References
Adler, N. E., Schmitt-Jansen, M., & Altenburger, R. (2009). Flow cytometry as a tool to
study phytotoxic modes of action. Environmental Toxicology and Chemistry, 26, 297–306.
Asada, K. (1999). The water–water cycle in chloroplasts: Scavenging of active oxygens
and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639.
Beck, C. F., & Haring, M. A. (1996). Gametic differentiation of Chlamydomonas .
International Review of Cytology, 168 , 259–302.
Bell, G. (2005). Experimental sexual selection inChlamydomonasJournal of
Evolutionary Biology, 18 , 722–734.
Bruce, V. G., & Bruce, N. C. (1981). Circadian clock-controlled growth cycle in
Chlamydomonas reinhardtii. In International Cell Biology. H. G. Schweiger, editor. Springer-Verlag, New York. 823–830.
Chen, X., Tian, D., Kong, X. et al.  (2016). The role of nitric oxide signalling in response
to salt stress in Chlamydomonas reinhardtiiPlanta, 244 ,  651–669.
Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow Cytometry Pulse Width Data
Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS ONE, 9(5): e97269. doi:10.1371/journal.pone.0097269.
Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Salinity induced oxidative stress
alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresource Technology 244, 1376–1383.
Colle‘n, J., Davison, T. R. (1997). In vivo measurement of active oxygen production in
the brown alga Fucus evanescens using 20,70-dichlorohydrofluorescein diacetate. Journal of Phycology, 33, 643–648.
Couso, I., Pérez-Pérez, M. E., Martínez-Force, E., Kim, H. S., He, Y., Umen, J. G.,
Crespo, J. L. (2018). Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas.Journal of Experimental Botany, 69(6), 1355–1367.
Delaux, P. M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J., Malbreil, M.,
Volkening, J. D., Sekimoto, H., Nishiyama, T., Melkonian, M., Pokorny, L., et al. (2015). Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 112, 13390–13395.
Findinier, J., Tunçay, H., Schulz-Raffelt, M., Deschamps, P., Spriet, C., Lacroix, J. M,
Duchêne, T., Szydlowski, N., Li-Beisson, Y., Peltier, G. et al.(2017). The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation. Journal of Experimental Botany, 68, 5177–5189.
Girolomoni, L., Cazzaniga, S., Pinnola, A., Perozeni, F., Ballottari, M., Bassi, R. (2019).
LHCSR3 is a nonphotochemical quencher of both photosystems inChlamydomonas reinhardtii.Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4212– 4217.
Goodenough, U. W. (1991). Chlamydomonas  mating interactions. In: Dworkin M (ed)
Microbial cell–cell interactions. American Society for Microbiology, Washington, D.C., pp 71–112.
Gurmani, A. R., Bano, A., Salim, M. (2007). Effect of abscisic acid and benzyladenine on
growth and ion accumulation of wheat under salinity stress.Journal of Botany, 39, 141–149.
Han, X., Zeng, H., Bartocci, P., Fantozzi, F., Yan, Y. (2018). Phytohormones and Effects
on Growth and Metabolites of Microalgae: A Review. Fermentation, 4, 25.
Harris, E. H. (1989). The Chlamydomona s source book: a comprehensive guide to
biology and laboratory use. Academic Press, San Diego.
Hema, R., Kumar, M. S., Shivakumar, S., Reddy, P. C., Udayakumar, M. (2007).
Chlamydomonas reinhardtii , a model system for functional validation of abiotic
stress responsive genes. Planta, 226 , 655–670.
Jamers, A., De Coen, W. (2010). Effect assessment of the herbicide paraquat on a green
alga using differential gene expression and biochemical biomarkers.Environmental Toxicology and Chemistry, 29, 893–901.
Jokel, M., Johnson, X., Peltier, G., Aro, E. M., Allahverdiyeva, Y. (2018). Hunting the
main player enabling Chlamydomonas reinhardtii growth under fluctuating light. Plant Journal: For Cell and Molecular Biology,94, 822– 835.
Juvale, P. S., Wagner, R. L., Spalding, M. H. (2016). Opportunistic proteolytic
processing of carbonic anhydrase 1 from Chlamydomonas in Arabidopsis reveals a novel route for protein maturation.Journal of Experimental Botany, 67(8), 2339–2351.
Khona, D. K., Shirolikar, S. M., Gawde, K. K., Hom, E., Deodhar, M. A., D’Souza, J. S.
(2016). Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Research, 16, 434–448.
Kramer, D., Lucker, B. F. (2020). Efficient method for selection of high-performing
algae isolates and identification of trait genes. US Patent App. 16/445,781.
Lefebvre, P. A., Fitz-Gibbon, S. T., Grossman, A. R., Jonikas, M., C. (2016). An indexed,
mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell, 28(2), 367–387.
Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N., Yue, R., Robertson
J. M. (2016). An indexed, mapped mutant library enables reverse genetics studies
of biological processes in Chlamydomonas reinhardtii. The Plant Cell, 28, 367–387.
Ligrone, R. (2019). Land Plants. In: Biological Innovations that Built the World.
Springer, Cham.
Mallick, N., Mohn, F. H. (2000). Reactive oxygen species: response of algal cells.
Journal of Plant Physiology, 157 (2) 183–193.
Martin, N. C., Chiang, K. S., Goodenough, U. W. (1976). Turnover of chloroplast and
cytoplasmic ribosomes during gametogenesis in Chlamydomonas reinhardti. Developmental Biology, 51, 190–201.
Mastrobuoni, G., Irgang, S., Pietzke, M., Aßmus, H., Wenzel, M., Schulze, W., Kempa,
S. (2012). Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics, 13, 215.
Meijer, H. J. G., van Himbergen, J. A. J., Musgrave, A., Munnik, T. (2017). Acclimation
to salt modifies the activation of several osmotic stress‐activated lipid signalling
pathways in Chlamydomonas . Phytochemistry, 135 , 64–72.
Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G.
B, Terry, A., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318, 245–250.
Miller, G. A. D., Suzuki, N., Ciftci‐Yilmaz, S., Mittler, R. (2010). Reactive oxygen
species homeostasis and signalling during drought and salinity stresses.Plant, cell & environment, 33(4), 453–467.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance.