REFERENCES
Ahmad P, Prasad M (2012) Abiotic stress responses in plants. Abiotic Stress New Res. doi: 10.1007/978-1-4614-0634-1
Ahmad R, Anjum MA (2020) Physiological and molecular basis of salinity tolerance in fruit crops. Fruit Crop. doi: 10.1016/b978-0-12-818732-6.00032-0
Ahmad R, Ferguson L, Southwick SM (2005) Molecular marker analyses of pistachio rootstocks by Simple Sequence Repeats and Sequence-Related Amplified Polymorphisms. J Hortic Sci Biotechnol80 : 382–386
Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S (2018) Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma255 : 1349–1362
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature575 : 109–118
Barberon M (2017) The endodermis as a checkpoint for nutrients. New Phytol 213 : 1604–1610
Bassil E, Zhang S, Gong H, Tajima H, Blumwald E (2019) Cation specificity of vacuolar NHX-type cation/H + Antiporters 1[OPEN]. Plant Physiol 179 : 616–629
Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89 : 908–920
Bernstein N, Meiri A, Zilberstaine M (2004) Root Growth of Avocado is More Sensitive to Salinity than Shoot Growth. J Am Soc Hortic Sci 129 : 188–192
Bojórquez-Quintal E, Velarde-Buendía A, Ku-González Á, Carillo-Pech M, Ortega-Camacho D, Echevarría-Machado I, Pottosin I, Martínez-Estévez M (2014) Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Front Plant Sci 5 : 1–14
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Sci269 : 47–55
Cajero-Sanchez W, Aceves-Garcia P, Fernández-Marcos M, Gutiérrez C, Rosas U, García-Ponce B, Álvarez-Buylla ER, Sánchez M de la P, Garay-Arroyo A (2019) Natural root cellular variation in responses to osmotic stress in arabidopsis thaliana accessions. Genes (Basel)10 : 1–23
Chen M, Yang Z, Liu J, Zhu T, Wei X, Fan H, Wang B (2018) Adaptation mechanism of salt excluders under saline conditions and its applications. Int J Mol Sci. doi: 10.3390/ijms19113668
Chen T, Cai X, Wu X, Karahara I, Schreiber L, Lin J (2011) Casparian strip development and its potential function in salt tolerance. Plant Signal Behav 6 : 1499–1502
Dinneny JR (2019) Developmental Responses to Water and Salinity in Root Systems. Annu Rev Cell Dev Biol 35 : 239–257
Doblas VG, Geldner N, Barberon M (2017) The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol39 : 136–143
Enstone DE, Peterson CA, Ma F (2003) Root Endodermis and Exodermis : Structure , Function , and Responses to the Environment. 335–351
Ferguson L, Poss JA, Grattan SR, Grieve CM, Wang D, Wilson C, Donovan TJ, Chao C-T (2002) Pistachio Rootstocks Influence Scion Growth and Ion Relations under Salinity and Boron Stress. J Am Soc Hortic Sci127 : 194–199
Godfrey JM, Ferguson L, Sanden B, Tixier A, Sperling O, Grattan SR, Zwieniecki MA (2019) Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops. Tree Physiol 1–15
Gonzalez P, Syvertsen JP, Etxeberria E (2012) Sodium distribution in salt-stressed citrus rootstock seedlings. HortScience47 : 1504–1511
Guo Q, Tian XX, Mao PC, Meng L (2020) Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco. Biol Plant 64 : 50–57
Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int J Genomics. doi: 10.1155/2014/701596
Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR, Edwards EJ, Gilliham M, Walker AR (2018) Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks. New Phytol 217 : 1113–1127
Holtz B, Ferguson L, Parfitt D, Allen G, Radoicich R (2005) Rootstock production and budding. Pist Prod Man 74–79
Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: Roles in plant nutrition and signalling. FEBS Lett584 : 1982–1988
Jamshidi Goharrizi K, Amirmahani F, Salehi F (2020) Assessment of changes in physiological and biochemical traits in four pistachio rootstocks under drought, salinity and drought + salinity stresses. Physiol Plant 168 : 973–989
Jazi MM, Khorzoghi EG, Botanga C, Seyedi SM (2016) Identification of Reference Genes for Quantitative Gene Expression Studies in a Non-Model Tree Pistachio (Pistacia vera L.). PLoS One11 : 1–16
Ji H, Liu L, Li K, Xie Q, Wang Z, Zhao X, Li X (2014) PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. J Exp Bot65 : 4863–4872
Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X(2013) The salt overly sensitive (SOS) pathway: Established and emerging roles. Mol Plant 6 : 275–286
Jones K, Kim DW, Park JS, Khang CH (2016) Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol 16 : 1–8
Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, De Boer GJ, Haring MA, Testerink C (2014) Capturing arabidopsis root architecture dynamics with root-fit reveals diversity in responses to salinity. Plant Physiol166 : 1387–1402
Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes JJB, Korte A, Haring MA, De Boer GJ, et al (2017) Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29 : 3198–3213
Karimi S, Rahemi M, Maftoun M, Eshghi, Tavallali V (2009) Effects of long-term salinity on growth and performance of two pistachio (Pistacia L.) rootstocks. Aust J Basic Appl Sci 3 : 1630–1639
Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots Withstanding their Environment : Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. 7 : 1–19
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl V V., Hochholdinger F, Ranathunge K, Schreiber L (2020) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ 43 : 344–357
Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl V V., Ranathunge K, Hochholdinger F, Schreiber L (2019) Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221 : 180–194
Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci8 : 1–18
Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153 : 402–412
