References
Adler, N. E., Schmitt-Jansen, M., & Altenburger, R. (2009). Flow
cytometry as a tool to
study phytotoxic modes of action. Environmental Toxicology and
Chemistry, 26, 297–306.
Asada, K. (1999). The water–water cycle in chloroplasts: Scavenging of
active oxygens
and dissipation of excess photons. Annual Review of Plant
Physiology and Plant Molecular Biology, 50, 601–639.
Beck, C. F., & Haring, M. A. (1996). Gametic differentiation
of Chlamydomonas .
International Review of Cytology, 168 , 259–302.
Bell, G. (2005). Experimental sexual selection inChlamydomonas . Journal of
Evolutionary Biology, 18 , 722–734.
Bruce, V. G., & Bruce, N. C. (1981). Circadian clock-controlled growth
cycle in
Chlamydomonas reinhardtii. In International Cell Biology. H. G.
Schweiger, editor. Springer-Verlag, New York. 823–830.
Chen, X., Tian, D., Kong, X. et al. (2016). The role of nitric
oxide signalling in response
to salt stress in Chlamydomonas
reinhardtii . Planta, 244 , 651–669.
Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow Cytometry
Pulse Width Data
Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the
Microalgae Chlamydomonas reinhardtii and Chlorella
vulgaris. PLoS ONE, 9(5): e97269.
doi:10.1371/journal.pone.0097269.
Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Salinity
induced oxidative stress
alters the physiological responses and improves the biofuel potential of
green microalgae Acutodesmus dimorphus. Bioresource Technology
244, 1376–1383.
Colle‘n, J., Davison, T. R. (1997). In vivo measurement of active oxygen
production in
the brown alga Fucus evanescens using
20,70-dichlorohydrofluorescein diacetate. Journal of Phycology,
33, 643–648.
Couso, I., Pérez-Pérez, M. E., Martínez-Force, E., Kim, H. S., He, Y.,
Umen, J. G.,
Crespo, J. L. (2018). Autophagic flux is required for the synthesis of
triacylglycerols and ribosomal protein turnover in Chlamydomonas.Journal of Experimental Botany, 69(6), 1355–1367.
Delaux, P. M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J.,
Malbreil, M.,
Volkening, J. D., Sekimoto, H., Nishiyama, T., Melkonian, M., Pokorny,
L., et al. (2015). Algal ancestor of land plants was preadapted
for symbiosis. Proceedings of the National Academy of Sciences of
the United States of America, 112, 13390–13395.
Findinier, J., Tunçay, H., Schulz-Raffelt, M., Deschamps, P., Spriet,
C., Lacroix, J. M,
Duchêne, T., Szydlowski, N., Li-Beisson, Y., Peltier, G. et al.(2017). The Chlamydomonas mex1 mutant shows impaired starch
mobilization without maltose accumulation. Journal of Experimental
Botany, 68, 5177–5189.
Girolomoni, L., Cazzaniga, S., Pinnola, A., Perozeni, F., Ballottari,
M., Bassi, R. (2019).
LHCSR3 is a nonphotochemical quencher of both photosystems inChlamydomonas reinhardtii.Proceedings of the National
Academy of Sciences of the United States of America, 116(10), 4212–
4217.
Goodenough, U. W. (1991). Chlamydomonas mating interactions. In:
Dworkin M (ed)
Microbial cell–cell interactions. American Society for Microbiology,
Washington, D.C., pp 71–112.
Gurmani, A. R., Bano, A., Salim, M. (2007). Effect of abscisic acid and
benzyladenine on
growth and ion accumulation of wheat under salinity stress.Journal of Botany, 39, 141–149.
Han, X., Zeng, H., Bartocci, P., Fantozzi, F., Yan, Y. (2018).
Phytohormones and Effects
on Growth and Metabolites of Microalgae: A Review. Fermentation,
4, 25.
Harris, E. H. (1989). The Chlamydomona s source book: a
comprehensive guide to
biology and laboratory use. Academic Press, San Diego.
Hema, R., Kumar, M. S., Shivakumar, S., Reddy, P. C., Udayakumar, M.
(2007).
Chlamydomonas reinhardtii , a model system for functional
validation of abiotic
stress responsive genes. Planta, 226 , 655–670.
Jamers, A., De Coen, W. (2010). Effect assessment of the herbicide
paraquat on a green
alga using differential gene expression and biochemical biomarkers.Environmental Toxicology and Chemistry, 29, 893–901.
Jokel, M., Johnson, X., Peltier, G., Aro, E. M., Allahverdiyeva, Y.
(2018). Hunting the
main player enabling Chlamydomonas reinhardtii growth under
fluctuating light. Plant Journal: For Cell and Molecular Biology,94, 822– 835.
Juvale, P. S., Wagner, R. L., Spalding, M. H. (2016). Opportunistic
proteolytic
processing of carbonic anhydrase 1 from Chlamydomonas in
Arabidopsis reveals a novel route for protein maturation.Journal of Experimental
Botany, 67(8), 2339–2351.
Khona, D. K., Shirolikar, S. M., Gawde, K. K., Hom, E., Deodhar, M. A.,
D’Souza, J. S.
(2016). Characterization of salt stress-induced palmelloids in the green
alga, Chlamydomonas reinhardtii. Algal Research, 16,
434–448.
Kramer, D., Lucker, B. F. (2020). Efficient method for selection of
high-performing
algae isolates and identification of trait genes. US Patent App.
16/445,781.
Lefebvre, P. A., Fitz-Gibbon, S. T., Grossman, A. R., Jonikas, M., C.
(2016). An indexed,
mapped mutant library enables reverse genetics studies of biological
processes in Chlamydomonas reinhardtii. Plant Cell, 28(2),
367–387.
Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N.,
Yue, R., Robertson
J. M. (2016). An indexed, mapped mutant library enables reverse genetics
studies
of biological processes in Chlamydomonas reinhardtii. The
Plant Cell, 28, 367–387.
Ligrone, R. (2019). Land Plants. In: Biological Innovations that Built
the World.
Springer, Cham.
Mallick, N., Mohn, F. H. (2000). Reactive oxygen species: response of
algal cells.
Journal of Plant Physiology, 157 (2) 183–193.
Martin, N. C., Chiang, K. S., Goodenough, U. W. (1976). Turnover of
chloroplast and
cytoplasmic ribosomes during gametogenesis in Chlamydomonas
reinhardti. Developmental Biology, 51, 190–201.
Mastrobuoni, G., Irgang, S., Pietzke, M., Aßmus, H., Wenzel, M.,
Schulze, W., Kempa,
S. (2012). Proteome dynamics and early salt stress response of the
photosynthetic organism Chlamydomonas reinhardtii. BMC
Genomics, 13, 215.
Meijer, H. J. G., van Himbergen, J. A. J., Musgrave, A., Munnik, T.
(2017). Acclimation
to salt modifies the activation of several osmotic stress‐activated
lipid signalling
pathways in Chlamydomonas . Phytochemistry, 135 , 64–72.
Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz,
S. J., Witman, G.
B, Terry, A., et al. (2007). The Chlamydomonas genome
reveals the evolution of key animal and plant functions. Science,
318, 245–250.
Miller, G. A. D., Suzuki, N.,
Ciftci‐Yilmaz, S., Mittler, R. (2010). Reactive oxygen
species homeostasis and signalling during drought and salinity stresses.Plant, cell & environment, 33(4), 453–467.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance.