6. Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The
authors would like to thank Professor Himanshu Mishra from King Abdullah
University of Science and Technology (KAUST), for the possibility of the
NMR analysis.
7. References
Abigor, R.D., Uadia, P.O., Foglia, T.A., Haas, M.J., Scott, K., Savary,
B.J., 2002. Partial purification and properties of lipase from
germinating seeds of jatropha curcas L. JAOCS, J. Am. Oil Chem. Soc. 79,
1123–1126.
Al-Zuhair, S., Hasan, M., Ramachandran, K.B., 2003. Kinetics of the
enzymatic hydrolysis of palm oil by lipase. Process Biochem. 38,
1155–1163. https://doi.org/10.1016/S0032-9592(02)00279-0
Almeida, L., Corazza, M.L., Sassaki, G.L., Voll, F.A.P., 2017.
Experimental study and kinetic modeling of waste frying soybean oil
hydrolysis in subcritical water. React. Kinet. Mech. Catal.
https://doi.org/10.1007/s11144-017-1175-1
AOCS, 1996. Official Methods and Recommended Practices of the American
Oil Chemists’ Society, (Ca 5a-40). Am. Oil Chem. Soc. Champaign, IL. 4th
Ed.
Avelar, M.H.M., Cassimiro, D.M.J., Santos, K.C., Domingues, R.C.C., De
Castro, H.F., Mendes, A.A., 2013. Hydrolysis of vegetable oils catalyzed
by lipase extract powder from dormant castor bean seeds. Ind. Crops
Prod. 44, 452–458. https://doi.org/10.1016/j.indcrop.2012.10.011
Awadallak, J.A., Reinehr, T.O., Molinari, D., Raizer, E., Cardozo‐Filho,
L., da Silva, E.A., da Silva, C., 2016. The effect of ultrasound on the
hydrolysis of soybean oil catalyzed by phospholipase. Eur. J. Lipid Sci.
Technol. https://doi.org/10.1002/ejlt.201600154
Barnebey, H.L., Brown, A.C., 1948. Continuous fat splitting plants using
the colgate-emery process. J. Am. Oil Chem. Soc. 25, 95–99.
https://doi.org/10.1007/BF02579733
Barton, S., Bullock, C., Weir, D., 1996. The effects of ultrasound on
the activities of some glycosidase enzymes of industrial importance.
Enzyme Microb. Technol. https://doi.org/10.1016/0141-0229(95)00092-5
Bressani, A.P.P., Garcia, K.C.A., Hirata, D.B., Mendes, A.A., 2014.
Production of alkyl esters from macaw palm oil by a sequential
hydrolysis/esterification process using heterogeneous biocatalysts:
Optimization by response surface methodology. Bioprocess Biosyst. Eng.
38, 287–297. https://doi.org/10.1007/s00449-014-1267-5
Campillo-Alvarado, G., Tovar-Miranda, R., 2013. Recent advances and
applications of the lipolytic activity of Carica papaya latex. J. Mol.
Catal. B Enzym. https://doi.org/10.1016/j.molcatb.2013.01.015
Cavalcanti-Oliveira, E. d’Avila, da Silva, P.R., Ramos, A.P., Aranda,
D.A.G., Freire, D.M.G., 2010. Study of Soybean Oil Hydrolysis Catalyzed
by Thermomyces lanuginosus Lipase and Its Application to Biodiesel
Production via Hydroesterification. Enzyme Res. 2011, 618692.
https://doi.org/10.4061/2011/618692
Cavalcanti, E.D.C., Maciel, F.M., Villeneuve, P., Lago, R.C.A., Machado,
O.L.T., Freire, D.M.G., 2007. Acetone powder from dormant seeds of
Ricinus communis L: Lipase activity and presence of toxic and allergenic
compounds, in: Applied Biochemistry and Biotechnology. pp. 57–65.
https://doi.org/10.1007/s12010-007-9039-1
Chiplunkar, P.P., Zhao, X., Tomke, P.D., Noro, J., Xu, B., Wang, Q.,
Silva, C., Pratap, A.P., Cavaco-Paulo, A., 2018. Ultrasound-assisted
lipase catalyzed hydrolysis of aspirin methyl ester. Ultrason. Sonochem.
https://doi.org/10.1016/j.ultsonch.2017.08.004
Coelho, A.D., Santos, K.C., Domingues, R.C.C., Mendes, A.A., 2013.
Produção de concentrados de ácidos graxos por hidrólise de óleos
vegetais mediada por lipase vegetal. Quim. Nova 36, 1164–1169.
https://doi.org/10.1590/S0100-40422013000800015
Corradini, F.A.S., Alves, E.S., Kopp, W., Ribeiro, M.P.A., Mendes, A.A.,
Tardioli, P.W., Giordano, R.C., Giordano, R.L.C., 2019. Kinetic study of
soybean oil hydrolysis catalyzed by lipase from solid castor bean seeds.
