REFERENCES
Ahmad P, Prasad M (2012) Abiotic stress responses in plants.
Abiotic Stress New Res. doi: 10.1007/978-1-4614-0634-1
Ahmad R, Anjum MA (2020) Physiological and molecular basis of
salinity tolerance in fruit crops. Fruit Crop. doi:
10.1016/b978-0-12-818732-6.00032-0
Ahmad R, Ferguson L, Southwick SM (2005) Molecular marker
analyses of pistachio rootstocks by Simple Sequence Repeats and
Sequence-Related Amplified Polymorphisms. J Hortic Sci Biotechnol80 : 382–386
Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S (2018) Ion
homeostasis, osmoregulation, and physiological changes in the roots and
leaves of pistachio rootstocks in response to salinity. Protoplasma255 : 1349–1362
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder
JI (2019) Genetic strategies for improving crop yields. Nature575 : 109–118
Barberon M (2017) The endodermis as a checkpoint for nutrients.
New Phytol 213 : 1604–1610
Bassil E, Zhang S, Gong H, Tajima H, Blumwald E (2019) Cation
specificity of vacuolar NHX-type cation/H + Antiporters 1[OPEN].
Plant Physiol 179 : 616–629
Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and
maturation of the cortex and vascular cylinder in Arabidopsis thaliana
(Brassicaceae) roots. Am J Bot 89 : 908–920
Bernstein N, Meiri A, Zilberstaine M (2004) Root Growth of
Avocado is More Sensitive to Salinity than Shoot Growth. J Am Soc Hortic
Sci 129 : 188–192
Bojórquez-Quintal E, Velarde-Buendía A, Ku-González Á,
Carillo-Pech M, Ortega-Camacho D, Echevarría-Machado I, Pottosin I,
Martínez-Estévez M (2014) Mechanisms of salt tolerance in habanero
pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions
dynamics and sodium root-shoot partition and compartmentation. Front
Plant Sci 5 : 1–14
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root
cell wall solutions for crop plants in saline soils. Plant Sci269 : 47–55
Cajero-Sanchez W, Aceves-Garcia P, Fernández-Marcos M, Gutiérrez
C, Rosas U, García-Ponce B, Álvarez-Buylla ER, Sánchez M de la P,
Garay-Arroyo A (2019) Natural root cellular variation in responses to
osmotic stress in arabidopsis thaliana accessions. Genes (Basel)10 : 1–23
Chen M, Yang Z, Liu J, Zhu T, Wei X, Fan H, Wang B (2018)
Adaptation mechanism of salt excluders under saline conditions and its
applications. Int J Mol Sci. doi: 10.3390/ijms19113668
Chen T, Cai X, Wu X, Karahara I, Schreiber L, Lin J (2011)
Casparian strip development and its potential function in salt
tolerance. Plant Signal Behav 6 : 1499–1502
Dinneny JR (2019) Developmental Responses to Water and Salinity
in Root Systems. Annu Rev Cell Dev Biol 35 : 239–257
Doblas VG, Geldner N, Barberon M (2017) The endodermis, a
tightly controlled barrier for nutrients. Curr Opin Plant Biol39 : 136–143
Enstone DE, Peterson CA, Ma F (2003) Root Endodermis and
Exodermis : Structure , Function , and Responses to the Environment.
335–351
Ferguson L, Poss JA, Grattan SR, Grieve CM, Wang D, Wilson C,
Donovan TJ, Chao C-T (2002) Pistachio Rootstocks Influence Scion Growth
and Ion Relations under Salinity and Boron Stress. J Am Soc Hortic Sci127 : 194–199
Godfrey JM, Ferguson L, Sanden B, Tixier A, Sperling O, Grattan
SR, Zwieniecki MA (2019) Sodium interception by xylem parenchyma and
chloride recirculation in phloem may augment exclusion in the salt
tolerant Pistacia genus: context for salinity studies on tree crops.
