REFERENCES
Bowling, K. M., Thompson, M. L.,
Amaral, M. D., Finnila, C. R., Hiatt, S. M., Engel, K. L., . . . Cooper,
G. M. (2017). Genomic diagnosis for children with intellectual
disability and/or developmental delay. Genome Med, 9 (1), 43.
doi:10.1186/s13073-017-0433-1
Choo, Y. Y., Agarwal, P., How, C. H.,
& Yeleswarapu, S. P. (2019). Developmental delay: identification and
management at primary care level. Singapore Med J, 60 (3),
119-123. doi:10.11622/smedj.2019025
Fan, Y., Wang, L., Sun, Y., Xu, T.,
Gong, Z., Zhao, Q., . . . Yu, Y. (2021). Diagnostic yield of additional
exome sequencing after the detection of long continuous stretches of
homozygosity (LCSH) in SNP arrays. J Hum Genet, 66 (4), 409-417.
doi:10.1038/s10038-020-00854-1
Farnaes, L., Hildreth, A., Sweeney, N.
M., Clark, M. M., Chowdhury, S., Nahas, S., . . . Kingsmore, S. F.
(2018). Rapid whole-genome sequencing decreases infant morbidity and
cost of hospitalization. NPJ Genom Med, 3 , 10.
doi:10.1038/s41525-018-0049-4
French, C. E., Delon, I., Dolling, H.,
Sanchis-Juan, A., Shamardina, O., Megy, K., . . . Raymond, F. L. (2019).
Whole genome sequencing reveals that genetic conditions are frequent in
intensively ill children. Intensive Care Med, 45 (5), 627-636.
doi:10.1007/s00134-019-05552-x
Fromer, M., Moran, J. L., Chambert,
K., Banks, E., Bergen, S. E., Ruderfer, D. M., . . . Purcell, S. M.
(2012). Discovery and statistical genotyping of copy-number variation
from whole-exome sequencing depth. Am J Hum Genet, 91 (4),
597-607. doi:10.1016/j.ajhg.2012.08.005
Gilissen, C., Hehir-Kwa, J. Y., Thung,
D. T., van de Vorst, M., van Bon, B. W., Willemsen, M. H., . . .
Veltman, J. A. (2014). Genome sequencing identifies major causes of
severe intellectual disability. Nature, 511 (7509), 344-347.
doi:10.1038/nature13394
Glass, E. M., Wilkening, J., Wilke,
A., Antonopoulos, D., & Meyer, F. (2010). Using the metagenomics RAST
server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring
Harb Protoc, 2010 (1), pdb prot5368. doi:10.1101/pdb.prot5368
Koriath, C. A. M., Kenny, J., Ryan, N.
S., Rohrer, J. D., Schott, J. M., Houlden, H., . . . Mead, S. (2021).
Genetic testing in dementia - utility and clinical strategies. Nat
Rev Neurol, 17 (1), 23-36. doi:10.1038/s41582-020-00416-1
Li, H., Handsaker, B., Wysoker, A.,
Fennell, T., Ruan, J., Homer, N., . . . Genome Project Data Processing,
S. (2009). The Sequence Alignment/Map format and SAMtools.Bioinformatics, 25 (16), 2078-2079.
doi:10.1093/bioinformatics/btp352
Lindstrand, A., Eisfeldt, J.,
Pettersson, M., Carvalho, C. M. B., Kvarnung, M., Grigelioniene, G., . .
. Nilsson, D. (2019). From cytogenetics to cytogenomics: whole-genome
sequencing as a first-line test comprehensively captures the diverse
spectrum of disease-causing genetic variation underlying intellectual
disability. Genome Med, 11 (1), 68. doi:10.1186/s13073-019-0675-1
Lionel, A. C., Costain, G., Monfared,
N., Walker, S., Reuter, M. S., Hosseini, S. M., . . . Marshall, C. R.
(2018). Improved diagnostic yield compared with targeted gene sequencing
panels suggests a role for whole-genome sequencing as a first-tier
genetic test. Genet Med, 20 (4), 435-443. doi:10.1038/gim.2017.119
Manickam, K., McClain, M. R., Demmer,
L. A., Biswas, S., Kearney, H. M., Malinowski, J., . . . Directors, A.
B. o. (2021). Exome and genome sequencing for pediatric patients with
congenital anomalies or intellectual disability: an evidence-based
clinical guideline of the American College of Medical Genetics and
Genomics (ACMG). Genet Med . doi:10.1038/s41436-021-01242-6
Marshall, C. R., Chowdhury, S., Taft,
R. J., Lebo, M. S., Buchan, J. G., Harrison, S. M., . . . Medical
Genome, I. (2020). Best practices for the analytical validation of
clinical whole-genome sequencing intended for the diagnosis of germline
disease. NPJ Genom Med, 5 , 47. doi:10.1038/s41525-020-00154-9
McGuire, D. O., Tian, L. H.,
Yeargin-Allsopp, M., Dowling, N. F., & Christensen, D. L. (2019).
