6. Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors would like to thank Professor Himanshu Mishra from King Abdullah University of Science and Technology (KAUST), for the possibility of the NMR analysis.

7. References

Abigor, R.D., Uadia, P.O., Foglia, T.A., Haas, M.J., Scott, K., Savary, B.J., 2002. Partial purification and properties of lipase from germinating seeds of jatropha curcas L. JAOCS, J. Am. Oil Chem. Soc. 79, 1123–1126.
Al-Zuhair, S., Hasan, M., Ramachandran, K.B., 2003. Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem. 38, 1155–1163. https://doi.org/10.1016/S0032-9592(02)00279-0
Almeida, L., Corazza, M.L., Sassaki, G.L., Voll, F.A.P., 2017. Experimental study and kinetic modeling of waste frying soybean oil hydrolysis in subcritical water. React. Kinet. Mech. Catal. https://doi.org/10.1007/s11144-017-1175-1
AOCS, 1996. Official Methods and Recommended Practices of the American Oil Chemists’ Society, (Ca 5a-40). Am. Oil Chem. Soc. Champaign, IL. 4th Ed.
Avelar, M.H.M., Cassimiro, D.M.J., Santos, K.C., Domingues, R.C.C., De Castro, H.F., Mendes, A.A., 2013. Hydrolysis of vegetable oils catalyzed by lipase extract powder from dormant castor bean seeds. Ind. Crops Prod. 44, 452–458. https://doi.org/10.1016/j.indcrop.2012.10.011
Awadallak, J.A., Reinehr, T.O., Molinari, D., Raizer, E., Cardozo‐Filho, L., da Silva, E.A., da Silva, C., 2016. The effect of ultrasound on the hydrolysis of soybean oil catalyzed by phospholipase. Eur. J. Lipid Sci. Technol. https://doi.org/10.1002/ejlt.201600154
Barnebey, H.L., Brown, A.C., 1948. Continuous fat splitting plants using the colgate-emery process. J. Am. Oil Chem. Soc. 25, 95–99. https://doi.org/10.1007/BF02579733
Barton, S., Bullock, C., Weir, D., 1996. The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance. Enzyme Microb. Technol. https://doi.org/10.1016/0141-0229(95)00092-5
Bressani, A.P.P., Garcia, K.C.A., Hirata, D.B., Mendes, A.A., 2014. Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: Optimization by response surface methodology. Bioprocess Biosyst. Eng. 38, 287–297. https://doi.org/10.1007/s00449-014-1267-5
Campillo-Alvarado, G., Tovar-Miranda, R., 2013. Recent advances and applications of the lipolytic activity of Carica papaya latex. J. Mol. Catal. B Enzym. https://doi.org/10.1016/j.molcatb.2013.01.015
Cavalcanti-Oliveira, E. d’Avila, da Silva, P.R., Ramos, A.P., Aranda, D.A.G., Freire, D.M.G., 2010. Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification. Enzyme Res. 2011, 618692. https://doi.org/10.4061/2011/618692
Cavalcanti, E.D.C., Maciel, F.M., Villeneuve, P., Lago, R.C.A., Machado, O.L.T., Freire, D.M.G., 2007. Acetone powder from dormant seeds of Ricinus communis L: Lipase activity and presence of toxic and allergenic compounds, in: Applied Biochemistry and Biotechnology. pp. 57–65. https://doi.org/10.1007/s12010-007-9039-1
Chiplunkar, P.P., Zhao, X., Tomke, P.D., Noro, J., Xu, B., Wang, Q., Silva, C., Pratap, A.P., Cavaco-Paulo, A., 2018. Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2017.08.004
Coelho, A.D., Santos, K.C., Domingues, R.C.C., Mendes, A.A., 2013. Produção de concentrados de ácidos graxos por hidrólise de óleos vegetais mediada por lipase vegetal. Quim. Nova 36, 1164–1169. https://doi.org/10.1590/S0100-40422013000800015
Corradini, F.A.S., Alves, E.S., Kopp, W., Ribeiro, M.P.A., Mendes, A.A., Tardioli, P.W., Giordano, R.C., Giordano, R.L.C., 2019. Kinetic study of soybean oil hydrolysis catalyzed by lipase from solid castor bean seeds. Chem. Eng. Res. Des. https://doi.org/10.1016/j.cherd.2019.02.008