Chem. Eng. Res. Des. https://doi.org/10.1016/j.cherd.2019.02.008
Da Silva, E.C., Mendes, P.R., Brito, Y.C., Meneghetti, M.R., Meneghetti,
S.M.P., 2016. Hydrolysis of triacylglyceridesin the presence of tin(IV)
catalysts. Catal. Commun. 78, 7–10.
https://doi.org/10.1016/j.catcom.2016.01.032
De Freitas, V.O., Matte, C.R., Poppe, J.K., Rodrigues, R.C., Ayub,
M.A.Z., 2019. Ultrasound-assisted transesterification of soybean oil
using combi-lipase biocatalysts. Brazilian J. Chem. Eng.
https://doi.org/10.1590/0104-6632.20190362s20180455
de Sousa, J.S., Cavalcanti-Oliveira, E. d A., Aranda, D.A.G., Freire,
D.M.G., 2010. Application of lipase from the physic nut (Jatropha curcas
L.) to a new hybrid (enzyme/chemical) hydroesterification process for
biodiesel production. J. Mol. Catal. B Enzym. 65, 133–137.
https://doi.org/10.1016/j.molcatb.2010.01.003
Devaraj, K., Aathika, S., Mani, Y., Thanarasu, A., Periyasamy, K.,
Periyaraman, P., Velayutham, K., Subramanian, S., 2018. Experimental
investigation on cleaner process of enhanced fat-oil extraction from
alkaline leather fleshing waste. J. Clean. Prod.
https://doi.org/10.1016/j.jclepro.2017.11.089
dos Santos, L.K., Hatanaka, R.R., de Oliveira, J.E., Flumignan, D.L.,
2019. Production of biodiesel from crude palm oil by a sequential
hydrolysis/esterification process using subcritical water. Renew. Energy
633–640. https://doi.org/https://doi.org/10.1016/j.renene.2018.06.102
Du, W., Li, W., Sun, T., Chen, X., Liu, D., 2008. Perspectives for
biotechnological production of biodiesel and impacts. Appl. Microbiol.
Biotechnol. https://doi.org/10.1007/s00253-008-1448-8
Eastmond, P.J., 2004. Cloning and characterization of the acid lipase
from Castor beans. J. Biol. Chem. 279, 45540–45545.
https://doi.org/10.1074/jbc.M408686200
El-Hefnawy, M.E., Sakran, M., 2014. Characteristics of lipase in dormant
seeds catalysed hydrolysis of olive oil in SDS-olive oil reversed
microemulsions. Can. J. Chem. Eng. 92, 1335–1339.
https://doi.org/10.1002/cjce.21990
Feiten, M.C., Dalla Rosa, C., Treichel, H., Furigo, A., Zenevicz, M.C.,
de Oliveira, D., Vladimir Oliveira, J., 2014. Batch and fed-batch
enzymatic hydrolysis of soybean oil under ultrasound irradiation.
Biocatal. Agric. Biotechnol. 3, 83–85.
https://doi.org/10.1016/j.bcab.2013.12.003
Ferreira-Dias, S., da Fonseca, M.M.R., 1995. The effect of substrate
hydrophobicity on the kinetic behaviour of immobilized Candida rugosa
lipase. Biocatal. Biotransformation 13, 99–110.
https://doi.org/10.3109/10242429509015216
Froment, M.T., Lockridge, O., Masson, P., 1998. Resistance of
butyrylcholinesterase to inactivation by ultrasound: Effects of
ultrasound on catalytic activity and subunit association. Biochim.
Biophys. Acta - Protein Struct. Mol. Enzymol. 1387, 53–64.
https://doi.org/10.1016/S0167-4838(98)00105-8
Fuchs, C., Vine, N., Hills, M.J., 1996. Purification and
characterization of the acid lipase from the endosperm of castor oil
seeds. J. Plant Physiol. 149, 23–29.
https://doi.org/10.1016/S0176-1617(96)80168-4
Goñi, M.L., Pacheco, C., Constenla, D.T., Carelli, A.A., 2018.
Solvent-free enzymatic hydrolysis of non-polar lipids in crude sunflower
lecithin using phospholipase A1 (Lecitase® Ultra). Biocatal.