Tree Physiol 1–15
Gonzalez P, Syvertsen JP, Etxeberria E (2012) Sodium
distribution in salt-stressed citrus rootstock seedlings. HortScience47 : 1504–1511
Guo Q, Tian XX, Mao PC, Meng L (2020) Overexpression of Iris
lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt
tolerance in tobacco. Biol Plant 64 : 50–57
Gupta B, Huang B (2014) Mechanism of salinity tolerance in
plants: Physiological, biochemical, and molecular characterization. Int
J Genomics. doi: 10.1155/2014/701596
Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR, Edwards
EJ, Gilliham M, Walker AR (2018) Functional differences in transport
properties of natural HKT1;1 variants influence shoot Na+ exclusion in
grapevine rootstocks. New Phytol 217 : 1113–1127
Holtz B, Ferguson L, Parfitt D, Allen G, Radoicich R (2005)
Rootstock production and budding. Pist Prod Man 74–79
Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion
channels: Roles in plant nutrition and signalling. FEBS Lett584 : 1982–1988
Jamshidi Goharrizi K, Amirmahani F, Salehi F (2020) Assessment
of changes in physiological and biochemical traits in four pistachio
rootstocks under drought, salinity and drought + salinity stresses.
Physiol Plant 168 : 973–989
Jazi MM, Khorzoghi EG, Botanga C, Seyedi SM (2016)
Identification of Reference Genes for Quantitative Gene Expression
Studies in a Non-Model Tree Pistachio (Pistacia vera L.). PLoS One11 : 1–16
Ji H, Liu L, Li K, Xie Q, Wang Z, Zhao X, Li X (2014)
PEG-mediated osmotic stress induces premature differentiation of the
root apical meristem and outgrowth of lateral roots in wheat. J Exp Bot65 : 4863–4872
Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X(2013) The salt overly sensitive (SOS) pathway: Established and emerging
roles. Mol Plant 6 : 275–286
Jones K, Kim DW, Park JS, Khang CH (2016) Live-cell
fluorescence imaging to investigate the dynamics of plant cell death
during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant
Biol 16 : 1–8
Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, De Boer GJ, Haring
MA, Testerink C (2014) Capturing arabidopsis root architecture dynamics
with root-fit reveals diversity in responses to salinity. Plant Physiol166 : 1387–1402
Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester
MA, Keurentjes JJB, Korte A, Haring MA, De Boer GJ, et al (2017)
Genetic components of root architecture remodeling in response to salt
stress. Plant Cell 29 : 3198–3213
Karimi S, Rahemi M, Maftoun M, Eshghi, Tavallali V (2009)
Effects of long-term salinity on growth and performance of two pistachio
(Pistacia L.) rootstocks. Aust J Basic Appl Sci 3 : 1630–1639
Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots
Withstanding their Environment : Exploiting Root System Architecture
Responses to Abiotic Stress to Improve Crop Tolerance. 7 : 1–19
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N,
Baldauf JA, Zeisler-Diehl V V., Hochholdinger F, Ranathunge K, Schreiber
L (2020) Seminal roots of wild and cultivated barley differentially
respond to osmotic stress in gene expression, suberization, and
hydraulic conductivity. Plant Cell Environ 43 : 344–357
Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA,
Zeisler-Diehl V V., Ranathunge K, Hochholdinger F, Schreiber L (2019)
Osmotic stress enhances suberization of apoplastic barriers in barley
seminal roots: analysis of chemical, transcriptomic and physiological
responses. New Phytol 221 : 180–194
Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression
of arabidopsis NHX1 and bar improves the tolerance to salinity,
oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci8 : 1–18
Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for
localized lignin deposition in the endodermis. Cell 153 :
402–412
Lux A, Morita S, Abe J, Ito K (2005) An improved method for
clearing and staining free-hand sections and whole-mount samples. Ann
Bot 96 : 989–996
McCully M (1995) How do real roots work? Some new views of root
structure. Plant Physiol 109 : 1–6
McCully ME (1999) ROOTS IN SOIL: Unearthing the Complexities of
Roots and Their Rhizospheres. Annu Rev Plant Physiol Plant Mol Biol50 : 695–718
Moghaieb REA, Sharaf AN, Soliman MH, El-Arabi NI, Momtaz OA(2014) An efficient and reproducible protocol for the production of salt
tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene.