Da Silva, E.C., Mendes, P.R., Brito, Y.C., Meneghetti, M.R., Meneghetti, S.M.P., 2016. Hydrolysis of triacylglyceridesin the presence of tin(IV) catalysts. Catal. Commun. 78, 7–10. https://doi.org/10.1016/j.catcom.2016.01.032
De Freitas, V.O., Matte, C.R., Poppe, J.K., Rodrigues, R.C., Ayub, M.A.Z., 2019. Ultrasound-assisted transesterification of soybean oil using combi-lipase biocatalysts. Brazilian J. Chem. Eng. https://doi.org/10.1590/0104-6632.20190362s20180455
de Sousa, J.S., Cavalcanti-Oliveira, E. d A., Aranda, D.A.G., Freire, D.M.G., 2010. Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. J. Mol. Catal. B Enzym. 65, 133–137. https://doi.org/10.1016/j.molcatb.2010.01.003
Devaraj, K., Aathika, S., Mani, Y., Thanarasu, A., Periyasamy, K., Periyaraman, P., Velayutham, K., Subramanian, S., 2018. Experimental investigation on cleaner process of enhanced fat-oil extraction from alkaline leather fleshing waste. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.11.089
dos Santos, L.K., Hatanaka, R.R., de Oliveira, J.E., Flumignan, D.L., 2019. Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water. Renew. Energy 633–640. https://doi.org/https://doi.org/10.1016/j.renene.2018.06.102
Du, W., Li, W., Sun, T., Chen, X., Liu, D., 2008. Perspectives for biotechnological production of biodiesel and impacts. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-008-1448-8
Eastmond, P.J., 2004. Cloning and characterization of the acid lipase from Castor beans. J. Biol. Chem. 279, 45540–45545. https://doi.org/10.1074/jbc.M408686200
El-Hefnawy, M.E., Sakran, M., 2014. Characteristics of lipase in dormant seeds catalysed hydrolysis of olive oil in SDS-olive oil reversed microemulsions. Can. J. Chem. Eng. 92, 1335–1339. https://doi.org/10.1002/cjce.21990
Feiten, M.C., Dalla Rosa, C., Treichel, H., Furigo, A., Zenevicz, M.C., de Oliveira, D., Vladimir Oliveira, J., 2014. Batch and fed-batch enzymatic hydrolysis of soybean oil under ultrasound irradiation. Biocatal. Agric. Biotechnol. 3, 83–85. https://doi.org/10.1016/j.bcab.2013.12.003
Ferreira-Dias, S., da Fonseca, M.M.R., 1995. The effect of substrate hydrophobicity on the kinetic behaviour of immobilized Candida rugosa lipase. Biocatal. Biotransformation 13, 99–110. https://doi.org/10.3109/10242429509015216
Froment, M.T., Lockridge, O., Masson, P., 1998. Resistance of butyrylcholinesterase to inactivation by ultrasound: Effects of ultrasound on catalytic activity and subunit association. Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1387, 53–64. https://doi.org/10.1016/S0167-4838(98)00105-8
Fuchs, C., Vine, N., Hills, M.J., 1996. Purification and characterization of the acid lipase from the endosperm of castor oil seeds. J. Plant Physiol. 149, 23–29. https://doi.org/10.1016/S0176-1617(96)80168-4
Goñi, M.L., Pacheco, C., Constenla, D.T., Carelli, A.A., 2018. Solvent-free enzymatic hydrolysis of non-polar lipids in crude sunflower lecithin using phospholipase A1 (Lecitase® Ultra). Biocatal. Biotransformation. https://doi.org/10.1080/10242422.2017.1376662
Han, B., Jiang, J., Zhang, W., Yin, F., Liu, S., Zhao, X., Liu, J., Wang, C., Yang, H., 2019. Hydrolysis of rapeseed oil to fatty acids using pyrrolidonium ionic liquids as catalysts. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2019.1568627
Hills, M.J., Murphy, D.J., 1988. Characterization of lipases from the lipid bodies and microsomal membranes of erucic acid-free oilseed-rape (Brassica napus) cotyledons. Biochem. J. 249, 687–693.
