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Abstract1

Strong selection can cause rapid evolutionary change, but temporal fluctuations in the form,2

direction and intensity of selection can limit net evolutionary change over longer time periods.3

Fluctuating selection could affect molecular diversity levels and the evolution of plasticity4

and ecological specialization. Nonetheless, this phenomenon remains understudied, in part5

because of analytical limitations and the general difficulty of detecting selection that does not6

occur in a consistent manner. Herein, I fill this analytical gap by presenting an approximate7

Bayesian computation (ABC) method to detect and quantify fluctuating selection on poly-8

genic traits from population-genomic time-series data. I propose a model for environment-9

dependent phenotypic selection. The evolutionary genetic consequences of selection are then10

modeled based on a genotype-phenotype map. Using simulations, I show that the proposed11

method generates accurate and precise estimates of selection when the generative model for12

the data is similar to the model assumed by the method. Performance of the method when13

applied to an evolve-and-resequence study of host adaptation in the cowpea seed beetle (Cal-14

losobruchus maculatus) was more idiosyncratic and depended on specific analytical choices.15

Despite some limitations, these results suggest the proposed method provides a powerful16

approach to connect causes of (variable) selection to traits and genome-wide patterns of17

evolution. Documentation and open source computer software (fsabc) implementing this18

method are available from GitHub (https://github.com/zgompert/fsabc.git).19

Keywords: fluctuating selection, ecological genetics, polygenic traits, approxi-20

mate Bayesian computation, computational statistics, Callosobruchus macula-21

tus22
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Introduction23

Selection can cause rapid evolutionary change on ecological time scales (Ford, 1977; Reznick24

et al., 1997; Bell, 2010; Thompson, 2013; Messer et al., 2016). Rates of evolution are lower25

when measured on longer time scales (Hendry & Kinnison, 1999; Kinnison & Hendry, 2001;26

Gingerich, 2019), in part because the form, direction and intensity of selection often vary27

through time (e.g., from generation to generation; Siepielski et al., 2009; Bell, 2010). Various28

factors can cause selection to fluctuate in time, including climatic variability (Grant & Grant,29

2002; Bergland et al., 2014; Grant & Grant, 2014; Siepielski et al., 2017), host-parasite or30

host-pathogen coevolution (Gómez & Buckling, 2011; Hall et al., 2011; Ford et al., 2017),31

and mating or survival advantages for rare phenotypes (Endler, 1988; Takahashi et al., 2010;32

Hughes et al., 2013; Nosil et al., 2018). Similar factors can cause selection to vary in space33

(Kingsolver et al., 2001; Siepielski et al., 2013), resulting in local adaptation (Endler, 1977).34

Fluctuating selection may help explain fundamental biological phenomena, such as the main-35

tenance of polymorphism (Ford, 1977; Turelli et al., 2001; Hedrick, 2006; Wittmann et al.,36

2017), molecular diversity levels (Gillespie, 1991; Hahn, 2008; Leffler et al., 2012; Coop,37

2016), ecological specialization (Agrawal et al., 2010; Anderson et al., 2013; Gompert &38

Messina, 2016; Agrawal, 2020) and the evolution of plasticity (Hallsson & Björklund, 2012;39

Tufto, 2015; King & Hadfield, 2019). Quantitative studies of the population genetic conse-40

quences of fluctuating selection in the wild are necessary to better evaluate this possibility,41

but remain relatively rare (Messer et al., 2016) (but see, e.g., Ford, 1977; Mueller et al., 1985;42

Bergland et al., 2014).43

Such studies have been hampered, in part, by limited development of appropriate sta-44

tistical methods (Messer et al., 2016). Many popular statistical methods infer selection on45

genetic variants from static population-genomic patterns (i.e., patterns lacking a temporal46

component), such as haplotype structure and diversity (Sabeti et al., 2002; Szpiech & Her-47

nandez, 2014), genetic differentiation between populations (Beaumont & Nichols, 1996; Foll48



4

& Gaggiotti, 2008; Nosil et al., 2008), or genotype–environment associations (Coop et al.,49

2010; De Villemereuil & Gaggiotti, 2015; Rellstab et al., 2015). These methods can detect50

selection when it occurs in a consistent manner over time, but were not designed to identify51

temporally fluctuating selection. Methods (e.g., Illingworth & Mustonen, 2011; Mathieson52

& McVean, 2013; Feder et al., 2014; Gompert, 2016; Buffalo & Coop, 2019; Kelly & Hughes,53

2019), and associated data sets (e.g., Bi et al., 2013; Reich, 2018; Rêgo et al., 2019; Bi et al.,54

2019), with temporal sampling in natural or experimental populations are better suited for55

detecting fluctuating selection and are becoming more common.56

Mueller et al. (1985) proposed one of the first explicit tests for fluctuating selec-57

tion, which was based on the proposition that genetic loci evolving in response to the same58

(unknown) environmental variations should exhibit correlated patterns of allele frequency59

change over time. Using this method, Mueller et al. (1985) found ample evidence of fluc-60

tuating selection on allozyme loci in natural populations of two Drosophila species. More61

recently, Bergland et al. (2014) found evidence of genomically-widespread fluctuating selec-62

tion in D. melanogaster based on repeated seasonal oscillations in the frequency of multiple63

SNP markers. Gompert (2016) introduced a method to quantify fluctuating selection on ge-64

netic loci from correlations between patterns of allele frequency change and the state of the65

environment. This requires an explicit hypothesis about the environmental factor causing66

selection to fluctuate. Buffalo & Coop (2019) derived a method to quantify the extent and67

consequences of (linked) selection from population-genomic time series from autocovariance68

in allele frequency changes across generations. This method can be used to detect fluctuat-69

ing selection, provided shifts in the direction of selection do not occur frequently (Buffalo &70

Coop, 2019).71

With the exception of Buffalo & Coop (2019), methods designed to detect fluctuating72

selection perform best when individual genetic loci experience strong selection. However,73

many traits are polygenic (e.g., Pritchard et al., 2010; Yang et al., 2010; Shi et al., 2016;74

Lucas et al., 2018; Gompert et al., 2019), and thus, selection on genes can be weak even when75
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selection on a trait is intense (Walsh & Lynch, 2018). A general approach to overcome this76

limitation was suggested by Berg & Coop (2014) (also see Josephs et al., 2019). Specifically,77

polygenic adaptation can be inferred by incorporating genotype-phenotype associations from78

genome-wide association studies (GWAS) in population-genomic tests for selection. This79

makes it possible to accumulate evidence of selection across trait-associated loci, and thus80

detect selection even when none of the individual loci experience strong selection. Thus far,81

this analytical framework has mostly been applied to static population-genomic data sets,82

and not to detect fluctuating selection from temporal data.83

Herein, I fill this analytical gap by presenting an approximate Bayesian computation84