Biotransformation. https://doi.org/10.1080/10242422.2017.1376662
Han, B., Jiang, J., Zhang, W., Yin, F., Liu, S., Zhao, X., Liu, J.,
Wang, C., Yang, H., 2019. Hydrolysis of rapeseed oil to fatty acids
using pyrrolidonium ionic liquids as catalysts. Energy Sources, Part A
Recover. Util. Environ. Eff.
https://doi.org/10.1080/15567036.2019.1568627
Hills, M.J., Murphy, D.J., 1988. Characterization of lipases from the
lipid bodies and microsomal membranes of erucic acid-free oilseed-rape
(Brassica napus) cotyledons. Biochem. J. 249, 687–693.
Ho, W.W.S., Ng, H.K., Gan, S., 2016. Advances in ultrasound-assisted
transesterification for biodiesel production. Appl. Therm. Eng.
https://doi.org/10.1016/j.applthermaleng.2016.02.058
Ilham, Z., Saka, S., 2010. Two-step supercritical dimethyl carbonate
method for biodiesel production from Jatropha curcas oil. Bioresour.
Technol. https://doi.org/10.1016/j.biortech.2009.10.053
Lazzeri, L., Leoni, O., Conte, L.S., Palmieri, S., 1994. Some
technological characteristics and potential uses of Crambe abyssinica
products. Ind. Crops Prod. 3, 103–112.
https://doi.org/10.1016/0926-6690(94)90083-3
Leong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M., 2009.
Minimising oil droplet size using ultrasonic emulsification. Ultrason.
Sonochem. 16, 721–727. https://doi.org/10.1016/j.ultsonch.2009.02.008
Lerin, L.A., Loss, R.A., Remonatto, D., Zenevicz, M.C., Balen, M.,
Netto, V.O., Ninow, J.L., Trentin, C.M., Oliveira, J.V., de Oliveira,
D., 2014. A review on lipase-catalyzed reactions in ultrasound-assisted
systems. Bioprocess Biosyst. Eng. 2381–2394.
https://doi.org/10.1007/s00449-014-1222-5
Martínez, A., Mijangos, G.E., Romero-Ibarra, I.C., Hernández-Altamirano,
R., Mena-Cervantes, V.Y., Gutiérrez, S., 2018. A novel green one-pot
synthesis of biodiesel from Ricinus communis seeds by basic
heterogeneous catalysis. J. Clean. Prod.
https://doi.org/10.1016/j.jclepro.2018.05.241
Meneguelli de Souza, L.C., Carvalho, L.P. d., Araújo, J.S., Melo, E.J.T.
d., Machado, O.L.T., 2018. Cell toxicity by ricin and elucidation of
mechanism of Ricin inactivation. Int. J. Biol. Macromol.
https://doi.org/10.1016/j.ijbiomac.2018.03.024
Muto, S., Beevers, H., 1974. Lipase Activities in Castor Bean Endosperm
during Germination. Plant Physiol. 54, 23–28.
https://doi.org/10.1104/pp.54.1.23
Nelder, J.A., Mead, R., 1964. A simplex method for function
minimization. Comput. J. 7, 308–313.
https://doi.org/10.1093/comjnl/7.4.308
Nguyen, H.C., Lee, H.Y., Su, C.H., Shih, W.J., Chien, C.C., 2020. Green
process for fatty acid production from soybean oil through
microwave-mediated autocatalytic synthesis. Chem. Eng. Process. -
Process Intensif. https://doi.org/10.1016/j.cep.2019.107782
Noor, I.M., Hasan, M., Ramachandran, K.B., 2003. Effect of operating
variables on the hydrolysis rate of palm oil by lipase. Process Biochem.
39, 13–20. https://doi.org/10.1016/S0032-9592(02)00263-7
Ong, L.K., Tran Nguyen, P.L., Soetaredjo, F.E., Ismadji, S., Ju, Y.-H.,
2016. Direct reuse of Cu-laden wastewater for non-edible oil hydrolysis:
Basic mechanism of metal extraction and fatty acid production. RSC Adv.
6. https://doi.org/10.1039/c5ra23153a
Özbek, B., Ülgen, K.O., 2000. The stability of enzymes after sonication.
Process Biochem. 35, 1037–1043.
https://doi.org/10.1016/S0032-9592(00)00141-2
Polachini, T.C., Mulet, A., Telis-Romero, J., Cárcel, J.A., 2019.