Lux A, Morita S, Abe J, Ito K (2005) An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot 96 : 989–996
McCully M (1995) How do real roots work? Some new views of root structure. Plant Physiol 109 : 1–6
McCully ME (1999) ROOTS IN SOIL: Unearthing the Complexities of Roots and Their Rhizospheres. Annu Rev Plant Physiol Plant Mol Biol50 : 695–718
Moghaieb REA, Sharaf AN, Soliman MH, El-Arabi NI, Momtaz OA(2014) An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. GM Crops Food 5 : 132–138
Mohammadkhani N, Heidari R, Abbaspour N, Rahmani F (2016) Salinity effects on expression of some important genes in sensitive and tolerant grape genotypes. Turkish J Biol 40 : 95–108
Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016) Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Funct Plant Biol 43 : 1103–1113
Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225 : 1091–1096
Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N(2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci U S A 109 : 10101–10106
Oh DH, Barkla BJ, Vera-Estrella R, Pantoja O, Lee SY, Bohnert HJ, Dassanayake M (2015) Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phytol 207 : 627–644
Park M, Lee H, Lee JS, Byun MO, Kim BG (2009) In planta measurements of Na+ using fluorescent dye CoroNa Green. J Plant Biol52 : 298–302
Picchioni GA, Miyamoto S, Storey JB (1990) Salt Effects on Growth and Ion Uptake of Pistachio Rootstock Seedlings. J Am Soc Hortic Sci 115 : 647–653
Pradhan Mitra P, Loqué D (2014) Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp 1–11
R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, https://www.r-project.org/.
Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13 : 73–82
Ramirez-Flores MR, Rellan-Alvarez R, Wozniak B, Gebreselassie MN, Jakobsen I, Olalde-Portugal V, Baxter I, Paszkowski U, Sawers RJH(2017) Co-ordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus funneliformis mosseae. Plant Cell Physiol58 : 1689–1699
Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era-New interest for an old polymer. Plant Sci180 : 399–413
Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S(2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot 63 : 2717–2727
Rosquete MR, Worden N, Ren G, Sinclair RM, Pfleger S, Salemi M, Phinney BS, Domozych D, Wilkop T, Drakakaki G (2019) AtTRAPPC11/ROG2: A role for TRAPPs in maintenance of the plant trans-golgi network/early endosome organization and function. Plant Cell 31 : 1879–1898
Rost TL (2011) The organization of roots of dicotyledonous plants and the positions of control points. Ann Bot 107 : 1213–1222
Rui Y, Dinneny JR (2020) A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol225 : 1428–1439
Ruiz M, Quiñones A, Martínez-Cuenca MR, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Alcántara B (2016) Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. J Plant Physiol 205 : 1–10
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9 : 671–675
Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149 : 1050–1060
Shen J, Xu G, Zheng HQ (2015) Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses. Protoplasma 252 : 173–180
Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane NA+/H+ antiporter SOS1 controls long-distance NA+ transport in plants. Plant Cell 14 : 465–477
Storey R, Walker RR (1998) Citrus and salinity. Sci Hortic (Amsterdam) 78 : 39–81
Tataranni G, Santarcangelo M, Sofo A, Xiloyannis C, Tyerman SD, Dichio B (2015) Correlations between morpho-anatomical changes and radial hydraulic conductivity in roots of olive trees under water deficit and rewatering. Tree Physiol 35 : 1356–1365
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91 : 503–527
Tyerman SD, Munns R, Fricke W, Arsova B, Barkla BJ, Bose J, Bramley H, Byrt C, Chen Z, Colmer TD, et al (2019) Energy costs of salinity tolerance in crop plants. New Phytol 221 : 25–29
Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP (2019) OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytol 221 : 1369–1386
Wachsman G, Sparks E, Benfey PN (2015) Genes and networks regulating root anatomy and architecture Tansley review Genes and networks regulating root anatomy and architecture. 26–38
Walker RR, Torokfalvy E, Behboudian MH (1987) Uptake and distribution of chloride, sodium and potassium ions and growth of salt-treated pistachio plants. Aust J Agric Res 38 : 383–394
Wang P, Wang CM, Gao L, Cui YN, Yang HL, de Silva NDG, Ma Q, Bao AK, Flowers TJ, Rowland O, et al (2020) Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow. Plant Soil 448 : 603–620
Wu H, Shabala L, Liu X, Azzarello E, Zhou M, Pandolfi C, Chen ZH, Bose J, Mancuso S, Shabala S (2015) Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Front Plant Sci 6 : 1–13
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S (2019) Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant J100 : 55–67
Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant2 : 22–31
Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217 : 523–539
Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ(1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell Environ 22 : 559–565
van Zelm E, Zhang Y, Testerink C (2020) Salt Tolerance Mechanisms of Plants. Annu Rev Plant Biol 71 : 403–433
Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G (2018) Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnol J 16 : 310–321
Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol19 : 765–768
Zhang J, Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Wang D, Gan Y (2019) Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol 19 : 1–15
Zohary D, Spiegl-Roy P (1975) Beginning of fruit growing in the old world. Science (80- ) 187 : 319–327