(ABC) method to detect and quantify fluctuating selection on polygenic traits from time-85

series data. With this method, phenotypic selection is modeled as an explicit function of the86

state of the environment (similar to Gompert, 2016). The population-genomic consequences87

of selection are then modeled based on estimated genotype-phenotype associations (similar88

to Berg & Coop, 2014). This allows inferences to be informed by patterns of change across89

multiple genetic loci, populations, and generations. Pooling information in this way increases90

statistical power, but precludes generic genome scans for selection. Although this could be91

viewed as a limitation, by making the genotype-phenotype-environment-fitness hypothesis92

explicit, the proposed approach places an emphasis on the ecological interactions that cause93

selection to fluctuate and thereby provides more meaningful inferences about the evolutionary94

process (as advocated for in a general sense by Endler, 1986).95

In this study, I first describe the theoretical basis for the approach. This is followed96

by a description of the proposed ABC method, including the data required and a framework97

for model evaluation and comparison. The efficacy and limitations of the proposed method98

are then evaluated by applying it to thousands of simulated data sets, and to a recent99

experimental evolution study of host adaptation in seed beetles (Callosobruchus maculatus).100

I show that the proposed method produces precise estimates of selection, especially when the101

generative model for the data coincides with the model assumed by the method, and detects102
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selection on weight in C. maculatus despite the low heritability of this trait. I conclude by103

discussing the utility and limitations of the proposed method, along with potential extensions104

of the proposed method.105

Methods106

Model107

I first describe a mathematical model that connects phenotypic selection on a quantitative108

trait to allele frequency change at causal or linked loci (that is, loci affecting the trait or109

those in linkage disequilibrium with such loci). Selection is allowed to fluctuate in space and110

time because of variation in the environment. Selection on the trait is connected to expected111

allele frequency change based on an understanding of the selected trait’s genetic architecture,112

as might be obtained from a genome-wide association mapping study. If causal loci and their113

phenotypic effects are known, the selection estimated is the direct selection on the causal114

variants, otherwise it is the indirect selection arising from linkage disequilibrium (Lande &115

Arnold, 1983; Gompert et al., 2017). The goal of the model is to estimate the intensity of116

selection on the trait and how this varies by environment, as well as the extent to which this117

translates into selection on different genetic loci. Key assumptions of the model are that118

selection is always directional, that each locus explains a small proportion of the phenotypic119

variance (either because the trait is highly polygenic or has a large environmental variance),120

that the phenotypic effects of loci do not depend on the environment and that the causal121

variants (or linked loci) exhibit minimal linkage disequilibrium with each other such that122

each experiences genetic drift independently (I reiterate and expand on these assumptions123

below). I also assume that, at least over the duration of the population-genomic time series,124

mutation and gene flow are negligible and can be ignored. After introducing the model in125

this section, I describe the proposed approximate Bayesian computation method for fitting126
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the model in the next section.127

Let Sjk = µ ∗ −µ denote the selection differential for a quantitative trait in popula-128

tion j and generation k. Here, µ and µ∗ denote the trait mean before and after selection,129

respectively. I assume phenotypic selection is a function of the environment. I consider three130

alternative models for the relationship between that state of the environment, denoted xjk,131

and the selection differential, Sjk, specifically:132

Sjk = a+ bxjk (1)

Sjk =















a if xjk < c

a+ b if xjk ≥ c

(2)

Sjk = a+
b− a

e−cxjk
(3)

Here, a, b and c are coefficients that determine the effect of the environment on the133

selection differential; equations 1, 2 and 3 specify a linear, step and sigmoidal relationship134

between the environment and selection differential, respectively (Fig. 1A). The model thus135

assumes that phenotypic selection is always directional and independent of the current mean136

trait value, but allows flexibility in how the environment affects the direction and intensity of137

selection. Furthermore, I focus on the simplest case where selection is a function of a single138

environmental variable, but the extension to multiple environmental variables is trivial.139

I then specify a model that relates phenotypic selection to expected allele frequency140

change. Let wi denote the marginal, relative fitness of the non-reference allele at locus i141

(bi-allelic loci are assumed), that is wijk =
∫

z
wjk(z)fi(z)dz. Here, wjk(z) is the expected142

fitness of an individual with trait value z and fi(z) is the phenotypic distribution (density143

function) for individual’s carrying a copy of the non-reference allele at locus i (this includes144
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heterozygotes and homozygotes for the non-reference allele) (note, at present I assume that145

fi(z) is fixed, that is I assume no plasticity). Following Kimura & Crow (1978) and Walsh146

& Lynch (2018), the intensity of selection on the non-reference allele at locus i can be147

approximated as148

sijk = wijk − 1 ≃ βi

(

Sjk

σ2
z

)

. (4)

Here, βi denotes the average phenotypic excess of the non-reference allele at locus149

i, which is defined in terms of mean trait values and frequencies of the three genotypes,150

P ¯zAA+Q ¯zAa

P+Q
− Q ¯zAa+R ¯zaa

Q+R
, where P , 2Q and R are the frequencies of homozygous non-reference,151

heterozygous and homozygous reference genotypes and ¯zAA, ¯zAa and z̄aa are their respective152

mean trait values (Fisher, 1941). If the genotypes at each causal locus are in their Hardy-153

Weinberg expected proportions and in linkage equilibrium across loci, this is equivalent to154

the average effect of an allele, as estimated with standard genome-wide association mapping155

methods (e.g., Zhou & Stephens, 2012; Zhou et al., 2013). The term σ2 in Eqn. 4 denotes156

the phenotypic variation, and thus
Sjk

σ2
z

is the standardized selection differential (i.e., the157

selection differential in units of standard deviations). Thus, the selection on an individual158

allele is approximately equal to the product of the intensity of phenotypic selection and159

average phenotypic excess of the allele (Walsh & Lynch, 2018). This approximation is true160

or approximately true for a variety of fitness functions, but requires that phenotypic variation161

caused by any one allele is small relative to the phenotypic variance, and thus that selection162

on each individual allele is weak. This assumption can hold even when phenotypic selection163

is strong, if the trait is polygenic and lacks common, major effect loci.164

Importantly, sijk measures selection as the average excess in relative fitness for the165

non-reference allele at locus i, not the more commonly used selection coefficient (which166

defines selection relative to a specific genotype, e.g., Gillespie, 2004). The average excess167

in relative fitness directly measures the effect of selection in bringing about allele frequency168
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change, as such, this metric is not static but depends on the allele frequencies (Kimura169

