References
1. Conforti KM, Bazant MZ. Continuous ion‐selective separations by shock electrodialysis. AIChE J. 2019.
2. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017; 356(6343).
3. Yang L, Tang C, Ahmad M, Yaroshchuk A, Bruening ML. High selectivities among monovalent cations in dialysis through cation-exchange membranes coated with polyelectrolyte multilayers.ACS Appl. Mater. Interfaces. 2018; 10(50): 44134-44143.
4. Abdu S, Martí-Calatayud M-Cs, Wong JE, García-Gabaldón M, Wessling M. Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting. ACS Appl. Mater. Interfaces. 2014; 6(3): 1843-1854.
5. Liu T-Y, Yuan H-G, Li Q, et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity. ACS Nano. 2015; 9(7): 7488-7496.
6. Gao S, Zhu Y, Gong Y, Wang Z, Fang W, Jin J. Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano. 2019; 13: 5278-5290.
7. Kumar M, Tripathi BP, Shahi VK. Ionic transport phenomenon across sol-gel derived organic-inorganic composite mono-valent cation selective membranes. J. Membr. Sci. 2009; 340(1-2): 52-61.
8. Mahajan CV, Ganesan V. Influence of hydrogen bonding effects on methanol and water diffusivities in acid-base polymer blend membranes of sulfonated poly (ether ether ketone) and base tethered polysulfone.J. Phys. Chem. B. 2013; 117(17): 5315-5329.
9. Ge L, Wu L, Wu B, Wang G, Xu T. Preparation of monovalent cation selective membranes through annealing treatment. J. Membr. Sci. 2014; 459: 217-222.
10. Yang Y, Dementyev P, Biere N, et al. Rapid water permeation through carbon nanomembranes with sub-nanometer channels. ACS Nano. 2018; 12(5): 4695-4701.
11. Edri E, Aloni S, Frei H. Fabrication of core-shell nanotube array for artificial photosynthesis featuring an ultrathin composite separation membrane. ACS Nano. 2018; 12(1): 533-541.
12. Sadeghi I, Kronenberg J, Asatekin A. Selective transport through membranes with charged nanochannels formed by scalable self-assembly of random copolymer micelles. ACS Nano. 2017; 12(1): 95-108.
13. Li J-R, Sculley J, Zhou H-C. Metal-organic frameworks for separations. Chem. Rev. 2011; 112(2): 869-932.
14. Hua W, Zhang T, Wang M, Zhu Y, Wang X, Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium (III) and Europium (III) ions and their photoluminescence performances, Chem. Eng. J. 2019; 370: 729-741.
15.Hu Z, Wang Y, Farooq S, Zhao D. A highly stable metal‐organic framework with optimum aperture size for CO2 capture. AIChE J. 2017; 63(9): 4103-4114.
16. Hou J, Hong X, Zhou S, et al. Solvent‐free route for metal-organic framework membranes growth aiming for efficient gas separation. AIChE J. 2019; 65(2): 712-722.
17. Barankova E, Tan X, Villalobos LF, Litwiller E, Peinemann KV. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angew. Chem. Int. Ed. 2017; 56(11): 2965-2968.
18. Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 2014; 43(16): 6116-6140.
19. Denny Jr MS, Moreton JC, Benz L, Cohen SM. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 2016; 1(12): 16078.
20. Kwon HT, Jeong H-K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 2013; 135(29): 10763-10768.
21. Shamsaei E, Lin X, Low Z-X, et al. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces. 2016; 8(9): 6236-6244.
22. Xu T, Shehzad MA, Yu D, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology.ChemSusChem. 2019; 12(12): 2593-2597.
23. Katayama Y, Bentz KC, Cohen SM. Defect-free MOF-based mixed matrix membranes obtained by corona crosslinking. ACS Appl. Mater. Interfaces. 2019; 11: 13029-13037.
24. Liu T-Y, Yuan H-G, Liu Y-Y, Ren D, Su Y-C, Wang X. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano. 2018; 12(9): 9253-9265.
25. Zhang R, Ji S, Wang N, Wang L, Zhang G, Li JR. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. Angew. Chem. Int. Ed. 2014; 53(37): 9775-9779.
26. Zhao C, Wang N, Wang L, et al. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery.AIChE J. 2016; 62(10): 3706-3716.
27. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.Chem. Rev. 2011; 112(2): 933-969.
28. Shehzad MA, Wang Y, Yasmin A, et al. Biomimetic nanocones enable high ion permselectivity. Angew. Chem. Int. Ed. 2019; 58(36): 12776-12784.
29. Guo Y, Ying Y, Mao Y, Peng X, Chen B. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 2016; 55(48): 15120-15124.
30. Kuwahara Y, Kango H, Yamashita H. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain. Chem. Eng. 2016; 5(1): 1141-1152.
31. Sun D, Liu W, Qiu M, Zhang Y, Li Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem. Commun.2015; 51(11): 2056-2059.
32. Zhang W, Wang S, Ji J, et al. Primary and tertiary amines bifunctional graphene oxide for cooperative catalysis. Nanoscale.2013; 5(13): 6030-6033.
33. Yu X, Wang Z, Wei Z, et al. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. J. Membr. Sci. 2010; 362(1-2): 265-278.
34. Kalaj M, Denny Jr MS, Bentz KC, Palomba JM, Cohen SM. Nylon-MOF composites through postsynthetic polymerization. Angew. Chem. Int. Ed. 2019; 58(8): 2336-2340.
35. Firouzjaei MD, Shamsabadi AA, Aktij SA, et al. Exploiting synergetic effects of graphene oxide and a silver-based metal-organic framework to enhance antifouling and anti-biofouling properties of thin-film nanocomposite membranes. ACS Appl. Mater. Interfaces.2018; 10(49): 42967-42978.
36. Navarro M, Benito J, Paseta L, Gascón I, Coronas Jn, Téllez C. Thin-film nanocomposite membrane with the minimum amount of MOF by the langmuir-schaefer technique for nanofiltration. ACS Appl. Mater. Interfaces. 2017; 10(1): 1278-1287.
37. Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes.Nat. Rev. Mater. 2016; 1(5): 16018.
38. Jhaveri JH, Murthy Z. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination. 2016; 379: 137-154.
39. Fei B, Chen C, Peng S, Zhao X, Wang X, Dong L. FTIR study of poly (propylene carbonate)/bisphenol A blends. Polym. Int.2004; 53(12): 2092-2098.
40. Zhu X, Gu J, Wang Y, et al. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem. Commun. 2014; 50(63): 8779-8782.
41. Shehzad MA, Liang X, Yasmin A, et al. Angioplasty mimetic stented ion transport channels construct durable high-performance membranes. J. Mater. Chem. A. 2019; 7(16): 10030-10040.