖H−2 , if − αλ1 < β < 0;

1√
λ1
‖utt‖H−2 , if β ≥ 0.

(2.14)

which implies (−∆)−
1
2utt(t) ∈ H−2(Ω) for any t ∈ [0, T ].

The local existence of weak solutions for problem (1.1), (1.2) and (1.3) can be obtained
by standard Faedo-Galerkin methods and [28, Section II, Theorem 4.1 and Lemma 4.1], see,
for example, the reference [24]. Moreover, it holds (see [24] again)

E(t) = E(0), (2.15)

where
E(t) = E(u(t)) =

1

2
(‖ut‖2

H + ‖u‖2
H2

0
) +

∫
Ω

F (u)dx, (2.16)

denotes the energy functional for the weak solution u = u(t) of problem (1.1).

Lemma 1. (see [15]) Let δ > 0 and b(t) be a nonnegative C2-function satisfying

b′′(t)− 4(δ + 1)b′(t) + 4(δ + 1)b(t) ≥ 0, t ≥ 0. (2.17)

If
b′(0) > r2b(0) + k0, (2.18)

for some constant k0 ≥ 0, then b′(t) > k0 for t ≥ 0, where r2 = 2(δ + 1) − 2
√
δ(δ + 1) is the

smallest root of the equation
r2 − 4(δ + 1)r + 4(δ + 1) = 0. (2.19)

Lemma 2. (see [15]) If J(t) is nonincreasing function on [t0,∞), t0 ≥ 0, and satisfies the differen-
tial inequality

J ′(t)2 ≥ a+ bJ(t)2+ 1
δ , t ≥ t0, (2.20)

where a > 0, δ > 0 and b ∈ R, then there exists a finite positive number T ∗ such that

lim
t→T ∗−

J(t) = 0, (2.21)

and an upper bound for T ∗ is estimate, respectively, in the following cases:

(i) when b < 0 and J(t0) < min{1,
√

a
−b}, then

T ∗ ≤ t0 +
1√
−b

ln

√
a
−b√

a
−b − J(t0)

; (2.22)
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(ii) when b = 0, then

T ∗ ≤ t0 +
J(t0)√
a

; (2.23)

(iii) when b > 0, then

T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
a

[
1− (1 + cJ(t0))−

1
2δ

]
, (2.24)

where c = (a
b
)
2δ+1
δ .

3 Upper bound of blow-up time

In this section, we will give some blow-up results and study the upper bounds of blow-
up time. Assume (1.4) and (1.5) hold and (u0, u1) ∈ H2

0 × L2. Let u ∈ C([0, T ∗);H2
0 ) ∩

C1([0, T ∗);L2) ∩ C2([0, T ∗);H−2) be a weak solution of problem (1.1), (1.2) and (1.3), where
0 < T ∗ ≤ +∞ is the maximal existence time. We define the following functional

M(t) = ‖u‖2
H, 0 ≤ t < T ∗. (3.1)

Lemma 3. It holds

M ′′(t)− 2 (p+ 2) ‖ut‖2
H ≥ −4(p+ 1)E(0) + 2p‖u‖2

H2
0
, 0 ≤ t < T ∗, (3.2)

where
E(0) =

1

2
(‖u1‖2

H + ‖u0‖2
H2

0
) +

∫
Ω

F (u0)dx. (3.3)

Proof. From (3.1), by a direct computation, we have

M ′(t) = 2(u, ut)H, (3.4)

and then by (2.6), (2.10) (with ϕ = u) and (2.2)

M ′′(t) =2
[
a(u, ut) +

(
(−∆)−

1
2u, (−∆)−

1
2ut

)]′
=2a‖ut‖2 + 2a 〈utt, u〉H−2,H2

0

+ 2‖(−∆)−
1
2ut‖2 + 2

〈
(−∆)−

1
2utt, (−∆)−

1
2u
〉
H−2,H2

0

=2‖ut‖2
H − 2

(
‖u‖2 + β‖∇u‖2 + a‖∆u‖2 + (f(u, u))

)
=2‖ut‖2

H − 2‖u‖2
H2

0
− 2

∫
Ω

f(u)udx.

(3.5)
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Then it follows from (1.5)(ii), (2.15), (2.16) and (3.5)

M ′′(t)− 2 (p+ 2) ‖ut‖2
H

=2‖ut‖2
H − 2‖u‖2

H2
0
− 2

∫
Ω

uf(u)dx− 2 (p+ 2) ‖ut‖2
H

=− (2p+ 2)‖ut‖2
H − 2‖u‖2

H2
0
− 2

∫
Ω

uf(u)dx

=− (2p+ 2)‖ut‖2
H − 2‖u‖2

H2
0
− 2

∫
Ω

uf(u)dx

− (4p+ 4)E(0) + (2p+ 2)‖ut‖2
H + (2p+ 2)‖u‖2

H2
0

+ (4p+ 4)

∫
Ω

F (u)dx

=− (4p+ 4)E(0) + 2p‖u‖2
H2

0
+

∫
Ω

[(4p+ 4)F (u)− 2uf(u)] dx

≥− 4(p+ 1)E(0) + 2p‖u‖2
H2

0
.