& Crow, 1978; Walsh & Lynch, 2018). The expected change for the non-reference allele170

frequency at locus i due to selection is given by ∆pijk = pijksijk. Genetic drift is assumed to171

also contribute to evolutionary change, such that,172

pijk+1 ∼ binomial(pijk +∆pijk, 2Ne)/2Ne. (5)

Equation 5 is the Wright-Fisher model with selection; Ne denotes the variance effective173

population size for population j and generation k (I omit subscripts on Ne for readability)174

(Ewens, 2004).175

I assume that, conditional on the sijk, evolutionary change is independent across ge-176

netic loci (i.e., linkage disequilibrium among the genetic loci is minimal). The validity of177

this approximation depends on the trait genetic architecture and set of genetic loci included178

in the analysis. For example, an assumption of linkage equilibrium is more reasonable when179

causal variants are dispersed across the genome rather than clustered in one or a few ge-180

nomic regions. The approximation will also be better when each causal genetic variant is181

represented by a single genetic marker locus, rather than a set of linked genetic markers182

statistically associated with the same causal variant (see the “ABC approach” below for183

further discussion).184

ABC approach185

The proposed method for estimating selection requires four data sources. First, estimates186

of allele frequencies in one or more populations for multiple time points (ideally consecutive187

generations) are required (these are assumed to be known with little or no error, but this188

assumption can be relaxed). Whole genome sequences are not needed (or warranted), but189

rather the method requires a set of genetic markers (e.g., SNPs) known to affect the trait of190

interest, or as will be more commonly the case, a set of markers statistically associated with191
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the trait (i.e., in LD with the unknown causal variants). Second, information on the effects192

(associations) of the genetic markers with the trait are needed. Here, I assume that each193

marker has a probability of affecting or being associated with the trait, denoted γi (e.g.,194

a posterior inclusion probability or PIP), and an effect conditional on a true association,195

denoted βi (which I equate with βi from Eqn. 4 assuming the genotypes in the popula-196

tions are approximately equal to their expected, Hardy-Weinberg proportions; see Fisher,197

1941). Standard models for polygenic GWA mapping and genomic prediction, such as the198

Bayesian sparse linear mixed model approach from gemma, output this information (Zhou199

et al., 2013). Such models provide probabilistic estimates of direct phenotypic effects (and200

thus of direct selection with the model) when the causal variants are sequenced, but only201

indirectly approximate direct selection when this is not the case (Gompert et al., 2017). Al-202

ternatively, γ (the probability of association) can be set to 1 for a set of genetic variants to203

indicate they are known to directly affect the trait; such confidence might be appropriate if204

genotype-phenotype associations have been validated by genetic manipulations (e.g., Barrett205

et al., 2019). Lastly, model-averaged effect estimates can be used, that is β̄i = γiβi, with206

the probability of association then set to 1. I explore this final possibility with an empirical207

data set.208

Third, estimates of the variance effective population size for each population are209

needed. These can be estimated using either LD-based methods or change over time for210

a set of genetic markers not associated with the (putatively) selected trait (e.g., Jorde &211

Ryman, 2007; Do et al., 2014; Gompert & Messina, 2016). The proposed method accounts212

for uncertainty in estimates of Ne by integrating over a posterior distribution.213

Fourth, the proposed method requires measurement of an environmental covariate214

hypothesized to determine the phenotype-fitness relationship (i.e., the selection differential).215

This covariate should be measured in each population and generation (or time step). I use216

the term environmental covariate in a broad sense, as this could include a variety of factors:217

temperature, precipitation, composite climatic variables from an ordination (e.g., principal218
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components), predator abundance, resource availability, or even population density or the219

frequency of a trait in the population. Moreover, the relevant covariate value at time t could220

represent the measurement at time t or a cumulative measure over some past amount of221

time.222

Given these data, I propose an approximate Bayesian computation (ABC) method223

for estimating the parameters of the selection function, a, b and c in Eqns. 1, 2 and 3, as224

well as derived parameters related to selection on the genetic loci, which I describe below.225

This method is implemented in the C++ program fsabc (version 0.1; available from GitHub),226

which is used in combination with the R package abc (version 2.1; Csillery et al., 2012)227

for inference. As with other ABC methods, the proposed method involves first sampling228

parameter values from prior probability distributions, then simulating evolution based on229

those parameter values, and finally calculating summary statistics for the simulated and230

observed data (all done with fsabc; Fig. 1). Posterior distributions for the parameters are231

then obtained based on the subset of sampled parameter values and simulations that most232

closely match the observed data in terms of the summary statistics (e.g., Sisson et al., 2018).233

I assume the form of the selection function (linear, step or sigmoidal) is known, and234

that the coefficients describing the function (a, b and c) are the primary, unknown parameters235

(but see below for model selection and the possibility of model-averaging) (Fig. 1A). I specify236

spike-and-slab priors for each of these parameters, such that Pr(a) ∼ πδ0+(1−π)U(l, u) (Fig.237

1B). Here, π is the probability of a zero coefficient and U(l, u) denotes a uniform probability238

density function with lower bound l and upper bound u. δ0 denotes a point mass at zero.239

This prior is conservative as it places a substantial proportion of the prior probability on240

zero (the exact value is given by π), but still allows for large coefficients (based on l and u).241

Values of Ne and the specific set of genetic markers associated with the trait (if either are242

expressed with uncertainty) are then sampled according to their probabilities.243

Derived parameters Sjk (the selection differential) and sijk (selection on each locus)244

for population j and generation k are then calculated from Eqns. 1, 2 or 3, and Eqn. 4245
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based on the sampled parameter values. The simulation for each population is initiated with246

the known, initial allele frequencies in generation k = 0, and the allele frequencies in the247

following generation are then determined based on the stochastic Wright-Fisher model (Eqn.248

5) (this is then the starting point for the next generation). This process is then repeated for249

each population and generation to simulate the complete population-genomic time series.250

I compute two summary statistics for inference of the selection function parameters251