Influence of high-intensity ultrasound application on the kinetics of
sugar release from acid suspensions of artichoke (Cynara scolymus)
biomass. Chem. Eng. Process. - Process Intensif.
https://doi.org/10.1016/j.cep.2019.107681
Posorske, L.H., 1984. Industrial-scale application of enzymes to the
fats and oil industry. J. Am. Oil Chem. Soc. 61, 1758–1760.
https://doi.org/10.1007/BF02582143
Pourzolfaghar, H., Abnisa, F., Daud, W.M.A.W., Aroua, M.K., 2016. A
review of the enzymatic hydroesterification process for biodiesel
production. Renew. Sustain. Energy Rev.
https://doi.org/10.1016/j.rser.2016.03.048
Romero, M.D., Calvo, L., Alba, C., Daneshfar, A., 2007. A kinetic study
of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation
in n-hexane. J. Biotechnol. 127, 269–277.
https://doi.org/10.1016/j.jbiotec.2006.07.009
Rooney, D., Weatherley, L.R., 2001. The effect of reaction conditions
upon lipase catalysed hydrolysis of high oleate sunflower oil in a
stirred liquid-liquid reactor. Process Biochem. 36, 947–953.
https://doi.org/10.1016/S0032-9592(01)00130-3
Rosenbrock, H.H., 1963. Some general implicit processes for the
numerical solution of differential equations. Comput. J. 5, 329–330.
Salaberría, F., Palla, C., Carrín, M.E., 2017. Hydrolytic Activity of
Castor Bean Powder: Effect of Gum Arabic, Lipase and Oil Concentrations.
JAOCS, J. Am. Oil Chem. Soc. 94, 741–745.
https://doi.org/10.1007/s11746-017-2976-0
Santos, K.C., Cassimiro, D.M.J., Avelar, M.H.M., Hirata, D.B., de
Castro, H.F., Fernández-Lafuente, R., Mendes, A.A., 2013.
Characterization of the catalytic properties of lipases from plant seeds
for the production of concentrated fatty acids from different vegetable
oils. Ind. Crops Prod. 49, 462–470.
https://doi.org/10.1016/j.indcrop.2013.05.035
Talukder, M.M.R., Zaman, M.M., Hayashi, Y., Wu, J.C., Kawanishi, T.,
2006. Ultrasonication enhanced hydrolytic activity of lipase in
water/isooctane two-phase systems. Biocatal. Biotransformation 24,
189–194. https://doi.org/10.1080/10242420500132326
Tavares, F., Petry, J., Sackser, P.R., Borba, C.E., Silva, E.A., 2018a.
Use of castor bean seeds as lipase source for hydrolysis of crambe oil.
Ind. Crops Prod. 124, 254–264.
https://doi.org/10.1016/j.indcrop.2018.06.073
TAVARES, F., SACKSER, P., PINZAN, F., BORBA, C.E., SILVA, E.A., 2015.
HIDRÓLISE DO ÓLEO DE CRAMBE EMPREGANDO LIPASE VEGETAL EXTRAÍDA DE
SEMENTES DE DIFERENTES OLEAGINOSAS.
https://doi.org/10.5151/chemeng-cobeqic2015-112-32299-245530
Tavares, F., Silva, E.A. Da, Pinzan, F., Canevesi, R.S., Milinsk, M.C.,
Scheufele, F.B., Borba, C.E., 2018b. Hydrolysis of crambe oil by
enzymatic catalysis: An evaluation of the operational conditions.
Biocatal. Biotransformation 1–14.
https://doi.org/10.1080/10242422.2018.1430786
Tully, R.E., Beevers, H., 1976. Protein bodies of castor bean endosperm:
isolation, fractionation, and the characterization of protein
components. Plant Physiol. 58, 710–6.
https://doi.org/10.1104/pp.58.6.710
Vercet, A., Burgos, J., Crelier, S., Lopez-Buesa, P., 2001. Inactivation
of proteases and lipases by ultrasound. Innov. Food Sci. Emerg. Technol.
2, 139–150. https://doi.org/10.1016/S1466-8564(00)00037-0
Villeneuve, P., 2003. Plant lipases and their applications in oils and
fats modification. Eur. J. Lipid Sci. Technol.
https://doi.org/10.1002/ejlt.200390061
Wang, J., Wang, S., Li, Z., Gu, S., Wu, X., Wu, F., 2015. Ultrasound
irradiation accelerates the lipase-catalyzed synthesis of methyl
caffeate in an ionic liquid. J. Mol. Catal. B Enzym. 111, 21–28.
https://doi.org/10.1016/j.molcatb.2014.11.006
Wazilewski, W.T., Bariccatti, R.A., Martins, G.I., Secco, D., Souza,
S.N.M. de, Rosa, H.A., Chaves, L.I., 2013. Study of the methyl crambe
(Crambe abyssinica Hochst) and soybean biodiesel oxidative stability.
Ind. Crops Prod. 43, 207–212.
https://doi.org/10.1016/j.indcrop.2012.07.046
Xiao, H., Li, Y., Wang, H., 2017. A stochastic kinetic study of
preparing fatty acid from rapeseed oil via subcritical hydrolysis. Appl.
Energy. https://doi.org/10.1016/j.apenergy.2017.05.013