References
Allington, G., Valone, T. 2010. Reversal of desertification: the role of
physical and chemical soil properties. Journal of Arid
Environments 74(8), 973-977.
Attard, E., Recous, S., Chabbi, A., De, B.C., Guillaumaud, N.,
Labreuche, J., Philippot, L., Schmid, B., ROUX X, L.E. 2011. Soil
environmental conditions rather than denitrifier abundance and diversity
drive potential denitrification after changes in land uses. Global
Change Biology 17(5), 1975-1989.
Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A.,
Norton, U., Ravetta, D.A., Schaeffer, S.M. 2004. Water pulses and
biogeochemical cycles in arid and semiarid ecosystems. Oecologia141(2), 221-235.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., Hatté, C. 2018. Atmosphere–soil carbon transfer as a
function of soil depth. Nature 559(7715), 599-602.
Bao, S.D. 2000. Soil and Agricultural Chemistry Analysis. in:Agriculture Publication, Beijing , pp. 355-356.
Barber, N.A., Chantos‐Davidson, K.M., Amel Peralta, R., Sherwood, J.P.,
Swingley, W.D. 2017. Soil microbial community composition in tallgrass
prairie restorations converge with remnants across a 27‐year
chronosequence. Environmental Microbiology 19(8), 3118-3131.
Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone,
D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M.
2017. The extent of forest in dryland biomes. Science 356(6338),
635-638.
Castro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., Schadt, C.W.
2010. Soil microbial community responses to multiple experimental
climate change drivers. Applied and Environmental Microbiology76(4), 999-1007.
D’Odorico, P., Caylor, K., Okin, G.S., Scanlon, T.M. 2007. On soil
moisture–vegetation feedbacks and their possible effects on the
dynamics of dryland ecosystems. Journal of Geophysical Research:
Biogeosciences 112(G4).
D’Odorico, P., Bhattachan, A., Davis, K.F., Ravi, S., Runyan, C.W. 2013.
Global desertification: drivers and feedbacks. Advances in water
resources 51, 326-344.
D’Odorico, P., Rosa, L., Bhattachan, A., Okin, G.S. 2019.
Desertification and Land Degradation. in: Dryland Ecohydrology ,
Springer, pp. 573-602.
Daum, D., Schenk, M.K. 1997. Evaluation of the acetylene inhibition
method for measuring denitrification in soilless plant culture systems.Biology and Fertility of Soils 24(1), 111-117.
de Carvalho, T.S., Jesus, E.d.C., Barlow, J., Gardner, T.A., Soares,
I.C., Tiedje, J.M., Moreira, F.M.d.S. 2016. Land use intensification in
the humid tropics increased both alpha and beta diversity of soil
bacteria. Ecology 97(10), 2760-2771.
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M.,
Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M.
2018. Soil bacterial networks are less stable under drought than fungal
networks. Nature Communications 9(1), 3033.
Delgado-Baquerizo, M., Bardgett, R.D., Vitousek, P.M., Maestre, F.T.,
Williams, M.A., Eldridge, D.J., Lambers, H., Neuhauser, S., Gallardo,
A., García-Velázquez, L. 2019. Changes in belowground biodiversity
during ecosystem development. Proceedings of the National Academy
of Sciences 116(14), 6891-6896.
Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh,
B.K., Maestre, F.T. 2017. Soil microbial communities drive the
resistance of ecosystem multifunctionality to global change in drylands
across the globe. Ecology letters 20(10), 1295-1305.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C.,
Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K.
2016. Microbial diversity drives multifunctionality in terrestrial
ecosystems. Nature Communications 7, 10541. 10.1038/ncomms10541
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L.,
Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L. 2006.
Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Applied and Environmental Microbiology72(7), 5069-5072.
Eilers, K.G., Debenport, S., Anderson, S., Fierer, N. 2012. Digging
deeper to find unique microbial communities: the strong effect of depth
on the structure of bacterial and archaeal communities in soil.Soil Biology and Biochemistry 50, 58-65.
Falkowski, P.G., Fenchel, T., Delong, E.F. 2008. The microbial engines
that drive Earth’s biogeochemical cycles. Science 320(5879),
1034-1039.
Fierer, N. 2017. Embracing the unknown: disentangling the complexities
of the soil microbiome. Nature Reviews Microbiology 15(10), 579.