(a, b and c): (i) the total change in the mean polygenic score (i.e., mean genomic-estimated252

breeding value or GEBV), and (ii) the covariance between change in the mean polygenic253

score and the value of the environmental covariate. The total change in the mean polygenic254

score captures the average selection differential (e.g., a in the linear model, Eqn. 1), and255

is defined as ∆BV = Σijkβi(pijk+1 − pijk). The covariance between change in the breeding256

value and the environmental state, that is COV(∆BVjk
, xjk), captures the manner in which257

the environment affects the selection differential (e.g., b in the linear model, Eqn. 1).258

Primary interest is in inference of the selection function parameters, that is the pa-259

rameters that describe how the environment affects the selection differential on the trait.260

However, the proposed method can also estimate derived parameters describing selection on261

each genetic locus, that is sijk. I focus on two derived parameters that summarize genera-262

tion, population and locus selection coefficients, specifically, the average absolute intensity263

of selection on the genetic loci (i.e., mean(|sijk|)) and the standard deviation of the absolute264

intensity of selection (i.e., SD(|sijk|)). These provide high-level summaries of the intensity265

and variability of selection on loci associated with or affecting the selected trait (i.e., indirect266

or direct selection depending on the nature of the genotype-phenotype map).267

Various approaches have been developed to generate samples from an approximate268

posterior distribution in an ABC framework from summary statistics (Beaumont, 2010; Sis-269

son et al., 2018). Here, I used the rejection with local-linear regression correction algorithm270

proposed by Beaumont et al. (2002) and implemented in the R abc package (Csillery et al.,271

2012). This approach performs quite well (see Results), but other approaches, such as ridge272
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regression or non-linear regression (Blum & Francois, 2010) could be used instead for this273

portion of the analysis.274

Beyond parameter estimation, the method also provides a convenient way to compute275

a posterior predictive distribution, which can be used for model assessment and comparison.276

For this, I simulate additional evolutionary trajectories by sampling parameter values (a,277

b and c) from their posterior distributions based on an initial model-fitting analysis (as278

described above). I then compute a new set of summary statistics for each simulated data279

set. Specifically, percentiles (10th to 90th percentiles in steps of 10%) of the distribution of280

change in the mean polygenic score across populations and generations are computed. I chose281

this novel set of summary statistics so that different information could be used for model282

fitting and model validation or comparison. By simulating multiple new data sets, posterior283

predictive distributions for each of the percentile summary statistics can be obtained and284

compared to the same summary statistics calculated from the observed data, with higher285

correspondence being indicative of better model performance.286

Analysis of simulated data287

I first evaluated the performance of the method with simulated data. I began by testing288

how the method performed under a variety of conditions, but where the data were simulated289

under the same model used to analyze the data. This allowed me to assess the ability of290

the approach to provide precise and accurate parameter estimates when the model was the291

correct model for the data. I then conducted additional simulations to assess how the method292

performed for data simulated under alternative models.293

The first set of simulations was conducted using the model described above and with294

the same software used for inference (i.e., fsabc). Standard (baseline) conditions involved 10295

populations sampled in 10 successive generations. I further assumed 100 genetic loci affected296

the focal trait. Initial allele frequencies for these loci were sampled from a beta distribution297
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with shape parameters equal to 0.5. The phenotypic effects of these 100 loci were drawn298

from a centered normal distribution. The standard deviation was set to ensure a heritability299

of ∼0.3 (with a phenotypic variance of 1.0). That is, I assumed the trait was polygenic,300

lacked major effect loci, and had a modest heritability (and thus a substantial non-genetic301

variance component). I assumed the variance effective population size was estimated with302

uncertainty, such that knowledge and uncertainty in Ne was characterized by a re-scaled303

beta distribution, Ne ∼ beta(α = 10, β = 10,min = 400,max = 600) (here min and max304

are the lower and upper bounds). This distribution has a mean of Ne = 500 and standard305

deviation of 21.8 (i.e., a modest effective population size known with some, albeit limited,306

uncertainty). The environmental state for each population and generation was sampled from307

a standard normal distribution. I assumed a linear relationship between the environmental308

covariate and the selection differential, such that Sjk = a+ bxjk (i.e., Eqn. 1), and sampled309

values from the spike-and-slab priors for a and b for the simulated data sets using the same310

prior parameter values used for the ABC inference (lower and upper bounds of the slab311

component of the priors set to -0.1 and 0.1 and π = 0.5, see below).312

I analyzed 2000 replicate simulations under these conditions (replicates differed in the313

values for selection, not in the trait genetic architecture or initial allele frequencies). Specif-314

ically, I generated 1.5 million simulations of evolution using the ABC simulation method,315

and treated the first 2000 as observed data. I applied the ABC inference procedure to each316

using the abc function from the R abc package (version 2.1) (Csillery et al., 2012). I used317

the local-linear regression method with a tolerance of 0.005, which retained 0.5% of the318

1.5 million simulations (7500 samples) to form the posterior after regression adjustment. I319

summarized parameter estimates based on the posterior median (point estimate) and 95%320

equal-tail probability intervals (ETPIs). Performance of the method was then assessed by321

computing the mean absolute error (MAE), defined as the average absolute deviation be-322

tween the true parameter value and its point estimate (posterior median), and the 95%323

interval coverage, that is the proportion of cases where the 95% ETPIs contained the true324
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parameter value.325

I further assessed the limitations of the method by analyzing four additional sets326

of simulations, each deviating in some way or ways from the standard conditions described327

above. One set considered the effect of enhanced genetic drift by replacing the re-scaled beta328

distribution above with one bounded by 100 and 200, and thus with an expected variance329

effective population size of Ne = 150. A second set assumed 1000 genetic loci might affect the330

focal trait, but postulated uncertainty in whether or not each had a causal effect. Specifically,331

each genetic marker was assigned a probability of association (i.e., γi or posterior inclusion332

probability) of 0.1. This results in an expectation of 100 causal variants but with uncertain333

identities. Third, I considered limited sampling, specifically five populations sampled across334

five generations. Fourth, I assumed a step selection function (Eqn. 3) rather than the linear335

function, with π = 0.5 and slab bounds of -0.05 and 0.05 for c. Each simulated data set (2000336

per set of conditions) was analyzed as described above, with the exception that simulated337

genetic data with a step function for selection were analyzed with both the linear and step338

function models.339

Lastly, I simulated additional data sets that deviated to greater extent from the340

assumed model. I specified the same genetic architecture, allele frequencies, effective pop-341

ulation size and environmental data as for the standard conditions, but assumed that the342