Then (3.2) holds.

Lemma 4. If one of the following conditions is satisfied:

(i) E(0) < 0 and (u0, u1)H ≥ 0;

(ii) E(0) = 0 and (u0, u1)H > 0;

(iii) E(0) > 0 and

(u0, u1)H >
r2

2

(
‖u0‖2

H +
2(p+ 1)E(0)

(p+ 2)

)
, (3.6)

where
r2 = p+ 2−

√
p(p+ 2),

then the function M(t) defined in (3.1) satisfies M ′(t) > 0 for 0 < t < T ∗.

Proof. (i) By (3.2), we have
M ′′(t) ≥ −4(1 + p)E(0). (3.7)

integrating (3.7) from 0 to t, we obtain from (3.4) that

M ′(t) ≥M ′(0)− 4(p+ 1)E(0)t = 2(u0, u1)H − 4(p+ 1)E(0)t, (3.8)

then M ′(t) > 0 for 0 < t < T ∗ since E(0) < 0 and (u0, u1)H ≥ 0.

(ii) If E(0) = 0, by (3.2), we have M ′′(t) ≥ 0. So

M ′(t) ≥M ′(0) = 2(u0, u1)H,

and then M ′(t) > 0 for 0 < t < T ∗ since (u0, u1)H > 0.
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(iii) If E(0) > 0. Thus it from (3.4) that

M ′(t) = 2(u, ut)H ≤ ‖u‖2
H + ‖ut‖2

H = M(t) + ‖ut‖2
H. (3.9)

Then by (3.2) and (3.9), we get

M ′′(t)− 2(p+ 2) [M ′(t)−M(t)] ≥ −4(p+ 1)E(0), (3.10)

that is
M ′′(t)− 2(p+ 2)M ′(t) + 2(p+ 2)M(t) + 4(p+ 1)E(0) ≥ 0. (3.11)

Let b(t) = M(t) + 2(p+1)E(0)
(p+2)

. So (3.11) be equivalent that

b′′(t)− 2(p+ 2)b′(t) + 2(p+ 2)b(t) ≥ 0. (3.12)

By (3.6), we have
b′(0) > r2b(0),

then M ′(t) > 0 follows from lemma 1 with δ , p
2
> 0.

Assume ‖u0‖2 > 0. Let

H(t) = (M(t))−
p
2 , 0 ≤ t < T ∗,

where M(t) is the function defined in (3.1), i.e.,

H(t) = ‖u‖−pH , 0 ≤ t < T ∗. (3.13)

Remark 2. It follows from lemma 4 that M ′(t) > 0 for 0 < t < T ∗. Then,

M(t) ≥M(t)

∣∣∣∣
t=0

= M(0) = ‖u0‖2
H > 0. (3.14)

So, H(t) is well-defined.

By using the above preparations, we get the following theorem:

Theorem 1. Assume (1.4) and (1.5) hold and (u0, u1) ∈ H2
0 × L2. If

(i) E(0) < 0, (u0, u1)H ≥ 0 and ‖u0‖H > 0; or

(ii) E(0) = 0 and (u0, u1)H > 0; or

(iii) There holds that (3.6) and

E(0) <
(u0, u1)2

H
2‖u0‖2

H
, (3.15)
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Then the weak solution u(t) of problem (1.1), (1.2) and (1.3) blows up in finite time; that is, the
maximum existence time T ∗ is finite and

lim
t→T ∗−

‖u‖2
H = +∞. (3.16)

Moreover, the upper bound of T ∗ can be estimated according to the assumptions (i)-(iii):

• If E(0) < 0, (u0, u1)H > 0 and ‖u0‖H > 0, then

T ∗ ≤ ‖u0‖2
H

p(u0, u1)H
, φ. (3.17)

Furthermore, if
‖u0‖2

H > 1, (3.18)

and

E(0) >
(u0, u1)2

H
2‖u0‖2

H(1− ‖u0‖2
H)
, (3.19)

it holds T ∗ ≤ min{φ, ϕ}, where φ is defined in (3.17) and

ϕ =
1

p
√
−2E(0)

ln

(
χ

χ− ‖u0‖−pH

)
. (3.20)

Here,

χ =
[(u0, u1)2

H − 2E(0)‖u0‖2
H]

1
2√

−2E(0)‖u0‖p+2
H

. (3.21)

• If (ii) is satisfied, then T ∗ ≤ φ, where φ is defined in (3.17).