GM Crops Food 5 : 132–138
Mohammadkhani N, Heidari R, Abbaspour N, Rahmani F (2016)
Salinity effects on expression of some important genes in sensitive and
tolerant grape genotypes. Turkish J Biol 40 : 95–108
Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016)
Tissue tolerance: an essential but elusive trait for salt-tolerant
crops. Funct Plant Biol 43 : 1103–1113
Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic
adjustment and energy limitations to plant growth in saline soil. New
Phytol 225 : 1091–1096
Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N(2012) Casparian strip diffusion barrier in Arabidopsis is made of a
lignin polymer without suberin. Proc Natl Acad Sci U S A 109 :
10101–10106
Oh DH, Barkla BJ, Vera-Estrella R, Pantoja O, Lee SY, Bohnert
HJ, Dassanayake M (2015) Cell type-specific responses to salinity - the
epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.
New Phytol 207 : 627–644
Park M, Lee H, Lee JS, Byun MO, Kim BG (2009) In planta
measurements of Na+ using fluorescent dye CoroNa Green. J Plant Biol52 : 298–302
Picchioni GA, Miyamoto S, Storey JB (1990) Salt Effects on
Growth and Ion Uptake of Pistachio Rootstock Seedlings. J Am Soc Hortic
Sci 115 : 647–653
Pradhan Mitra P, Loqué D (2014) Histochemical staining of
Arabidopsis thaliana secondary cell wall elements. J Vis Exp 1–11
R Core Team (2017) R: A language and environment for
statistical computing. R Foundation for Statistical Computing. Vienna,
Austria, https://www.r-project.org/.
Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity
stress on some growth, physiological, biochemical parameters and
nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant
Interact 13 : 73–82
Ramirez-Flores MR, Rellan-Alvarez R, Wozniak B, Gebreselassie
MN, Jakobsen I, Olalde-Portugal V, Baxter I, Paszkowski U, Sawers RJH(2017) Co-ordinated changes in the accumulation of metal ions in maize
(Zea mays ssp. mays L.) in response to inoculation with the arbuscular
mycorrhizal fungus funneliformis mosseae. Plant Cell Physiol58 : 1689–1699
Ranathunge K, Schreiber L, Franke R (2011) Suberin research in
the genomics era-New interest for an old polymer. Plant Sci180 : 399–413
Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S(2012) Phenotypic plasticity and water flux rates of Citrus root orders
under salinity. J Exp Bot 63 : 2717–2727
Rosquete MR, Worden N, Ren G, Sinclair RM, Pfleger S, Salemi M,
Phinney BS, Domozych D, Wilkop T, Drakakaki G (2019) AtTRAPPC11/ROG2: A
role for TRAPPs in maintenance of the plant trans-golgi network/early
endosome organization and function. Plant Cell 31 : 1879–1898
Rost TL (2011) The organization of roots of dicotyledonous
plants and the positions of control points. Ann Bot 107 :
1213–1222
Rui Y, Dinneny JR (2020) A wall with integrity: surveillance
and maintenance of the plant cell wall under stress. New Phytol225 : 1428–1439
Ruiz M, Quiñones A, Martínez-Cuenca MR, Aleza P, Morillon R,
Navarro L, Primo-Millo E, Martínez-Alcántara B (2016) Tetraploidy
enhances the ability to exclude chloride from leaves in carrizo citrange
seedlings. J Plant Physiol 205 : 1–10
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to
ImageJ: 25 years of image analysis. Nat Methods 9 : 671–675
Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R,
Schreiber L, Prat S, Molinas M, Figueras M (2009) CYP86A33-targeted
gene silencing in potato tuber alters suberin composition, distorts
suberin lamellae, and impairs the periderm’s water barrier function.