environment defined an optimum for a Gaussian fitness function. Thus, instead of a simple343

selection differential (which only captures directional selection), selection would be a mix-344

ture of stabilizing and directional with specifics determined by the current composition of345

the population. The width of the Gaussian selection function (i.e., its standard deviation)346

was set to two or five (smaller standard deviations coincide with stronger stabilizing selec-347

tion). The mean of the Gaussian function (i.e., that optimum phenotype) was specified by348

a linear model, µjk = α + βxjk. I considered two values for α, -0.762 or -0.562, and two349

values for β, 0 or 0.4. The first value for α (-0.762) coincides with the expected initial mean350

phenotype given the trait genetic architecture and allele frequencies, and thus with no (ini-351
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tial) directional selection in the average environment, whereas α = -0.562 should result in352

more instances of selection for larger trait values. Values for β were chosen to correspond353

with environment-independent (β = 0) and environment-dependent (β = 0.4) selection. I354

generated 20 simulated data sets for each combination of α and β (80 data sets total). This355

was done with an individual-based simulation written and implemented in R (version 3.5.1;356

code available from Dryad, DOI pending).357

In these simulations, each generation genotypes for N = 1000 individuals were sam-358

pled from binomial probability distributions parameterized by the population allele frequen-359

cies. I then determined the phenotype of each individual by computing its polygenic score360

and adding environmental noise (to ensure the heritability of ∼0.3) from a normal distribu-361

tion. The relative fitness of each individual was then calculated from the Gaussian fitness362

function conditional on the environmental state. I then sampled Ne individuals, based on363

their relative fitness values, as survivors that determined the allele frequencies in the next364

generation. I repeated this procedure across 10 generation, 10 populations and 80 total sim-365

ulations (20 replicates for each combination of selection function parameters). Because the366

values α and β for the selection function are for the phenotypic optimum (µjk) rather than the367

selection differential (Sjk), the method is not expected to estimate these values accurately.368

I thus instead compute approximate values for the true a and b from these simulations by369

fitting a linear model to the observed selection differentials from the simulations (i.e., from370

the change in the expected trait value from generation to generation), Sjk = â + b̂ ∗ xjk371

(the hat symbols denote that these are estimates of a and b, not parameter values defined372

by the model). I analyzed these 80 simulated data sets as described above, and measured373

performance by the ability to estimate â and b̂.374

I conclude my analysis of simulated data sets by illustrating how the proposed method375

can be used for model comparison. I chose (at random) one data set simulated based on the376

model with the linear selection function (and more generally, under the standard conditions).377

For this data set, I fit the linear selection function model (the true model) and the step378
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selection function model (an alternative model), both as described above. I then generated379

5000 samples from the posterior predictive distribution for the 10th to 90th percentiles of380

the distribution (over time and space) of change in polygenic scores based on each model.381

I compared these distributions graphically to the equivalent summary statistics computed382

from the observed data (in this case, the original simulated data set).383

Analysis of a seed beetle evolve-and-resequence experiment384

I further tested the efficacy of the proposed method by using it to test for selection on385

female weight during an evolve-and-resequence experiment with the cowpea seed beetle,386

Callosobruchus maculatus. These insects infest stores of grain legumes (Tuda et al., 2014).387

Female beetles attach eggs to the surface of legume seeds. Hatching larvae burrow into the388

seed and must complete development in the single, natal seed.389

My colleagues and I previously conducted an evolve-and-resequence experiment to390

analyze the evolutionary dynamics of host adaptation in C. maculatus when experimentally391

shifted to a stressful legume host, lentil (Lens culinaris), from an ancestral host, mung bean392

(Vigna radiata) (Rêgo et al., 2019). Low survival (∼1%) at the onset of the experiment393

caused a population bottleneck, but adaptive evolution quickly rescued the population from394

extinction with survival rates increasing to 90% by the F10 generation (Rêgo et al., 2019).395

Previous analyses of generation-scale allele frequency change from this experiment showed396

strong selection caused rapid adaptation and substantial evolutionary change at many genetic397

loci (Rêgo et al., 2019). Genome-wide association mapping in a back-cross (BC) mapping398

population derived from this line documented modest heritability for female weight at eclo-399

sion, with 17% of the trait variance explained by genetic markers (Rêgo et al., 2020). Female400

weight is one of several traits that often evolves during adaptation to lentil by C. maculatus401

(Messina et al., 2009; Messina & Jones, 2011; Messina & Durham, 2015). However, there402

was considerable uncertainty in individual genotype-weight associations, and we failed to403
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detect excess overlap between SNPs associated with weight and those evolving most rapidly404

during the evolve-and-resequence experiment (Rêgo et al., 2020).405

Here, I reanalyze these data with the proposed method, and specifically ask whether406

the method can detect selection on female weight and whether selection depends on popula-407

tion density (the hypothesized environmental covariate). Explicit data on population density408

are lacking, but qualitatively the population size had rebounded by the F4 generation, and409

thus I encode density as a binary covariate with a value of 0 for the first four generations410

and 1 thereafter. For this analysis, the data set included 10,409 SNPs sequenced in each411

of 10 samples (48 beetles per sample)–the founders (P), F1-F8 generations, and the F16412

generation–and 251 sequenced female beetles that comprise the BC mapping population.413

Additional details regarding these data and experiments are provided by Rêgo et al. (2019)414

and Rêgo et al. (2020). SNP-genotype associations for the mapping population were esti-415

mated with the Bayesian sparse linear mixed model approach implemented in gemma (version416

0.98) (Zhou et al., 2013). Consequently, for each SNP, there is an estimated posterior proba-417

bility of association (i.e., posterior inclusion probability or PIP) and an estimated phenotypic418

effect conditional on the association. I assume the phenotypic variance in the experiment was419

equal to that in the mapping population (σ2 = 0.43 mg; see the Discussion for limitations of420

this assumption). Bayesian allele frequency estimates were taken from Rêgo et al. (2020). I421

estimated the variance effective population size over the course of the experiment based on422

patterns of allele frequency change between the P and F16 generation using the Bayesian423

approach implemented in varNe (version 0.9) (Gompert & Messina, 2016).424

I used the proposed method to estimate selection on female weight. The model was425

fit in two ways, using either (i) model-averaged effect estimates (i.e., taking the product of426

the posterior inclusion probability and effect estimate as a certain, model-averaged effect427

estimate) or (ii) integrating over uncertainty in genotype-phenotype associations. My main428

focus was on the analysis with population density (a qualitative, binary indicator variable) as429