Ho, W.W.S., Ng, H.K., Gan, S., 2016. Advances in ultrasound-assisted transesterification for biodiesel production. Appl. Therm. Eng. https://doi.org/10.1016/j.applthermaleng.2016.02.058
Ilham, Z., Saka, S., 2010. Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2009.10.053
Lazzeri, L., Leoni, O., Conte, L.S., Palmieri, S., 1994. Some technological characteristics and potential uses of Crambe abyssinica products. Ind. Crops Prod. 3, 103–112. https://doi.org/10.1016/0926-6690(94)90083-3
Leong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M., 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 16, 721–727. https://doi.org/10.1016/j.ultsonch.2009.02.008
Lerin, L.A., Loss, R.A., Remonatto, D., Zenevicz, M.C., Balen, M., Netto, V.O., Ninow, J.L., Trentin, C.M., Oliveira, J.V., de Oliveira, D., 2014. A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst. Eng. 2381–2394. https://doi.org/10.1007/s00449-014-1222-5
Martínez, A., Mijangos, G.E., Romero-Ibarra, I.C., Hernández-Altamirano, R., Mena-Cervantes, V.Y., Gutiérrez, S., 2018. A novel green one-pot synthesis of biodiesel from Ricinus communis seeds by basic heterogeneous catalysis. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2018.05.241
Meneguelli de Souza, L.C., Carvalho, L.P. d., Araújo, J.S., Melo, E.J.T. d., Machado, O.L.T., 2018. Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.03.024
Muto, S., Beevers, H., 1974. Lipase Activities in Castor Bean Endosperm during Germination. Plant Physiol. 54, 23–28. https://doi.org/10.1104/pp.54.1.23
Nelder, J.A., Mead, R., 1964. A simplex method for function minimization. Comput. J. 7, 308–313. https://doi.org/10.1093/comjnl/7.4.308
Nguyen, H.C., Lee, H.Y., Su, C.H., Shih, W.J., Chien, C.C., 2020. Green process for fatty acid production from soybean oil through microwave-mediated autocatalytic synthesis. Chem. Eng. Process. - Process Intensif. https://doi.org/10.1016/j.cep.2019.107782
Noor, I.M., Hasan, M., Ramachandran, K.B., 2003. Effect of operating variables on the hydrolysis rate of palm oil by lipase. Process Biochem. 39, 13–20. https://doi.org/10.1016/S0032-9592(02)00263-7
Ong, L.K., Tran Nguyen, P.L., Soetaredjo, F.E., Ismadji, S., Ju, Y.-H., 2016. Direct reuse of Cu-laden wastewater for non-edible oil hydrolysis: Basic mechanism of metal extraction and fatty acid production. RSC Adv. 6. https://doi.org/10.1039/c5ra23153a
Özbek, B., Ülgen, K.O., 2000. The stability of enzymes after sonication. Process Biochem. 35, 1037–1043. https://doi.org/10.1016/S0032-9592(00)00141-2
Polachini, T.C., Mulet, A., Telis-Romero, J., Cárcel, J.A., 2019. Influence of high-intensity ultrasound application on the kinetics of sugar release from acid suspensions of artichoke (Cynara scolymus) biomass. Chem. Eng. Process. - Process Intensif. https://doi.org/10.1016/j.cep.2019.107681
Posorske, L.H., 1984. Industrial-scale application of enzymes to the fats and oil industry. J. Am. Oil Chem. Soc. 61, 1758–1760. https://doi.org/10.1007/BF02582143
Pourzolfaghar, H., Abnisa, F., Daud, W.M.A.W., Aroua, M.K., 2016. A review of the enzymatic hydroesterification process for biodiesel production. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.03.048
Romero, M.D., Calvo, L., Alba, C., Daneshfar, A., 2007. A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane. J. Biotechnol. 127, 269–277. https://doi.org/10.1016/j.jbiotec.2006.07.009
Rooney, D., Weatherley, L.R., 2001. The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid-liquid reactor. Process Biochem. 36, 947–953. https://doi.org/10.1016/S0032-9592(01)00130-3
Rosenbrock, H.H., 1963. Some general implicit processes for the numerical solution of differential equations. Comput. J. 5, 329–330.
