References:
1. Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol. 100618 (2020). doi:10.1016/j.cpcardiol.2020.100618
2. Wang, T. et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. The Lancet 395 , e52 (2020).
3. Fang, L., Karakiulakis, G. & Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?The Lancet Respiratory Medicine 8 , e21 (2020).
4. Madjid, M., Safavi-Naeini, P., Solomon, S. D. & Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiology (2020). doi:10.1001/jamacardio.2020.1286
5. Coperchini, F., Chiovato, L., Croce, L., Magri, F. & Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev.(2020). doi:10.1016/j.cytogfr.2020.05.003
6. Rahmati, M. & Moosavi, M. A. Letter to the Editor Cytokine-Targeted Therapy in Severely ill COVID-19 Patients : Options and Cautions.Eurasian J. Med. Oncol. 4 , 179–180 (2020).
7. Zhang, W. et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology 214 , (2020).
8. Cai, Y., Liu, Y. & Zhang, X. Suppression of Coronavirus Replication by Inhibition of the MEK Signaling Pathway. J. Virol.81 , 446–456 (2007).
9. Mizutani, T. Signaling pathways of SARS-CoV in vitro and in vivo. inMolecular Biology of the SARS-Coronavirus 305–322 (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-03683-5_19
10. Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.Cell 181 , 271-280.e8 (2020).
11. Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181 , 281-292.e6 (2020).
12. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature581 , 215–220 (2020).
13. Vickers, A. P. & Jolly, A. Naltrexone and problems in pain management. British Medical Journal 332 , 132–133 (2006).
14. Wu, D. & Yang, X. O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. (2020). doi:10.1016/j.jmii.2020.03.005
15. Ramos-Benitez, M. J. et al. Fh15 Blocks the Lipopolysaccharide-Induced Cytokine Storm While Modulating Peritoneal Macrophage Migration and CD38 Expression within Spleen Macrophages in a Mouse Model of Septic Shock. mSphere 3 , (2018).
16. Hersoug, L.-G., Møller, P. & Loft, S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes. Rev.17 , 297–312 (2016).
17. Dehury, B. et al. Structure-Based Computational Study of Two Disease Resistance Gene Homologues (Hm1 and Hm2) in Maize (Zea mays L.) with Implications in Plant-Pathogen Interactions. PLoS One9 , e97852 (2014).
18. Toljan, K. & Vrooman, B. Low-Dose Naltrexone (LDN)—Review of Therapeutic Utilization. Med. Sci. 6 , 82 (2018).
19. Younger, J., Parkitny, L. & McLain, D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clinical Rheumatology 33 , 451–459 (2014).
20. Hutchinson, M. R. et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: Involvement of toll-like receptor 4 (TLR4). Eur. J. Neurosci. 28 , 20–29 (2008).
21. Li, Z., You, Y., Griffin, N., Feng, J. & Shan, F. Low-dose naltrexone (LDN): A promising treatment in immune-related diseases and cancer therapy. Int. Immunopharmacol. 61 , 178–184 (2018).
22. Low-Dose Naltrexone for Pruritus in Systemic Sclerosis. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171757/. (Accessed: 24th May 2020)
23. Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 , 565–574 (2020).
24. Zha, L. et al. Corticosteroid treatment of patients with coronavirus disease 2019 ( <scp>COVID</scp> ‐19).Med. J. Aust. 212 , 416–420 (2020).
25. Stockman, L. J., Bellamy, R. & Garner, P. SARS: Systematic Review of Treatment Effects. PLoS Med. 3 , e343 (2006).
26. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579 , 265–269 (2020).
27. Zhao, M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents (2020). doi:10.1016/j.ijantimicag.2020.105982
28. Tanaka, T., Narazaki, M. & Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy8 , 959–970 (2016).
29. The Uses of Low-Dose Naltrexone in Clinical Practice | Natural Medicine Journal. Available at: https://www.naturalmedicinejournal.com/journal/2018-04/uses-low-dose-naltrexone-clinical-practice. (Accessed: 7th June 2020)
30. Gold, M. S. et al. Naltrexone, opiate addiction, and endorphins. Med. Res. Rev. 2 , 211–246 (1982).
31. Parkitny, L. & Younger, J. Reduced Pro-Inflammatory Cytokines after Eight Weeks of Low-Dose Naltrexone for Fibromyalgia. Biomedicines5 , 16 (2017).
32. Dogra, S. et al. Zinc oxide nanoparticles attenuate hepatic steatosis development in high-fat-diet fed mice through activated AMPK signaling axis. Nanomedicine Nanotechnology, Biol. Med.17 , 210–222 (2019).
33. Morris, G. M. et al. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem. 30 , 2785–2791 (2009).
34. Dehury, B., Behera, S. K. & Mahapatra, N. Structural dynamics of Casein Kinase I (CKI) from malarial parasite Plasmodium falciparum (Isolate 3D7): Insights from theoretical modelling and molecular simulations. J. Mol. Graph. Model. 71 , 154–166 (2017).
35. Girdhar, K. et al. Novel insights into the dynamics behavior of glucagon-like peptide-1 receptor with its small molecule agonists.J. Biomol. Struct. Dyn. 37 , 3976–3986 (2019).
36. Abraham, M. J. et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 12 , 19–25 (2015).
37. Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing.J. Chem. Inf. Model. 52 , 3144–3154 (2012).