an environmental covariate, but I also considered a null model with directional selection only430
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and a model with a random environmental covariate (with environmental states drawn from431

a standard normal distribution). I bounded the priors on the selection model parameters (a432

and b) by -2.0 and 2.0 (here S is in mg). In each case, I based the analysis on one million433

simulations. In the models with uncertainty in genotype-phenotype associations, observed434

summary statistics were obtained for 100 independent samples of genotype-phenotype asso-435

ciations (based on their PIPs). Inferences were based on 1000 samples from the posterior436

after apply the local-linear regression adjustment in abc (Beaumont et al., 2002; Csillery437

et al., 2012).438

Results439

Results from stimulated data440

The core simulations (i.e., those based on the model) resulted in weak to modest phenotypic441

selection, such that the average, absolute intensity of selection was less than 0.01 for 55% of442

the simulations and had a maximum value of ∼0.1 (Fig. S1). Variability in selection across443

space and time was of the same order of magnitude as the average, absolute intensity of444

selection, consistent with Siepielski et al. (2009) and Siepielski et al. (2013) (mean standard445

deviation in |Sjk| = 0.025, maximum = 0.10) (Fig. S1). The average selection intensity446

on individual genetic loci (measured by |sijk|) was about an order of magnitude lower, and447

rarely exceeded 0.01 (Fig. S2).448

Under the standard conditions (i.e., linear selection function, 10 populations, 10 gen-449

erations, 100 causal loci, N̄e = 500, h2 = 0.3), I obtained precise and accurate estimates of450

the mean selection differential (a) and environmental effect (b) (Figs. 2). For example, the451

MAE (i.e., the average absolute deviation between the true and estimated parameter value)452

was 0.0028 for a and 0.0025 for b. Moreover, the 95% interval coverage was 0.95 and 0.96453

for a and b, respectively. High accuracy was mostly independent of the strength of these454
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effects (Fig. S3). Estimates of the average selection on genetic loci were similarly accurate455

with a MAE of 0.00031 and 95% interval coverage of 0.96 for the standard conditions (Fig.456

3). There was a slight decrease in the accuracy of the estimates for simulations with reduced457

Ne (i.e., cases where drift was more important), uncertainty in genetic architecture, reduced458

spatial and temporal sampling or with the step selection function (Fig. 4). For example,459

MAE increased, approximately doubling, with reduced sampling (MAE = 0.0064 for a and460

0.0061 for b), though 95% interval coverage remained high (∼95%).461

There was a greater reduction in performance for simulations based on the Gaussian462

fitness function, that is where the analysis model differed from the generative evolutionary463

process used to simulate the data (Figs. 4 and 5). In particular, MAE increased to 0.0075 for464

a and 0.0105 for b, and the 95% interval coverage dropped to ∼0.49 for both. Despite this465

drop in performance, the parameter estimates were still indicative of the “true” parameter466

values (recall that â and b̂ are not true parameter values in the same sense for these data sets,467

but rather best approximations when forcing a linear model for the selection differential).468

For example, Pearson correlations between true and estimated values (posterior medians)469

for a and b across the 80 data sets simulated under this model were 0.80 (95% confidence470

interval = 0.71–0.87) and 0.97 (95% confidence interval = 0.96–0.98), respectively.471

A comparison of the posterior predictive distribution for models with either linear472

or step selection functions fit to a simulated data set where the true function was linear473

illustrates how the proposed method can be used for model comparison (see Fig. S4 for the474

model fits). As expected, the true summary statistics fell closer to the center of the posterior475

predictive distribution for the true linear model than the step function model (Fig. 6). This476

held across the various percentiles considered for the summary statistics.477
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Results from the seed beetle evolve-and-resequence experiment478

I found compelling evidence of strong selection for increased female weight when using model-479

averaged genotype-phenotype effects (Fig. 7A). Estimates of the average selection on weight480

(a) were mostly insensitive to my choice of an environmental covariate, with estimate of a481

equal to 1.95 (95% ETPI = 1.70–2.01), 1.99 (1.85–2.03) or 2.00 (1.88–2.06) when using popu-482

lation density, a random covariate or no covariate, respecitvely. In contrast, fully accounting483

for uncertainty in genotype–phenotype associations dramatically reduced the evidence for484

selection (Fig. 7A). When fully accounting for uncertainty in the genotype-phenotype map485

in simulations and the observed data, the estimate of a was ∼0 (posterior mean = 0.156,486

95% ETPI = -0.69–1.57, posterior prob. a > 0 = 0.62). Using the mean of summary statis-487

tics across replicate genotye-phenotype maps for the observed data decreased uncertainty488

in a some and increased the evidence for a > 0 slightly, but had little effect on the point489

estimate, 0.0003 (posterior mean = 0.020, 95% ETPI = -0.00–0.28, posterior prob. a > 0490

= 0.83). This discrepancy between results based on model-averaged phenotypic effects and491

fully accounting for uncertainty in the genotype-phenotype associations is consistent with492

calculations of mean breeding values or polygenic scores over the course of the experiment493

and likely reflects the great uncertainty in gentoype-phenotype associations in this data set494

(the highest SNP posterior inclusion probability was 0.03 and only 13 SNPs had posterior495

inclusion probabilities > 0.01) (Fig. S5).496

Similar to the results for a, I found evidence that selection varied by population497

density when using model-averaged effects, but not when accounting for uncertainty in498

genotype-phenotype associations (Fig. 7B). Even when using model-averaged effects, I found499

no evidence that selection on weight varied as a function of the random covariate (b = -0.19,500

95% ETPI = -1.33–1.31, posterior prob. b < 0 = 0.69). Regardless of the specific model,501

estimates of the average and variability of selection on individual loci were always low (<502

0.001). Lastly, a posterior predictive check based on the best performing model, that is503

the population density model with model-averaged effects, underestimated the variability in504
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change in the expected polygenic score across generations (Fig. 7C).505

Discussion506

Rapid evolution on ecological time scales is at least somewhat common (Endler, 1986;507

Thompson, 2013; Bergland et al., 2014; Grant & Grant, 2014; Hendry, 2016; Nosil et al.,508

2018), but remains understudied from a population genomic perspective (Messer et al., 2016).509

