Jann Zwahlen

and 3 more

Invasive species are of increasing concern to the local biodiversity and ecology as the magnitude of biological invasions is increasing globally. The genetic structures of newly established invasive populations may reveal insights towards the invasion processes, making population genetics an important tool for understanding current invasions. Here we study newly established populations (<10-20 years before first sampling) of the cosmopolitan alien ascidian Botryllus schlosseri in four Puget Sound (Washington, USA) marinas, using eight polymorphic microsatellites. Up to seven sampling sessions over a period of 19 years revealed populations with fluctuating allelic richness (AR=2.693-4.417) and gene diversity (He=0.362-0.589). The populations were well differentiated on spatial and temporal scales and subjected to moderate genetic drift (Fs’=0.027-0.071). The obtained significant heterozygote deficiencies, positive inbreeding coefficients (Fis) and population structure measures (Fst) revealed that no population was under the Hardy-Weinberg equilibrium. Comparing these parameters with those from two Californian sites (Moss Landing and Santa Cruz, 1200 km southerly; invaded by Botryllus during 1940’s) revealed a connection between Moss Landing and Puget Sound, while Santa Cruz remained isolated. On the US west coast scale, this study revealed no major difference in invasive population dynamics between recently and decade long established populations, except for fewer alleles and lower He. When comparing ten worldwide sites, only few microsatellite loci displayed strong regional differences. With globally the lowest numbers of alleles and lowest genetic indices, the Puget Sound Botryllus populations exhibit genetic characteristics of recently established populations, further emerging as one of the youngest B. schlosseri populations, worldwide.