Fierer, N., Morse, J.L., Berthrong, S.T., Bernhardt, E.S., Jackson, R.B.
2007. Environmental controls on the landscape‐scale biogeography of
stream bacterial communities. Ecology 88(9), 2162-2173.
Fierer, N., Schimel, J.P., Holden, P.A. 2003. Variations in microbial
community composition through two soil depth profiles. Soil
Biology and Biochemistry 35(1), 167-176.
Fukami, T., Dickie, I.A., Wilkie, J.P., Paulus, B.C., Park, D., Roberts,
A., Buchanan, P.K., Allen, R.B. 2010. Assembly history dictates
ecosystem functioning: evidence from wood decomposer communities.Ecology Letters 13(6), 675-684.
Goldfarb, K.C., Karaoz, U., Hanson, C.A., Santee, C.A., Bradford, M.A.,
Treseder, K.K., Wallenstein, M.D., Brodie, E.L. 2011. Differential
growth responses of soil bacterial taxa to carbon substrates of varying
chemical recalcitrance. Frontiers in microbiology 2, 94.
Graham, E.B., Wieder, W.R., Leff, J.W., Weintraub, S.R., Townsend, A.R.,
Cleveland, C.C., Philippot, L., Nemergut, D.R. 2014. Do we need to
understand microbial communities to predict ecosystem function? A
comparison of statistical models of nitrogen cycling processes.Soil Biology and Biochemistry 68, 279-282.
Guo-dong, D. 2004. Study on Indicative Feature and Cover Classification
of Vegetation in Regional Desertification Assessment-Taking Mu Us
Sandland as an Example. Journal of Soil Water Conservation 18(1),
158-161.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to
nitrate reduction in a novel archaeal lineage. Nature 500(7464),
567-570.
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G. 2018. Soil
microbiomes with distinct assemblies through vertical soil profiles
drive the cycling of multiple nutrients in reforested ecosystems.Microbiome 6(1), 146.
Legendre, P., De Cáceres, M. 2013. Beta diversity as the variance of
community data: dissimilarity coefficients and partitioning.Ecology letters 16(8), 951-963.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol,
G.W., Prosser, J.I., Schuster, S.C., Schleper, C. 2006. Archaea
predominate among ammonia-oxidizing prokaryotes in soils. Nature442(7104), 806-809.
Levy-Booth, D.J., Prescott, C.E., Grayston, S.J. 2014. Microbial
functional genes involved in nitrogen fixation, nitrification and
denitrification in forest ecosystems. Soil Biology and
Biochemistry 75, 11-25.
Li, C., Yan, K., Tang, L., Jia, Z., Li, Y. 2014. Change in deep soil
microbial communities due to long-term fertilization. Soil Biology
and Biochemistry 75, 264-272.
Li, D., Zhang, X., Greenc, S.M., Dungaitc, J.A.J., Wen, X., Tang, Y.,
Guo, Z., Yang, Y., Sun, X., Quinec, T.A. 2018. Nitrogen functional gene
activity in soil profiles under progressive vegetative recovery after
abandonment of agriculture at the Puding Karst Critical Zone
Observatory, SW China. Soil Biology and Biochemistry 125, 93-102.
Li, J., Delgado-Baquerizo, M., Wang, J.-T., Hu, H.-W., Cai, Z.-J., Zhu,
Y.-N., Singh, B.K. 2019. Fungal richness contributes to
multifunctionality in boreal forest soil. Soil Biology and
Biochemistry 136, 107526.
Lozano, Y.M., Hortal, S., Armas, C., Pugnaire, F.I. 2014. Interactions
among soil, plants, and microorganisms drive secondary succession in a
dry environment. Soil Biology and Biochemistry 78, 298-306.
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T.,
Mace, G., Whittingham, M.J., Fischer, M. 2018. Redefining ecosystem
multifunctionality. Nature Ecology & Evolution 2(3), 427-436.
Naether, A., Foesel, B.U., Naegele, V., Wüst, P.K., Weinert, J.,
Bonkowski, M., Alt, F., Oelmann, Y., Polle, A., Lohaus, G. 2012.
Environmental factors affect acidobacterial communities below the
subgroup level in grassland and forest soils. Applied and
Environmental Microbiology 78(20), 7398-7406.