This is perhaps not surprising, as most existing methods were designed to detect weaker selec-510

tion operating in a consistent manner over longer periods of time. I proposed and evaluated511

a statistical method to help fill this gap. Critically, the method connects environmental512

drivers of selection with traits and patterns of evolutionary change in a population genomic513

context. Taking a population genomic approach has the advantage of estimating selection514

on genetic variants (not just traits) and of mostly disentangling temporal variation in traits515

due to evolutionary change versus plasticity. Via simulations, I showed that the proposed516

method can generate very accurate and precise estimates of fluctuating selection on polygenic517

traits. However, performance depended on simulation conditions and is generally expected518

to be sensitive to details of the data input. I discuss performance at length below, along519

with current limitations and possible extensions of the proposed method.520

Overall performance521

The proposed method was computationally efficient, and I do not foresee problems arising522

even when applying it to large, whole-genome data sets. As an example, I was able to523

generate one million ABC simulations for the C. maculatus data set in ∼300 CPU minutes524

on a standard desktop computer (Intel Core i7-3930K CPU at 3.20 GHZ ×12 with 64 GB525

RAM and running Ubuntu 18.04.4 LTS). Moreover, each simulation is independent, and thus526

massive parallelization of the ABC simulations is trivial. Computational time should scale527

linearly with the number of populations and generations, and with the number of genetic528
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variants associated with or affecting the phenotype. Notably, the number of phenotype-529

associated genetic markers will likely be on the order of hundreds to perhaps tens of thousands530

even when whole-genome sequences are analyzed (i.e., not every genetic variant affects a531

trait).532

In terms of accuracy of inference, the method performed best under the standard533

simulation conditions (i.e., 10×10 populations×generations, moderately large NE, and 100534

known causal variants). I documented minor degradation of performance with more limited535

space-time sampling (5×5 populations×generations) or reduced effective population size (i.e.,536

increased genetic drift). Deviations between the assumed and true selection function and537

uncertainty in genetic architecture had greater effects, and I discuss each in turn next.538

Performance and the selection function539

Performance of the method declined substantially when applied to simulations of environment-540

dependent stabilizing selection described by a Gaussian fitness function. For example, the541

true parameter value (or at least the linear approximation to the true parameter value) was542

not within the 95% ETPIs of the estimate about half of the time. Nonetheless, the esti-543

mates tended to be correct qualitatively, that is, the direction and approximate magnitude544

of the mean selection differential and environmental effect were correctly estimated. Future545

work could allow for additional selection functions, but even then, quantitative estimates546

of selection will only be strictly interpretable when the function assumed matches (or very547

closely approximates) reality. Estimates of selection function parameters cannot be combined548

across functions as these parameters do not have a consistent meaning, but Bayesian-model549

averaging for derived parameters is possible.550

Perhaps even more important from a practical perspective, the estimates of selection,551

or at least the environment-dependent component of selection, depend on correctly identi-552

fying the environmental covariate responsible for fluctuations in selection. In some cases,553
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such as negative or positive frequency-dependent selection, this might be relatively easy.554

And a recent meta-analysis suggests that some aspects of the environment, most notably555

precipitation, might generally be important drivers of variation in selection (Siepielski et al.,556

2017). Nonetheless, it will often be difficult to designate a single environmental covariate a557

priori. Alternative models with different covariates could be fit and evaluated based on their558

posterior predictive distributions. Indeed, the relatively poor fit of the population density559

model to the C. maculatus data set was uncovered based on the posterior predictive distri-560

bution (unfortunately, I lack a clear, alternative covariate to explain variability in change561

in the mean polygenic score over time in this data set). However, caution is warranted562

as considering many possible environmental covariates may uncover spurious relationships.563

When many covariates are tested, it would be prudent to divide the data into training and564

validation sets for cross-validation. Lastly, in some cases variation in selection likely results565

from the interaction of multiple environmental factors (e.g., Benkman & Siepielski, 2004;566

Benkman et al., 2010; Nosil et al., 2018). I intend to extend the method and fsabc software567

to allow for multiple covariates and their interactions in the future.568

Performance and the genotype-phenotype map569

Uncertainty in trait genetic architecture had a modest effect on performance of the method570

with simulated data, but had a profound effect on the analysis of the C. maculatus exper-571

iment. At least two factors likely contributed to this discrepancy. First, the simulations572

involved 1000 genetic markers each having a modest probability of being associated with573

the trait (all PIPs = 0.1), whereas more than 10,000 SNPs had small but non-zero proba-574

bilities of association with female weight in C. maculatus (minimum = 0.001, maximum =575

0.030, median = 0.004). Thus, the C. maculatus data exhibited much greater uncertainty576

in the genotype-phenotype map than the simulated data. Second, the method assumes the577

posterior inclusion probabilities (PIPs) across genetic markers are independent (i.e., all in-578

formation arises from the marginal probabilities of association). This assumption was valid579
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for the simulated data, but was likely violated for C. maculatus data set. With the Bayesian580

sparse linear mixed model approach used to estimate genotype-phenotype associations for C.581

maculatus weight, sets of SNPs in the model (i.e., with non-zero effects) in any given Markov582

chain Monte Carlo (MCMC) step are unlikely to be associated with the same causal variant583

(or in high LD with each other) (Zhou et al., 2013). Instead, on average each causal variant584

should be represented by ∼1 SNP marker in any given MCMC step. Information on sets of585

SNPs (not just individual SNPs) is not encoded in the PIPs. Thus, the marginal association586

probabilities jettison information from the full, joint posterior and sampling sets of SNPs587

for the proposed method based on these could result in poor inference in cases where the588

marginal posteriors are misleading.589

I see several ways to overcome the problem of uncertainty in the genotype-phenotype590

map. First, additional experiments could be conducted, including genetic manipulations591

or fine-scale genetic mapping, to refine an initial set of candidate genetic markers or QTL592

regions (e.g., Linnen et al., 2013; Barrett et al., 2019). Second, when sets of linked SNPs593

are associated with a trait, all but the most strongly associated could be dropped and the594

sum of the posterior inclusion probabilities across the set could be assigned to the retained595

SNP (this could be repeated for different sets of traits). This should work best when genetic596

markers fall into multiple, easy to delineate, sets of trait-associated markers (which was not597

the case for the C. maculatus data set; Rêgo et al., 2020). Third, the method could be598

modified to work with samples from the joint posterior for genotype-phenotype associations.599