Salaberría, F., Palla, C., Carrín, M.E., 2017. Hydrolytic Activity of Castor Bean Powder: Effect of Gum Arabic, Lipase and Oil Concentrations. JAOCS, J. Am. Oil Chem. Soc. 94, 741–745. https://doi.org/10.1007/s11746-017-2976-0
Santos, K.C., Cassimiro, D.M.J., Avelar, M.H.M., Hirata, D.B., de Castro, H.F., Fernández-Lafuente, R., Mendes, A.A., 2013. Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind. Crops Prod. 49, 462–470. https://doi.org/10.1016/j.indcrop.2013.05.035
Talukder, M.M.R., Zaman, M.M., Hayashi, Y., Wu, J.C., Kawanishi, T., 2006. Ultrasonication enhanced hydrolytic activity of lipase in water/isooctane two-phase systems. Biocatal. Biotransformation 24, 189–194. https://doi.org/10.1080/10242420500132326
Tavares, F., Petry, J., Sackser, P.R., Borba, C.E., Silva, E.A., 2018a. Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Ind. Crops Prod. 124, 254–264. https://doi.org/10.1016/j.indcrop.2018.06.073
TAVARES, F., SACKSER, P., PINZAN, F., BORBA, C.E., SILVA, E.A., 2015. HIDRÓLISE DO ÓLEO DE CRAMBE EMPREGANDO LIPASE VEGETAL EXTRAÍDA DE SEMENTES DE DIFERENTES OLEAGINOSAS. https://doi.org/10.5151/chemeng-cobeqic2015-112-32299-245530
Tavares, F., Silva, E.A. Da, Pinzan, F., Canevesi, R.S., Milinsk, M.C., Scheufele, F.B., Borba, C.E., 2018b. Hydrolysis of crambe oil by enzymatic catalysis: An evaluation of the operational conditions. Biocatal. Biotransformation 1–14. https://doi.org/10.1080/10242422.2018.1430786
Tully, R.E., Beevers, H., 1976. Protein bodies of castor bean endosperm: isolation, fractionation, and the characterization of protein components. Plant Physiol. 58, 710–6. https://doi.org/10.1104/pp.58.6.710
Vercet, A., Burgos, J., Crelier, S., Lopez-Buesa, P., 2001. Inactivation of proteases and lipases by ultrasound. Innov. Food Sci. Emerg. Technol. 2, 139–150. https://doi.org/10.1016/S1466-8564(00)00037-0
Villeneuve, P., 2003. Plant lipases and their applications in oils and fats modification. Eur. J. Lipid Sci. Technol. https://doi.org/10.1002/ejlt.200390061
Wang, J., Wang, S., Li, Z., Gu, S., Wu, X., Wu, F., 2015. Ultrasound irradiation accelerates the lipase-catalyzed synthesis of methyl caffeate in an ionic liquid. J. Mol. Catal. B Enzym. 111, 21–28. https://doi.org/10.1016/j.molcatb.2014.11.006
Wazilewski, W.T., Bariccatti, R.A., Martins, G.I., Secco, D., Souza, S.N.M. de, Rosa, H.A., Chaves, L.I., 2013. Study of the methyl crambe (Crambe abyssinica Hochst) and soybean biodiesel oxidative stability. Ind. Crops Prod. 43, 207–212. https://doi.org/10.1016/j.indcrop.2012.07.046
Xiao, H., Li, Y., Wang, H., 2017. A stochastic kinetic study of preparing fatty acid from rapeseed oil via subcritical hydrolysis. Appl. Energy. https://doi.org/10.1016/j.apenergy.2017.05.013