Plant Physiol 149 : 1050–1060
Shen J, Xu G, Zheng HQ (2015) Apoplastic barrier development
and water transport in Zea mays seedling roots under salt and osmotic
stresses. Protoplasma 252 : 173–180
Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma
membrane NA+/H+ antiporter SOS1 controls long-distance NA+ transport in
plants. Plant Cell 14 : 465–477
Storey R, Walker RR (1998) Citrus and salinity. Sci Hortic
(Amsterdam) 78 : 39–81
Tataranni G, Santarcangelo M, Sofo A, Xiloyannis C, Tyerman SD,
Dichio B (2015) Correlations between morpho-anatomical changes and
radial hydraulic conductivity in roots of olive trees under water
deficit and rewatering. Tree Physiol 35 : 1356–1365
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in
higher plants. Ann Bot 91 : 503–527
Tyerman SD, Munns R, Fricke W, Arsova B, Barkla BJ, Bose J,
Bramley H, Byrt C, Chen Z, Colmer TD, et al (2019) Energy costs of
salinity tolerance in crop plants. New Phytol 221 : 25–29
Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP (2019)
OsTPS8 controls yield-related traits and confers salt stress tolerance
in rice by enhancing suberin deposition. New Phytol 221 :
1369–1386
Wachsman G, Sparks E, Benfey PN (2015) Genes and networks
regulating root anatomy and architecture Tansley review Genes and
networks regulating root anatomy and architecture. 26–38
Walker RR, Torokfalvy E, Behboudian MH (1987) Uptake and
distribution of chloride, sodium and potassium ions and growth of
salt-treated pistachio plants. Aust J Agric Res 38 : 383–394
Wang P, Wang CM, Gao L, Cui YN, Yang HL, de Silva NDG, Ma Q, Bao
AK, Flowers TJ, Rowland O, et al (2020) Aliphatic suberin confers salt
tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water
backflow. Plant Soil 448 : 603–620
Wu H, Shabala L, Liu X, Azzarello E, Zhou M, Pandolfi C, Chen
ZH, Bose J, Mancuso S, Shabala S (2015) Linking salinity stress
tolerance with tissue-specific Na+ sequestration in wheat roots. Front
Plant Sci 6 : 1–13
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S,
Azzarello E, Shabala S (2019) Root vacuolar Na+ sequestration but not
exclusion from uptake correlates with barley salt tolerance. Plant J100 : 55–67
Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK,
Gong Z (2009) Overexpression of SOS (salt overly sensitive) genes
increases salt tolerance in transgenic Arabidopsis. Mol Plant2 : 22–31
Yang Y, Guo Y (2018) Elucidating the molecular mechanisms
mediating plant salt-stress responses. New Phytol 217 : 523–539
Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ(1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline
conditions and this is accounted for by a reduction in the
transpirational bypass flow. Plant, Cell Environ 22 : 559–565
van Zelm E, Zhang Y, Testerink C (2020) Salt Tolerance
Mechanisms of Plants. Annu Rev Plant Biol 71 : 403–433
Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L,
Xu G (2018) Two NHX-type transporters from Helianthus tuberosus improve
the tolerance of rice to salinity and nutrient deficiency stress. Plant
Biotechnol J 16 : 310–321
Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato
plants accumulate salt in foliage but not in fruit. Nat Biotechnol19 : 765–768
Zhang J, Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Wang D,
Gan Y (2019) Improving salt tolerance in potato through overexpression
of AtHKT1 gene. BMC Plant Biol 19 : 1–15
Zohary D, Spiegl-Roy P (1975) Beginning of fruit growing in the
old world. Science (80- ) 187 : 319–327