Such information can be extracted from the MCMC output of common polygenic GWA600

models (including gemma; Zhou et al., 2013). I plan to implement this final approach in a601

future version of fsabc. Short of this, my results suggest that using model-averaged effect602

estimates is likely the better solution when dealing with considerable uncertainty in the603

genotype-phenotype map. At minimum, this approach allowed us to detect selection in C.604

maculatus.605

An additional key consideration of the genotype-phenotype map concerns the choice606
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of a mapping population. I expect the proposed method to perform best when the mapping607

population harbors the same genetic variants segregating at the same frequencies, and the608

same phenotypic variance, as the populations included in the population-genomic time series.609

Thus, mapping in those actual populations will often be the best choice. Indeed, differences610

between the genetic composition of the C. maculatus mapping population (a BC between611

the source population and the lentil-adapted line) and the focal line during the course of the612

experiment likely further limits quantitative interpretation of the magnitude of selection on613

weight during the experiment (more generally, mapping populations generated from crosses614

might often violate the linkage and Hardy-Weinberg equilibrium assumptions for equating615

average effects with average phenotypic excess). Of course, if the genetic composition of the616

populations changes considerably over the course of the study (perhaps because of sustained617

directional selection) or if the phenotype is highly plastic, a single genotype-phenotype map618

may be limiting regardless of the mapping populations (e.g., Coop, 2019). In such cases, it619

should be possible to include multiple genotype-phenotype maps (for different populations,620

generations, or environments). Doing so would allow selection and the genotype-phenotype621

map to depend on the environment and would thus facilitate the analysis of plastic traits. I622

hope to include this in a future version of fsabc.623

Conclusions624

Combining population-genomic time-series data with data on trait genetics and the environ-625

ment has the potential to advance our understanding of how selection acts in nature and626

drives evolution across the genome. I hope that the proposed method contributes to this627

aim. I expect the biggest limitation at present for the use of this (or related) method is628

a lack of appropriate data. Large-scale spatio-temporal population genomic data sets are629

still uncommon, especially for natural populations. However, advances in the analysis of630

ancient or museum DNA and the expanding field of evolve-and-resequence experiments may631

help overcome this limitation (e.g., Bi et al., 2013; Barghi et al., 2017; Sproul & Maddison,632
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2017; Cridland et al., 2018; Rêgo et al., 2019). Moreover, few systems currently combine633

such sampling with detailed studies of trait genetics and the environment. Nonetheless, I634

hope that methods, like the one proposed here, help illustrate the potential value of such635

combined data sets, and more generally of long-term studies in the age of genomics (see e.g.,636

Grant & Grant, 2014).637
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Figure 1: Graphical overview of the model, data and proposed method. Panel (A) shows
hypothetical linear (Eqn. 1), step (Eqn. 2) and sigmoidal (Eqn. 3) functions for the effect
of the environment on the selection differential. Panel (B) depicts the general form of the
spike-and-slab priors used for the coefficients in the selection functions. Most of the prior
probability is near zero, but large values are not improbable. Panel (C) summarizes the data
for the approximate Bayesian computation (ABC) method. The four key data inputs are
listed along with a diagram summarizing the population genomic time series, which includes
allele frequency data (denoted P ) for multiple loci measured across populations (space) and
generations (time). The ABC approach simulates evolutionary trajectories for genetic loci
and genomic-estimated breeding values (GEBVs) for each population based on the input
data from (C). Panel (D) shown a hypothetical observed GEBV trajectory (red line) and
additional simulated trajectories (gray lines) with different values for selection. The ABC
approach retains the set of simulations that produce outputs most similar to the observed
data (see the main text for details).
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Figure 2: Plots summarize performance of the method under the standard simulation con-
ditions. Panels (A) and (B) show the true (blue points) and estimated (black points with
vertical lines for 95% equal-tail probability intervals [ETPIs]) parameter values for the selec-
tion coefficients a and b, respectively. Results are shown for 300 representative simulations.
Panels (C) and (D) provide scatterplots depicting the relationship between the true param-
eter values (x-axis) and the point estimate (posterior median, y-axis) for a (C) and b (D). A
one-to-one line is shown. Parameter estimates were highly correlated with their true values
(Pearson r > 0.99).
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Figure 3: Plots summarize performance of the method in terms of selection on genetic loci
under the standard simulation conditions. Panel (A) shows the true (blue points) and es-
timated (black points with vertical lines for 95% equal-tail probability intervals [ETPIs])
mean absolute intensity of selection on the genetic loci. Results are shown for 300 repre-
sentative simulations. Panel B provides a scatterplot depicting the relationship between the
true mean intensity of selection on genetic loci (x-axis) and the point estimate (posterior
median, y-axis). A one-to-one line is shown. Parameter estimates were highly correlated
with their true values (Pearson r = 0.99).
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Results are shown for mean absolute error (MAE) (A) and 95% interval coverage (B).
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Figure 5: Plots summarize performance of the method for data simulated assuming a Gaus-
sian fitness function with an optimum determined by the environment. Panels (A) and (B)
show the true (blue points) and estimated (black points with vertical lines for 95% equal-tail
probability intervals [ETPIs]) parameter values for the selection coefficients a and b, respec-
tively. Panels (C) and (D) provide scatterplots depicting the relationship between the true
par meter values (x-axis) and the point estimate (posterior median, y-axis) for a (C) and b
(D). A one-to-one line is shown.
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Figure 6: Graphical summary of a posterior predictive check. In each panel, the posterior
predictive distribution is shown for the linear selection model (blue) and the step selection
model (red). The former is the true model. The summary statistic from the data set used
to fit the models (i.e., the observed data) is shown as a vertical black line. Each plot shows
results for a different summary statistic, specifically a different percentile of the distribution
of change in the mean polygenic score across populations and generations (the percentile is
given in the upper left corner of each plot).
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(C) Posterior predictions

Figure 7: Plots summarize the application of the proposed method to the C. maculatus data
set. Violin plots in panel (A) depict prior (gray) or posterior (other colors) distributions for
the mean selection differential parameter, a. Posteriors are shown with density as a covariate
and with model-averaging (Density MAV) or uncertainty with the distribution (Density PIP
1) or mean (Density PIP 2) observed summary statistics, and for no covariate (Null) or a
random covariate (Random). White dots denote the median, black boxes denote the 1st
and 3rd quartile, vertical bars extend to the minimum and maximum value or 1.5× the
interquartile range, and kernel densities show the full prior or posterior distribution. Similar
plots in panel (B) show the prior and posteriors for the environmental effect, b. Panel C
summarizes the posterior predictive check. Colored points shown percentiles of change in
the mean polygenic score for the observed data (using model-averaging), and black dots and
lines show the median and 95% intervals from posterior predictive simulations.