Prevalence of cerebral palsy, intellectual disability, hearing loss, and
blindness, National Health Interview Survey, 2009-2016. Disabil
Health J, 12 (3), 443-451. doi:10.1016/j.dhjo.2019.01.005
Meynert, A. M., Ansari, M.,
FitzPatrick, D. R., & Taylor, M. S. (2014). Variant detection
sensitivity and biases in whole genome and exome sequencing. BMC
Bioinformatics, 15 , 247. doi:10.1186/1471-2105-15-247
Miller, D. T., Adam, M. P., Aradhya,
S., Biesecker, L. G., Brothman, A. R., Carter, N. P., . . . Ledbetter,
D. H. (2010). Consensus statement: chromosomal microarray is a
first-tier clinical diagnostic test for individuals with developmental
disabilities or congenital anomalies. Am J Hum Genet, 86 (5),
749-764. doi:10.1016/j.ajhg.2010.04.006
Moeschler, J. B., Shevell, M., &
Committee on, G. (2014). Comprehensive evaluation of the child with
intellectual disability or global developmental delays.Pediatrics, 134 (3), e903-918. doi:10.1542/peds.2014-1839
Pang, A. W., Macdonald, J. R., Yuen,
R. K., Hayes, V. M., & Scherer, S. W. (2014). Performance of
high-throughput sequencing for the discovery of genetic variation across
the complete size spectrum. G3 (Bethesda), 4 (1), 63-65.
doi:10.1534/g3.113.008797
Richards, S., Aziz, N., Bale, S.,
Bick, D., Das, S., Gastier-Foster, J., . . . Committee, A. L. Q. A.
(2015). Standards and guidelines for the interpretation of sequence
variants: a joint consensus recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular
Pathology. Genet Med, 17 (5), 405-424. doi:10.1038/gim.2015.30
Riggs, E. R., Andersen, E. F.,
Cherry, A. M., Kantarci, S., Kearney, H., Patel, A., . . . Martin, C. L.
(2020). Technical standards for the interpretation and reporting of
constitutional copy-number variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics (ACMG) and the
Clinical Genome Resource (ClinGen). Genet Med, 22 (2), 245-257.
doi:10.1038/s41436-019-0686-8
Robert L. Schalock, R. L., and Marc
J. Tassé. (2021). Intellectual Disability: Definition, Diagnosis,
Classification, and Systems of Supports, 12th Edition : Intellectual
Disability: Definition, Diagnosis, Classification, and Systems of
Supports, 12th Edition.
SoRelle, J. A., Thodeson, D. M.,
Arnold, S., Gotway, G., & Park, J. Y. (2019). Clinical Utility of
Reinterpreting Previously Reported Genomic Epilepsy Test Results for
Pediatric Patients. JAMA Pediatr, 173 (1), e182302.
doi:10.1001/jamapediatrics.2018.2302
Srivastava, S., Love-Nichols, J. A.,
Dies, K. A., Ledbetter, D. H., Martin, C. L., Chung, W. K., . . . Group,
N. D. D. E. S. R. W. (2019). Meta-analysis and multidisciplinary
consensus statement: exome sequencing is a first-tier clinical
diagnostic test for individuals with neurodevelopmental disorders.Genet Med, 21 (11), 2413-2421. doi:10.1038/s41436-019-0554-6
Subspecialty Group of Neurology, C.
S. o. P. C. M. A., & Project Expert Group of Childhood Neuropathy, C.
N. A. (2018). [Experts’ consensus on the diagnostic strategies of
etiology for intellectual disability or global developmental delay in
children]. Zhonghua Er Ke Za Zhi, 56 (11), 806-810.
doi:10.3760/cma.j.issn.0578-1310.2018.11.003
Sun, Y., Wei, X., Fang, F., Shen, Y.,
Wei, H., Li, J., . . . Yu, Y. (2021). HPDL deficiency causes a
neuromuscular disease by impairing the mitochondrial respiration.J Genet Genomics . doi:10.1016/j.jgg.2021.01.009
Sun, Y., Ye, X., Fan, Y., Wang, L.,
Luo, X., Liu, H., . . . Yu, Y. (2020). High Detection Rate of Copy
Number Variations Using Capture Sequencing Data: A Retrospective Study.Clin Chem, 66 (3), 455-462. doi:10.1093/clinchem/hvz033
Talevich, E., Shain, A. H., Botton,
T., & Bastian, B. C. (2016). CNVkit: Genome-Wide Copy Number Detection
and Visualization from Targeted DNA Sequencing. PLoS Comput Biol,
12 (4), e1004873. doi:10.1371/journal.pcbi.1004873
Wang, H., Lu, Y., Dong, X., Lu, G.,
Cheng, G., Qian, Y., . . . Zhou, W. (2020). Optimized trio genome
sequencing (OTGS) as a first-tier genetic test in critically ill
infants: practice in China. Hum Genet, 139 (4), 473-482.
doi:10.1007/s00439-019-02103-8
Wenger, A. M., Guturu, H., Bernstein,
J. A., & Bejerano, G. (2017). Systematic reanalysis of clinical exome
data yields additional diagnoses: implications for providers.Genet Med, 19 (2), 209-214. doi:10.1038/gim.2016.88
Wright, C. F., FitzPatrick, D. R., &
Firth, H. V. (2018). Paediatric genomics: diagnosing rare disease in
children. Nat Rev Genet, 19 (5), 253-268. doi:10.1038/nrg.2017.116
Xiao, B., Qiu, W., Ji, X., Liu, X.,
Huang, Z., Liu, H., . . . Sun, Y. (2018). Marked yield of re-evaluating
phenotype and exome/target sequencing data in 33 individuals with
intellectual disabilities. Am J Med Genet A, 176 (1), 107-115.
doi:10.1002/ajmg.a.38542
Zahir, F. R., Mwenifumbo, J. C.,
Chun, H. E., Lim, E. L., Van Karnebeek, C. D. M., Couse, M., . . .
Marra, M. A. (2017). Comprehensive whole genome sequence analyses yields
novel genetic and structural insights for Intellectual Disability.BMC Genomics, 18 (1), 403. doi:10.1186/s12864-017-3671-0