Neilson, J.W., Califf, K., Cardona, C., Copeland, A., Van Treuren, W.,
Josephson, K.L., Knight, R., Gilbert, J.A., Quade, J., Caporaso, J.G.
2017. Significant impacts of increasing aridity on the arid soil
microbiome. MSystems 2(3), e00195-16.
Nilsson, R.H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P.,
Tedersoo, L. 2019. Mycobiome diversity: high-throughput sequencing and
identification of fungi. Nature Reviews Microbiology 17(2),
95-109.
Petersen, D.G., Blazewicz, S.J., Firestone, M., Herman, D.J., Turetsky,
M., Waldrop, M. 2012. Abundance of microbial genes associated with
nitrogen cycling as indices of biogeochemical process rates across a
vegetation gradient in Alaska. Environmental Microbiology 14(4),
993-1008.
Powell, J.R., Karunaratne, S., Campbell, C.D., Yao, H., Robinson, L.,
Singh, B.K. 2015. Deterministic processes vary during community assembly
for ecologically dissimilar taxa. Nature Communications 6, 8444.
Ravi, S., Breshears, D.D., Huxman, T.E., D’Odorico, P. 2010. Land
degradation in drylands: Interactions among hydrologic–aeolian erosion
and vegetation dynamics. Geomorphology 116(3-4), 236-245.
Schermelleh-Engel, K., Moosbrugger, H., Müller, H. 2003. Evaluating the
fit of structural equation models: Tests of significance and descriptive
goodness-of-fit measures. MPR-online 8(2), 23-74.
Schimel, D.S. 2010. Drylands in the earth system. Science327(5964), 418-419.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S.,
Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suija, A.
2014. Global diversity and geography of soil fungi. Science346(6213), 1256688.
Upton, R.N., Checinska Sielaff, A., Hofmockel, K.S., Xu, X., Polley,
H.W., Wilsey, B.J. 2020. Soil depth and grassland origin cooperatively
shape microbial community co‐occurrence and function. Ecosphere11(1), e02973.
Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G. 2014. Soil
biodiversity and soil community composition determine ecosystem
multifunctionality. Proceedings of the National Academy of
Sciences 111(14), 5266-5270.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden,
M.G. 2019. Fungal-bacterial diversity and microbiome complexity predict
ecosystem functioning. Nature communications 10(1), 1-10.
Wang, H., Deng, N., Wu, D., Hu, S., Kou, M. 2017. Long-termnet
transformation and quantitative molecular mechanisms of soil nitrogen
during natural vegetation recovery of abandoned farmland on the Loess
Plateau of China. Science of The Total Environment 607, 152-159.
Wang, H., Li, X., Xiao, J., Ma, M., Tan, J., Wang, X., Geng, L. 2019a.
Carbon fluxes across alpine, oasis, and desert ecosystems in
northwestern China: The importance of water availability. Science
of the Total Environment 697, 133-978.
Wang, Y., Dungait, J.A., Xing, K., Green, S.M., Hartley, I., Tu, C.,
Quine, T.A., Tian, J., Kuzyakov, Y. 2019b. Persistence of soil microbial
function at the rock‐soil interface in degraded karst topsoils.Land Degradation & Development 31, 251-265.
Ward, D., Trinogga, J., Wiegand, K., du Toit, J., Okubamichael, D.,
Reinsch, S., Schleicher, J. 2018. Large shrubs increase soil nutrients
in a semi-arid savanna. Geoderma 310, 153-162.
Wardle, D.A. 2013. Communities and ecosystems: linking the
aboveground and belowground components (MPB-34) . Princeton University
Press.
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M.,
Herbold, C.W., Eichorst, S.A., Woebken, D., Richter, A. 2019. Soil
multifunctionality is affected by the soil environment and by microbial
community composition and diversity. Soil Biology and
Biochemistry 136, 107521.
Zhi, W., Yuan, L., Ji, G., He, C. 2015. Enhanced long-term nitrogen
removal and its quantitative molecular mechanism in tidal flow
constructed wetlands. Environmental science and technology 49(7),
4575-4583.
Zhou, Y., Boutton, T.W., Wu, X.B. 2018. Soil phosphorus does not keep
pace with soil carbon and nitrogen accumulation following woody
encroachment. Global Change Biology 24(5), 1992-2007.