• If (iii) is satisfied, then T ∗ ≤ ψ, where

ψ =
2

1+p
2 c

(‖u0‖2
H)1+ 2

p (u0, u1)H

{
1−

[
1 + c(‖u0‖2

H)
]− 1

p

}
. (3.22)

Here c = (−χ2)2+ 2
p and χ is defined in (3.21).

Proof. By (3.13) and a direct computation, we have

H ′(t) = −p
2
M ′(t)H(t)

p+2
p , (3.23)

and

H ′′(t) =− p+ 2

2
M ′(t)H(t)

2
pH ′(t)− p

2
H(t)

p+2
p M ′′(t)

=
p(p+ 2)

4
H(t)

p+4
p M ′(t)2 − p

2
H(t)

p+2
p M ′′(t)

=− p

2
H(t)

p+4
p

[
−p+ 2

2
M ′(t)2 +M ′′(t)M(t)

]
,− p

2
H(t)

p+4
p K(t),

(3.24)
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where
K(t) = M ′′(t)M(t)− 1

2
(p+ 2)M ′(t). (3.25)

On the other hand, by (3.4), (2.6) and Hölder’s inequality, we get

M ′(t) =2a(u, ut) + 2
(

(−∆)−
1
2u, (−∆)−

1
2ut

)
≤2a‖u‖‖ut‖+ 2

∥∥∥(−∆)
1
2u
∥∥∥∥∥∥(−∆)

1
2ut

∥∥∥ . (3.26)

By (3.2), we can obtain that

M ′′(t) ≥ −4(p+ 1)E(0) + 2p‖u‖2
H2

0
+ 2(p+ 2)‖ut‖2

H. (3.27)

Inserting (3.1), (3.26) and (3.27) into (3.25), and using Cauchy inequality, it follows that

K(t) ≥
=H(t)

− 2
p︷ ︸︸ ︷

M(t) ×
[
−4(p+ 1)E(0) + 2p‖u‖2

H2
0

+ 2(p+ 2)‖ut‖2
H

]
− 2(p+ 2)

[
a‖u‖‖ut‖+

∥∥∥(−∆)
1
2u
∥∥∥∥∥∥(−∆)

1
2ut

∥∥∥]2

=− 4(p+ 1)E(0)H(t)−
2
p +M(t)

[
2p‖u‖2

H2
0

+ 2(p+ 2)‖ut‖2
H

]
− 2(p+ 2)

[
a‖u‖‖ut‖+

∥∥∥(−∆)
1
2u
∥∥∥∥∥∥(−∆)

1
2ut

∥∥∥]2

≥− 4(p+ 1)E(0)H(t)−
2
p + 2(p+ 2)

=M(t)︷ ︸︸ ︷
‖u‖2

H ‖ut‖2
H

− 2(p+ 2)
[
a‖u‖‖ut‖+

∥∥∥(−∆)
1
2u
∥∥∥∥∥∥(−∆)

1
2ut

∥∥∥]2

≥− 4(p+ 1)E(0)H(t)−
2
p .

(3.28)

By (3.24) and (3.28), we obtain

H ′′(t) = −p
2
H(t)

p+4
p K(t) ≤ 2p(p+ 1)E(0)H(t)

p+2
p . (3.29)

From lemma 4 and (3.23), we know that

H ′(t) < 0. (3.30)

Multiplying (3.29) with H ′(t) and integrating it from 0 to t, then we have

[H ′(t)]2 ≥ [H ′(0)]2 − 2p2E(0)[H(0)]
2p+2
p + 2p2E(0)[H(t)]

2p+2
p

= A+B[H(t)]
2p+2
p ,

(3.31)
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where 
A =[H ′(0)]2 − 2p2E(0)[H(0)]

2p+2
p

=p2‖u0‖−2(p+2)
H

[
(u0, u1)2

H − 2E(0)‖u0‖2
H
]

;
B = 2p2E(0).

Next, we divide our discussions into the following several cases:

When E(0) < 0, (u0, u1)H ≥ 0 and ‖u0‖H > 0, then it is obvious that A > 0. By lemma
2, it follows that the maximal existence time T ∗ < +∞ and that

lim
t→T ∗−

H(t) = 0, (3.32)

which implies that
lim

t→T ∗−
‖u‖H = +∞.

Next, we estimate the upper bound of T ∗ for (u0, u1)H > 0. It is obvious that It is

H(0) = ‖u0‖−pH , H ′(0) = −p‖u0‖−p−2
H (u0, u1)H.

By (3.29), we have H ′′(t) < 0, then

d

dt

(
H(t)

H ′(t)

)
=

(H ′(t))2 −H(t)H ′′(t)

(H ′(t))2
= 1− H(t)H ′′(t)

(H ′(t))2
≥ 1. (3.33)

By (3.32), then integrating (3.33) from 0 to T ∗, we derive that

T ∗ ≤ ‖u0‖2
H

p(u0, u1)H
. (3.34)

Furthermore, if (3.18) and (3.19) hold, we have

H(0) < min

{
1,

√
A

−B

}
.

Then by lemma 2 (i), we know that T ∗ ≤ ϕ, where ϕ is defined in (3.20).

WhenE(0)=0 and (u0, u1)H > 0, we also haveA > 0, and by lemma 2 (ii), we can obtain
that T ∗ ≤ φ.

When E(0) > 0, (3.6) and (3.15) hold. We also know A > 0. Furthermore, since B > 0,
by lemma 2 (iii), we get T ∗ ≤ ψ.

Thus, the proof is completed.
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4 Lower bound of blow-up time

In this section, our aim is to determine a lower bound of blow-up time T ∗ when blow-up
occurs to the initial boundary problem (1.1), (1.2) and (1.3).

Theorem 2. Assume (1.4) and (1.5) hold and (u0, u1) ∈ H2
0 × L2. Moreover, the parameter q in

(1.5) satisfies

1 < q

{
< +∞, n = 1, 2, 3, 4;
≤ n

n−4
, n = 5, 6, 7, · · · . (4.1)

Assume the weak solution u(t) of problem (1.1), (1.2) and (1.3) blows up at a finite time T ∗, then a
lower bound of T ∗ can be estimated as follow:

T ∗ ≥
[‖u1‖2

H + ‖u0‖2
H2

0
]
1−q
2

ξ( 1
a
)
1
2Cq

1(q − 1)
,

where C1 is the optimal constants satisfying the inequalities ‖u‖2q ≤ C1‖u‖H2
0
.

Remark 3. By (4.1), H2
0 ↪→ L2q continuously, so the constant C1 exists.

Proof. Let
G(t) = ‖ut‖2

H + ‖u‖2
H2

0
, 0 ≤ t < T ∗. (4.2)

Since u blows up at finite time T ∗, we have

lim
t→T ∗−

G(t) = +∞. (4.3)

By (2.15) and (2.16), we get

G(t) = 2

(
E(0)−

∫
Ω

F (u)dx

)
,

where F (u) =
∫ u

0
f(s)ds. Then

G′(t) = −2

∫
Ω

f(u)utdx.

Using the Schwarz’s inequality, ‖ut‖H ≥
√
a‖ut‖ (see (2.7)), (1.5)(i),

‖ut‖H ≤ G(t)
1
2 , ‖u‖q

H2
0
≤ G(t)

q
2 ,
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(see (4.2)), and ‖u‖2q ≤ C1‖u‖H2
0
, we have

G′(t) ≤ 2‖ut‖‖f(u)‖

≤ 2

(
1

a

) 1
2

‖ut‖H
(∫

Ω

|f(u)|2dx
) 1

2

≤ 2ξ

(
1

a
G(t)

) 1
2
(∫

Ω

|u|2qdx
) 1

2

= 2ξ

(
1

a
G(t)

) 1
2

‖u‖q2q

≤ 2ξ

(
1

a
G(t)

) 1
2

Cq
1‖u‖

q

H2
0

≤ 2ξ

(
1

a

) 1
2

Cq
1G(t)

q+1
2 .

(4.4)

Now, we claim that G(t) > 0 for all 0 ≤ t < T ∗. If not, there exists t0 ∈ [0, T ∗) such
that G(t0) = 0, which, together with G(t) ≥ 0 and (4.4), implies G(t) ≡ 0 for t0 ≤ t < T ∗, a
contradiction to (4.3). So the claim is true, and then (4.4) can be written as

G′(t)

G(t)
q+1
2

≤ 2ξ

(
1

a

) 1
2

Cq
1 . (4.5)

Integrating (4.5) with respect to t, then we have

G(t)
1−q
2 ≥ G(0)

1−q
2 + ξ

(
1

a

) 1
2

Cq
1(1− q)t. (4.6)

Taking the limit t→ T ∗− in the above inequality, then it follows from (4.3) that

0 ≥ G(0)
1−q
2 − ξ

(
1

a

) 1
2

Cp
1 (q − 1)T ∗,

i.e.,

T ∗ ≥ G(0)
1−q
2

ξ( 1
a
)
1
2Cq

1(q − 1)
=

[‖u1‖2
H + ‖u0‖2

H2
0
]
1−q
2

ξ( 1
a
)
1
2Cq

1(q − 1)
. (4.7)

This completes the proof of theorem 2.
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